import numpy as np from active_grasp.policy import BasePolicy from robot_utils.ros import tf from vgn.utils import look_at class SingleViewBaseline(BasePolicy): """ Process a single image from the initial viewpoint. """ def update(self): self.integrate_latest_image() self.draw_scene_cloud() self.best_grasp = self.predict_best_grasp() self.done = True class TopBaseline(BasePolicy): """ Move the camera to a top-down view of the target object. """ def activate(self, bbox): super().activate(bbox) center = (bbox.min + bbox.max) / 2.0 eye = np.r_[center[:2], center[2] + 0.3] up = np.r_[1.0, 0.0, 0.0] self.target = self.T_B_task * (self.T_EE_cam * look_at(eye, center, up)).inv() def update(self): current = tf.lookup(self.base_frame, self.ee_frame) error = current.translation - self.target.translation if np.linalg.norm(error) < 0.01: self.best_grasp = self.predict_best_grasp() self.done = True else: self.integrate_latest_image() self.draw_scene_cloud() self.draw_camera_path() return self.target