168 lines
5.8 KiB
Python
168 lines
5.8 KiB
Python
import os
|
|
import OpenEXR
|
|
import Imath
|
|
import numpy as np
|
|
import json
|
|
import cv2
|
|
import re
|
|
|
|
class DataLoadUtil:
|
|
|
|
@staticmethod
|
|
def get_path(root, scene_idx, frame_idx):
|
|
path = os.path.join(root, f"sequence.{scene_idx}", f"step{frame_idx}")
|
|
return path
|
|
|
|
@staticmethod
|
|
def get_label_path(root, scene_idx):
|
|
path = os.path.join(root, f"sequence.{scene_idx}_label.json")
|
|
return path
|
|
|
|
@staticmethod
|
|
def get_scene_idx_list(root):
|
|
scene_dir = os.listdir(root)
|
|
scene_idx_list = []
|
|
for scene in scene_dir:
|
|
if "sequence" in scene:
|
|
scene_idx = int(re.search(r'\d+', scene).group())
|
|
scene_idx_list.append(scene_idx)
|
|
return scene_idx_list
|
|
|
|
@staticmethod
|
|
def get_frame_idx_list(root, scene_idx):
|
|
scene_path = os.path.join(root, f"sequence.{scene_idx}")
|
|
view_dir = os.listdir(scene_path)
|
|
seen_frame_idx = set()
|
|
for view in view_dir:
|
|
if "step" in view:
|
|
frame_idx = int(re.search(r'\d+', view).group())
|
|
seen_frame_idx.add(frame_idx)
|
|
return list(seen_frame_idx)
|
|
|
|
@staticmethod
|
|
def load_model_points(root,scene_idx):
|
|
model_path = os.path.join(root, f"sequence.{scene_idx}", "world_points.txt")
|
|
model_pts = np.loadtxt(model_path)
|
|
return model_pts
|
|
|
|
@staticmethod
|
|
def read_exr_depth(depth_path):
|
|
file = OpenEXR.InputFile(depth_path)
|
|
|
|
dw = file.header()['dataWindow']
|
|
width = dw.max.x - dw.min.x + 1
|
|
height = dw.max.y - dw.min.y + 1
|
|
|
|
pix_type = Imath.PixelType(Imath.PixelType.FLOAT)
|
|
depth_map = np.frombuffer(file.channel('R', pix_type), dtype=np.float32)
|
|
|
|
depth_map.shape = (height, width)
|
|
|
|
return depth_map
|
|
|
|
@staticmethod
|
|
def load_depth(path):
|
|
depth_path = path + ".camera.Depth.exr"
|
|
depth_map = DataLoadUtil.read_exr_depth(depth_path)
|
|
return depth_map
|
|
|
|
@staticmethod
|
|
def load_rgb(path):
|
|
rgb_path = path + ".camera.png"
|
|
rgb_image = cv2.imread(rgb_path, cv2.IMREAD_COLOR)
|
|
return rgb_image
|
|
|
|
@staticmethod
|
|
def load_seg(path):
|
|
seg_path = path + ".camera.semantic segmentation.png"
|
|
seg_image = cv2.imread(seg_path, cv2.IMREAD_COLOR)
|
|
return seg_image
|
|
|
|
@staticmethod
|
|
def load_cam_info(path):
|
|
label_path = path + ".camera_params.json"
|
|
with open(label_path, 'r') as f:
|
|
label_data = json.load(f)
|
|
cam_transform = np.asarray(label_data['cam_to_world']).reshape(
|
|
(4, 4)
|
|
).T
|
|
|
|
offset = np.asarray([
|
|
[1, 0, 0, 0],
|
|
[0, -1, 0, 0],
|
|
[0, 0, 1, 0],
|
|
[0, 0, 0, 1]])
|
|
|
|
cam_to_world = cam_transform @ offset
|
|
|
|
|
|
|
|
f_x = label_data['f_x']
|
|
f_y = label_data['f_y']
|
|
c_x = label_data['c_x']
|
|
c_y = label_data['c_y']
|
|
cam_intrinsic = np.array([[f_x, 0, c_x], [0, f_y, c_y], [0, 0, 1]])
|
|
|
|
return {
|
|
"cam_to_world": cam_to_world,
|
|
"cam_intrinsic": cam_intrinsic
|
|
}
|
|
|
|
|
|
@staticmethod
|
|
def get_target_point_cloud(depth, cam_intrinsic, cam_extrinsic, mask, target_mask_label=(255,255,255)):
|
|
h, w = depth.shape
|
|
i, j = np.meshgrid(np.arange(w), np.arange(h), indexing='xy')
|
|
|
|
z = depth
|
|
x = (i - cam_intrinsic[0, 2]) * z / cam_intrinsic[0, 0]
|
|
y = (j - cam_intrinsic[1, 2]) * z / cam_intrinsic[1, 1]
|
|
|
|
points_camera = np.stack((x, y, z), axis=-1).reshape(-1, 3)
|
|
points_camera_aug = np.concatenate([points_camera, np.ones((points_camera.shape[0], 1))], axis=-1)
|
|
|
|
points_world = np.dot(cam_extrinsic, points_camera_aug.T).T[:, :3]
|
|
mask = mask.reshape(-1, 3)
|
|
target_mask = np.all(mask == target_mask_label, axis=-1)
|
|
return {
|
|
"points_world": points_world[target_mask],
|
|
"points_camera": points_camera[target_mask]
|
|
}
|
|
|
|
@staticmethod
|
|
def get_target_point_cloud(depth, cam_intrinsic, cam_extrinsic, mask, target_mask_label=(255,255,255)):
|
|
h, w = depth.shape
|
|
i, j = np.meshgrid(np.arange(w), np.arange(h), indexing='xy')
|
|
|
|
z = depth
|
|
x = (i - cam_intrinsic[0, 2]) * z / cam_intrinsic[0, 0]
|
|
y = (j - cam_intrinsic[1, 2]) * z / cam_intrinsic[1, 1]
|
|
|
|
points_camera = np.stack((x, y, z), axis=-1).reshape(-1, 3)
|
|
points_camera_aug = np.concatenate([points_camera, np.ones((points_camera.shape[0], 1))], axis=-1)
|
|
|
|
points_world = np.dot(cam_extrinsic, points_camera_aug.T).T[:, :3]
|
|
mask = mask.reshape(-1, 3)
|
|
target_mask = np.all(mask == target_mask_label, axis=-1)
|
|
return {
|
|
"points_world": points_world[target_mask],
|
|
"points_camera": points_camera[target_mask]
|
|
}
|
|
|
|
@staticmethod
|
|
def get_point_cloud_world_from_path(path):
|
|
cam_info = DataLoadUtil.load_cam_info(path)
|
|
depth = DataLoadUtil.load_depth(path)
|
|
mask = DataLoadUtil.load_seg(path)
|
|
point_cloud = DataLoadUtil.get_target_point_cloud(depth, cam_info['cam_intrinsic'], cam_info['cam_to_world'], mask)
|
|
return point_cloud['points_world']
|
|
|
|
@staticmethod
|
|
def get_point_cloud_list_from_seq(root, seq_idx, num_frames):
|
|
point_cloud_list = []
|
|
for idx in range(num_frames):
|
|
path = DataLoadUtil.get_path(root, seq_idx, idx)
|
|
point_cloud = DataLoadUtil.get_point_cloud_world_from_path(path)
|
|
point_cloud_list.append(point_cloud)
|
|
return point_cloud_list
|
|
|