import numpy as np from scipy.spatial import Delaunay import scipy def cls_type_to_id(cls_type): type_to_id = {'Car': 1, 'Pedestrian': 2, 'Cyclist': 3, 'Van': 4} if cls_type not in type_to_id.keys(): return -1 return type_to_id[cls_type] class Object3d(object): def __init__(self, line): label = line.strip().split(' ') self.src = line self.cls_type = label[0] self.cls_id = cls_type_to_id(self.cls_type) self.trucation = float(label[1]) self.occlusion = float(label[2]) # 0:fully visible 1:partly occluded 2:largely occluded 3:unknown self.alpha = float(label[3]) self.box2d = np.array((float(label[4]), float(label[5]), float(label[6]), float(label[7])), dtype=np.float32) self.h = float(label[8]) self.w = float(label[9]) self.l = float(label[10]) self.pos = np.array((float(label[11]), float(label[12]), float(label[13])), dtype=np.float32) self.dis_to_cam = np.linalg.norm(self.pos) self.ry = float(label[14]) self.score = float(label[15]) if label.__len__() == 16 else -1.0 self.level_str = None self.level = self.get_obj_level() def get_obj_level(self): height = float(self.box2d[3]) - float(self.box2d[1]) + 1 if height >= 40 and self.trucation <= 0.15 and self.occlusion <= 0: self.level_str = 'Easy' return 1 # Easy elif height >= 25 and self.trucation <= 0.3 and self.occlusion <= 1: self.level_str = 'Moderate' return 2 # Moderate elif height >= 25 and self.trucation <= 0.5 and self.occlusion <= 2: self.level_str = 'Hard' return 3 # Hard else: self.level_str = 'UnKnown' return 4 def generate_corners3d(self): """ generate corners3d representation for this object :return corners_3d: (8, 3) corners of box3d in camera coord """ l, h, w = self.l, self.h, self.w x_corners = [l / 2, l / 2, -l / 2, -l / 2, l / 2, l / 2, -l / 2, -l / 2] y_corners = [0, 0, 0, 0, -h, -h, -h, -h] z_corners = [w / 2, -w / 2, -w / 2, w / 2, w / 2, -w / 2, -w / 2, w / 2] R = np.array([[np.cos(self.ry), 0, np.sin(self.ry)], [0, 1, 0], [-np.sin(self.ry), 0, np.cos(self.ry)]]) corners3d = np.vstack([x_corners, y_corners, z_corners]) # (3, 8) corners3d = np.dot(R, corners3d).T corners3d = corners3d + self.pos return corners3d def to_str(self): print_str = '%s %.3f %.3f %.3f box2d: %s hwl: [%.3f %.3f %.3f] pos: %s ry: %.3f' \ % (self.cls_type, self.trucation, self.occlusion, self.alpha, self.box2d, self.h, self.w, self.l, self.pos, self.ry) return print_str def to_kitti_format(self): kitti_str = '%s %.2f %d %.2f %.2f %.2f %.2f %.2f %.2f %.2f %.2f %.2f %.2f %.2f %.2f' \ % (self.cls_type, self.trucation, int(self.occlusion), self.alpha, self.box2d[0], self.box2d[1], self.box2d[2], self.box2d[3], self.h, self.w, self.l, self.pos[0], self.pos[1], self.pos[2], self.ry) return kitti_str def get_calib_from_file(calib_file): with open(calib_file) as f: lines = f.readlines() obj = lines[2].strip().split(' ')[1:] P2 = np.array(obj, dtype=np.float32) obj = lines[3].strip().split(' ')[1:] P3 = np.array(obj, dtype=np.float32) obj = lines[4].strip().split(' ')[1:] R0 = np.array(obj, dtype=np.float32) obj = lines[5].strip().split(' ')[1:] Tr_velo_to_cam = np.array(obj, dtype=np.float32) return {'P2': P2.reshape(3, 4), 'P3': P3.reshape(3, 4), 'R0': R0.reshape(3, 3), 'Tr_velo2cam': Tr_velo_to_cam.reshape(3, 4)} class Calibration(object): def __init__(self, calib_file): if isinstance(calib_file, str): calib = get_calib_from_file(calib_file) else: calib = calib_file self.P2 = calib['P2'] # 3 x 4 self.R0 = calib['R0'] # 3 x 3 self.V2C = calib['Tr_velo2cam'] # 3 x 4 def cart_to_hom(self, pts): """ :param pts: (N, 3 or 2) :return pts_hom: (N, 4 or 3) """ pts_hom = np.hstack((pts, np.ones((pts.shape[0], 1), dtype=np.float32))) return pts_hom def lidar_to_rect(self, pts_lidar): """ :param pts_lidar: (N, 3) :return pts_rect: (N, 3) """ pts_lidar_hom = self.cart_to_hom(pts_lidar) pts_rect = np.dot(pts_lidar_hom, np.dot(self.V2C.T, self.R0.T)) return pts_rect def rect_to_img(self, pts_rect): """ :param pts_rect: (N, 3) :return pts_img: (N, 2) """ pts_rect_hom = self.cart_to_hom(pts_rect) pts_2d_hom = np.dot(pts_rect_hom, self.P2.T) pts_img = (pts_2d_hom[:, 0:2].T / pts_rect_hom[:, 2]).T # (N, 2) pts_rect_depth = pts_2d_hom[:, 2] - self.P2.T[3, 2] # depth in rect camera coord return pts_img, pts_rect_depth def lidar_to_img(self, pts_lidar): """ :param pts_lidar: (N, 3) :return pts_img: (N, 2) """ pts_rect = self.lidar_to_rect(pts_lidar) pts_img, pts_depth = self.rect_to_img(pts_rect) return pts_img, pts_depth def get_objects_from_label(label_file): with open(label_file, 'r') as f: lines = f.readlines() objects = [Object3d(line) for line in lines] return objects def objs_to_boxes3d(obj_list): boxes3d = np.zeros((obj_list.__len__(), 7), dtype=np.float32) for k, obj in enumerate(obj_list): boxes3d[k, 0:3], boxes3d[k, 3], boxes3d[k, 4], boxes3d[k, 5], boxes3d[k, 6] \ = obj.pos, obj.h, obj.w, obj.l, obj.ry return boxes3d def boxes3d_to_corners3d(boxes3d, rotate=True): """ :param boxes3d: (N, 7) [x, y, z, h, w, l, ry] :param rotate: :return: corners3d: (N, 8, 3) """ boxes_num = boxes3d.shape[0] h, w, l = boxes3d[:, 3], boxes3d[:, 4], boxes3d[:, 5] x_corners = np.array([l / 2., l / 2., -l / 2., -l / 2., l / 2., l / 2., -l / 2., -l / 2.], dtype=np.float32).T # (N, 8) z_corners = np.array([w / 2., -w / 2., -w / 2., w / 2., w / 2., -w / 2., -w / 2., w / 2.], dtype=np.float32).T # (N, 8) y_corners = np.zeros((boxes_num, 8), dtype=np.float32) y_corners[:, 4:8] = -h.reshape(boxes_num, 1).repeat(4, axis=1) # (N, 8) if rotate: ry = boxes3d[:, 6] zeros, ones = np.zeros(ry.size, dtype=np.float32), np.ones(ry.size, dtype=np.float32) rot_list = np.array([[np.cos(ry), zeros, -np.sin(ry)], [zeros, ones, zeros], [np.sin(ry), zeros, np.cos(ry)]]) # (3, 3, N) R_list = np.transpose(rot_list, (2, 0, 1)) # (N, 3, 3) temp_corners = np.concatenate((x_corners.reshape(-1, 8, 1), y_corners.reshape(-1, 8, 1), z_corners.reshape(-1, 8, 1)), axis=2) # (N, 8, 3) rotated_corners = np.matmul(temp_corners, R_list) # (N, 8, 3) x_corners, y_corners, z_corners = rotated_corners[:, :, 0], rotated_corners[:, :, 1], rotated_corners[:, :, 2] x_loc, y_loc, z_loc = boxes3d[:, 0], boxes3d[:, 1], boxes3d[:, 2] x = x_loc.reshape(-1, 1) + x_corners.reshape(-1, 8) y = y_loc.reshape(-1, 1) + y_corners.reshape(-1, 8) z = z_loc.reshape(-1, 1) + z_corners.reshape(-1, 8) corners = np.concatenate((x.reshape(-1, 8, 1), y.reshape(-1, 8, 1), z.reshape(-1, 8, 1)), axis=2) return corners.astype(np.float32) def enlarge_box3d(boxes3d, extra_width): """ :param boxes3d: (N, 7) [x, y, z, h, w, l, ry] """ if isinstance(boxes3d, np.ndarray): large_boxes3d = boxes3d.copy() else: large_boxes3d = boxes3d.clone() large_boxes3d[:, 3:6] += extra_width * 2 large_boxes3d[:, 1] += extra_width return large_boxes3d def in_hull(p, hull): """ :param p: (N, K) test points :param hull: (M, K) M corners of a box :return (N) bool """ try: if not isinstance(hull, Delaunay): hull = Delaunay(hull) flag = hull.find_simplex(p) >= 0 except scipy.spatial.qhull.QhullError: print('Warning: not a hull %s' % str(hull)) flag = np.zeros(p.shape[0], dtype=np.bool) return flag