Compare commits
6 Commits
f533104e4a
...
26c3cb4c7a
Author | SHA1 | Date | |
---|---|---|---|
26c3cb4c7a | |||
830d51fc80 | |||
e81d6c9bd1 | |||
b30e9d535a | |||
d8c95b6f0c | |||
ab31ba46a9 |
@ -3,11 +3,11 @@ runner:
|
||||
general:
|
||||
seed: 0
|
||||
device: cuda
|
||||
cuda_visible_devices: "1"
|
||||
cuda_visible_devices: "0"
|
||||
parallel: False
|
||||
|
||||
experiment:
|
||||
name: debug
|
||||
name: overfit_ab_global_and_local
|
||||
root_dir: "experiments"
|
||||
use_checkpoint: False
|
||||
epoch: -1 # -1 stands for last epoch
|
||||
@ -28,57 +28,57 @@ runner:
|
||||
#- OmniObject3d_test
|
||||
- OmniObject3d_val
|
||||
|
||||
pipeline: nbv_reconstruction_global_pts_n_num_pipeline
|
||||
pipeline: nbv_reconstruction_pipeline
|
||||
|
||||
dataset:
|
||||
OmniObject3d_train:
|
||||
root_dir: "/home/data/hofee/project/nbv_rec/data/sample_for_training_new"
|
||||
root_dir: "/data/hofee/nbv_rec_part2_preprocessed"
|
||||
model_dir: "../data/scaled_object_meshes"
|
||||
source: nbv_reconstruction_dataset
|
||||
split_file: "/home/data/hofee/project/nbv_rec/data/sample.txt"
|
||||
split_file: "/data/hofee/data/sample.txt"
|
||||
type: train
|
||||
cache: True
|
||||
ratio: 1
|
||||
batch_size: 160
|
||||
batch_size: 32
|
||||
num_workers: 16
|
||||
pts_num: 8192
|
||||
load_from_preprocess: True
|
||||
|
||||
OmniObject3d_test:
|
||||
root_dir: "/home/data/hofee/project/nbv_rec/data/sample_for_training_new"
|
||||
root_dir: "/data/hofee/nbv_rec_part2_preprocessed"
|
||||
model_dir: "../data/scaled_object_meshes"
|
||||
source: nbv_reconstruction_dataset
|
||||
split_file: "/home/data/hofee/project/nbv_rec/data/sample.txt"
|
||||
split_file: "/data/hofee/data/sample.txt"
|
||||
type: test
|
||||
cache: True
|
||||
filter_degree: 75
|
||||
eval_list:
|
||||
- pose_diff
|
||||
ratio: 0.05
|
||||
batch_size: 160
|
||||
ratio: 1
|
||||
batch_size: 32
|
||||
num_workers: 12
|
||||
pts_num: 8192
|
||||
load_from_preprocess: True
|
||||
|
||||
OmniObject3d_val:
|
||||
root_dir: "/home/data/hofee/project/nbv_rec/data/sample_for_training_new"
|
||||
root_dir: "/data/hofee/nbv_rec_part2_preprocessed"
|
||||
model_dir: "../data/scaled_object_meshes"
|
||||
source: nbv_reconstruction_dataset
|
||||
split_file: "/home/data/hofee/project/nbv_rec/data/sample.txt"
|
||||
split_file: "/data/hofee/data/sample.txt"
|
||||
type: test
|
||||
cache: True
|
||||
filter_degree: 75
|
||||
eval_list:
|
||||
- pose_diff
|
||||
ratio: 0.005
|
||||
batch_size: 160
|
||||
ratio: 1
|
||||
batch_size: 32
|
||||
num_workers: 12
|
||||
pts_num: 8192
|
||||
load_from_preprocess: True
|
||||
|
||||
|
||||
pipeline:
|
||||
nbv_reconstruction_local_pts_pipeline:
|
||||
nbv_reconstruction_pipeline:
|
||||
modules:
|
||||
pts_encoder: pointnet_encoder
|
||||
seq_encoder: transformer_seq_encoder
|
||||
@ -87,45 +87,26 @@ pipeline:
|
||||
eps: 1e-5
|
||||
global_scanned_feat: True
|
||||
|
||||
nbv_reconstruction_global_pts_pipeline:
|
||||
modules:
|
||||
pts_encoder: pointnet_encoder
|
||||
pose_seq_encoder: transformer_seq_encoder
|
||||
pose_encoder: pose_encoder
|
||||
view_finder: gf_view_finder
|
||||
eps: 1e-5
|
||||
global_scanned_feat: True
|
||||
|
||||
nbv_reconstruction_global_pts_n_num_pipeline:
|
||||
modules:
|
||||
pts_encoder: pointnet_encoder
|
||||
transformer_seq_encoder: transformer_seq_encoder
|
||||
pose_encoder: pose_encoder
|
||||
view_finder: gf_view_finder
|
||||
pts_num_encoder: pts_num_encoder
|
||||
eps: 1e-5
|
||||
global_scanned_feat: True
|
||||
|
||||
|
||||
module:
|
||||
|
||||
pointnet_encoder:
|
||||
in_dim: 3
|
||||
out_dim: 1024
|
||||
out_dim: 512
|
||||
global_feat: True
|
||||
feature_transform: False
|
||||
|
||||
transformer_seq_encoder:
|
||||
embed_dim: 256
|
||||
embed_dim: 768
|
||||
num_heads: 4
|
||||
ffn_dim: 256
|
||||
num_layers: 3
|
||||
output_dim: 1024
|
||||
output_dim: 2048
|
||||
|
||||
gf_view_finder:
|
||||
t_feat_dim: 128
|
||||
pose_feat_dim: 256
|
||||
main_feat_dim: 2048
|
||||
main_feat_dim: 2560
|
||||
regression_head: Rx_Ry_and_T
|
||||
pose_mode: rot_matrix
|
||||
per_point_feature: False
|
||||
|
@ -34,7 +34,7 @@ class NBVReconstructionDataset(BaseDataset):
|
||||
#self.model_dir = config["model_dir"]
|
||||
self.filter_degree = config["filter_degree"]
|
||||
if self.type == namespace.Mode.TRAIN:
|
||||
scale_ratio = 100
|
||||
scale_ratio = 50
|
||||
self.datalist = self.datalist*scale_ratio
|
||||
if self.cache:
|
||||
expr_root = ConfigManager.get("runner", "experiment", "root_dir")
|
||||
@ -206,9 +206,6 @@ class NBVReconstructionDataset(BaseDataset):
|
||||
collate_data["combined_scanned_pts"] = torch.stack(
|
||||
[torch.tensor(item["combined_scanned_pts"]) for item in batch]
|
||||
)
|
||||
collate_data["scanned_pts_mask"] = torch.stack(
|
||||
[torch.tensor(item["scanned_pts_mask"]) for item in batch]
|
||||
)
|
||||
|
||||
for key in batch[0].keys():
|
||||
if key not in [
|
||||
|
@ -20,8 +20,8 @@ class NBVReconstructionPipeline(nn.Module):
|
||||
self.pose_encoder = ComponentFactory.create(
|
||||
namespace.Stereotype.MODULE, self.module_config["pose_encoder"]
|
||||
)
|
||||
self.transformer_seq_encoder = ComponentFactory.create(
|
||||
namespace.Stereotype.MODULE, self.module_config["transformer_seq_encoder"]
|
||||
self.seq_encoder = ComponentFactory.create(
|
||||
namespace.Stereotype.MODULE, self.module_config["seq_encoder"]
|
||||
)
|
||||
self.view_finder = ComponentFactory.create(
|
||||
namespace.Stereotype.MODULE, self.module_config["view_finder"]
|
||||
@ -92,7 +92,9 @@ class NBVReconstructionPipeline(nn.Module):
|
||||
scanned_n_to_world_pose_9d_batch = data[
|
||||
"scanned_n_to_world_pose_9d"
|
||||
] # List(B): Tensor(S x 9)
|
||||
|
||||
scanned_pts_batch = data[
|
||||
"scanned_pts"
|
||||
]
|
||||
device = next(self.parameters()).device
|
||||
|
||||
embedding_list_batch = []
|
||||
@ -102,13 +104,15 @@ class NBVReconstructionPipeline(nn.Module):
|
||||
combined_scanned_pts_batch, require_per_point_feat=False
|
||||
) # global_scanned_feat: Tensor(B x Dg)
|
||||
|
||||
for scanned_n_to_world_pose_9d in scanned_n_to_world_pose_9d_batch:
|
||||
for scanned_n_to_world_pose_9d, scanned_pts in zip(scanned_n_to_world_pose_9d_batch, scanned_pts_batch):
|
||||
scanned_n_to_world_pose_9d = scanned_n_to_world_pose_9d.to(device) # Tensor(S x 9)
|
||||
scanned_pts = scanned_pts.to(device) # Tensor(S x N x 3)
|
||||
pose_feat_seq = self.pose_encoder.encode_pose(scanned_n_to_world_pose_9d) # Tensor(S x Dp)
|
||||
seq_embedding = pose_feat_seq
|
||||
embedding_list_batch.append(seq_embedding) # List(B): Tensor(S x (Dp))
|
||||
pts_feat_seq = self.pts_encoder.encode_points(scanned_pts, require_per_point_feat=False) # Tensor(S x Dl)
|
||||
seq_embedding = torch.cat([pose_feat_seq, pts_feat_seq], dim=-1) # Tensor(S x (Dp+Dl))
|
||||
embedding_list_batch.append(seq_embedding) # List(B): Tensor(S x (Dp+Dl))
|
||||
|
||||
seq_feat = self.transformer_seq_encoder.encode_sequence(embedding_list_batch) # Tensor(B x Ds)
|
||||
seq_feat = self.seq_encoder.encode_sequence(embedding_list_batch) # Tensor(B x Ds)
|
||||
main_feat = torch.cat([seq_feat, global_scanned_feat], dim=-1) # Tensor(B x (Ds+Dg))
|
||||
|
||||
if torch.isnan(main_feat).any():
|
||||
|
Loading…
x
Reference in New Issue
Block a user