Compare commits

..

6 Commits

Author SHA1 Message Date
26c3cb4c7a global_and_local: debug 2024-10-29 17:12:24 +00:00
830d51fc80 upd 2024-10-29 17:01:37 +00:00
e81d6c9bd1 update 2024-10-29 16:56:43 +00:00
b30e9d535a global_and_local: config 2024-10-29 12:34:37 +00:00
d8c95b6f0c global_and_local: pipeline 2024-10-29 12:32:42 +00:00
ab31ba46a9 global_and_local: config 2024-10-29 12:29:04 +00:00
3 changed files with 31 additions and 49 deletions

View File

@ -3,11 +3,11 @@ runner:
general: general:
seed: 0 seed: 0
device: cuda device: cuda
cuda_visible_devices: "1" cuda_visible_devices: "0"
parallel: False parallel: False
experiment: experiment:
name: debug name: overfit_ab_global_and_local
root_dir: "experiments" root_dir: "experiments"
use_checkpoint: False use_checkpoint: False
epoch: -1 # -1 stands for last epoch epoch: -1 # -1 stands for last epoch
@ -28,57 +28,57 @@ runner:
#- OmniObject3d_test #- OmniObject3d_test
- OmniObject3d_val - OmniObject3d_val
pipeline: nbv_reconstruction_global_pts_n_num_pipeline pipeline: nbv_reconstruction_pipeline
dataset: dataset:
OmniObject3d_train: OmniObject3d_train:
root_dir: "/home/data/hofee/project/nbv_rec/data/sample_for_training_new" root_dir: "/data/hofee/nbv_rec_part2_preprocessed"
model_dir: "../data/scaled_object_meshes" model_dir: "../data/scaled_object_meshes"
source: nbv_reconstruction_dataset source: nbv_reconstruction_dataset
split_file: "/home/data/hofee/project/nbv_rec/data/sample.txt" split_file: "/data/hofee/data/sample.txt"
type: train type: train
cache: True cache: True
ratio: 1 ratio: 1
batch_size: 160 batch_size: 32
num_workers: 16 num_workers: 16
pts_num: 8192 pts_num: 8192
load_from_preprocess: True load_from_preprocess: True
OmniObject3d_test: OmniObject3d_test:
root_dir: "/home/data/hofee/project/nbv_rec/data/sample_for_training_new" root_dir: "/data/hofee/nbv_rec_part2_preprocessed"
model_dir: "../data/scaled_object_meshes" model_dir: "../data/scaled_object_meshes"
source: nbv_reconstruction_dataset source: nbv_reconstruction_dataset
split_file: "/home/data/hofee/project/nbv_rec/data/sample.txt" split_file: "/data/hofee/data/sample.txt"
type: test type: test
cache: True cache: True
filter_degree: 75 filter_degree: 75
eval_list: eval_list:
- pose_diff - pose_diff
ratio: 0.05 ratio: 1
batch_size: 160 batch_size: 32
num_workers: 12 num_workers: 12
pts_num: 8192 pts_num: 8192
load_from_preprocess: True load_from_preprocess: True
OmniObject3d_val: OmniObject3d_val:
root_dir: "/home/data/hofee/project/nbv_rec/data/sample_for_training_new" root_dir: "/data/hofee/nbv_rec_part2_preprocessed"
model_dir: "../data/scaled_object_meshes" model_dir: "../data/scaled_object_meshes"
source: nbv_reconstruction_dataset source: nbv_reconstruction_dataset
split_file: "/home/data/hofee/project/nbv_rec/data/sample.txt" split_file: "/data/hofee/data/sample.txt"
type: test type: test
cache: True cache: True
filter_degree: 75 filter_degree: 75
eval_list: eval_list:
- pose_diff - pose_diff
ratio: 0.005 ratio: 1
batch_size: 160 batch_size: 32
num_workers: 12 num_workers: 12
pts_num: 8192 pts_num: 8192
load_from_preprocess: True load_from_preprocess: True
pipeline: pipeline:
nbv_reconstruction_local_pts_pipeline: nbv_reconstruction_pipeline:
modules: modules:
pts_encoder: pointnet_encoder pts_encoder: pointnet_encoder
seq_encoder: transformer_seq_encoder seq_encoder: transformer_seq_encoder
@ -87,45 +87,26 @@ pipeline:
eps: 1e-5 eps: 1e-5
global_scanned_feat: True global_scanned_feat: True
nbv_reconstruction_global_pts_pipeline:
modules:
pts_encoder: pointnet_encoder
pose_seq_encoder: transformer_seq_encoder
pose_encoder: pose_encoder
view_finder: gf_view_finder
eps: 1e-5
global_scanned_feat: True
nbv_reconstruction_global_pts_n_num_pipeline:
modules:
pts_encoder: pointnet_encoder
transformer_seq_encoder: transformer_seq_encoder
pose_encoder: pose_encoder
view_finder: gf_view_finder
pts_num_encoder: pts_num_encoder
eps: 1e-5
global_scanned_feat: True
module: module:
pointnet_encoder: pointnet_encoder:
in_dim: 3 in_dim: 3
out_dim: 1024 out_dim: 512
global_feat: True global_feat: True
feature_transform: False feature_transform: False
transformer_seq_encoder: transformer_seq_encoder:
embed_dim: 256 embed_dim: 768
num_heads: 4 num_heads: 4
ffn_dim: 256 ffn_dim: 256
num_layers: 3 num_layers: 3
output_dim: 1024 output_dim: 2048
gf_view_finder: gf_view_finder:
t_feat_dim: 128 t_feat_dim: 128
pose_feat_dim: 256 pose_feat_dim: 256
main_feat_dim: 2048 main_feat_dim: 2560
regression_head: Rx_Ry_and_T regression_head: Rx_Ry_and_T
pose_mode: rot_matrix pose_mode: rot_matrix
per_point_feature: False per_point_feature: False

View File

@ -34,7 +34,7 @@ class NBVReconstructionDataset(BaseDataset):
#self.model_dir = config["model_dir"] #self.model_dir = config["model_dir"]
self.filter_degree = config["filter_degree"] self.filter_degree = config["filter_degree"]
if self.type == namespace.Mode.TRAIN: if self.type == namespace.Mode.TRAIN:
scale_ratio = 100 scale_ratio = 50
self.datalist = self.datalist*scale_ratio self.datalist = self.datalist*scale_ratio
if self.cache: if self.cache:
expr_root = ConfigManager.get("runner", "experiment", "root_dir") expr_root = ConfigManager.get("runner", "experiment", "root_dir")
@ -206,9 +206,6 @@ class NBVReconstructionDataset(BaseDataset):
collate_data["combined_scanned_pts"] = torch.stack( collate_data["combined_scanned_pts"] = torch.stack(
[torch.tensor(item["combined_scanned_pts"]) for item in batch] [torch.tensor(item["combined_scanned_pts"]) for item in batch]
) )
collate_data["scanned_pts_mask"] = torch.stack(
[torch.tensor(item["scanned_pts_mask"]) for item in batch]
)
for key in batch[0].keys(): for key in batch[0].keys():
if key not in [ if key not in [

View File

@ -20,8 +20,8 @@ class NBVReconstructionPipeline(nn.Module):
self.pose_encoder = ComponentFactory.create( self.pose_encoder = ComponentFactory.create(
namespace.Stereotype.MODULE, self.module_config["pose_encoder"] namespace.Stereotype.MODULE, self.module_config["pose_encoder"]
) )
self.transformer_seq_encoder = ComponentFactory.create( self.seq_encoder = ComponentFactory.create(
namespace.Stereotype.MODULE, self.module_config["transformer_seq_encoder"] namespace.Stereotype.MODULE, self.module_config["seq_encoder"]
) )
self.view_finder = ComponentFactory.create( self.view_finder = ComponentFactory.create(
namespace.Stereotype.MODULE, self.module_config["view_finder"] namespace.Stereotype.MODULE, self.module_config["view_finder"]
@ -92,7 +92,9 @@ class NBVReconstructionPipeline(nn.Module):
scanned_n_to_world_pose_9d_batch = data[ scanned_n_to_world_pose_9d_batch = data[
"scanned_n_to_world_pose_9d" "scanned_n_to_world_pose_9d"
] # List(B): Tensor(S x 9) ] # List(B): Tensor(S x 9)
scanned_pts_batch = data[
"scanned_pts"
]
device = next(self.parameters()).device device = next(self.parameters()).device
embedding_list_batch = [] embedding_list_batch = []
@ -102,13 +104,15 @@ class NBVReconstructionPipeline(nn.Module):
combined_scanned_pts_batch, require_per_point_feat=False combined_scanned_pts_batch, require_per_point_feat=False
) # global_scanned_feat: Tensor(B x Dg) ) # global_scanned_feat: Tensor(B x Dg)
for scanned_n_to_world_pose_9d in scanned_n_to_world_pose_9d_batch: for scanned_n_to_world_pose_9d, scanned_pts in zip(scanned_n_to_world_pose_9d_batch, scanned_pts_batch):
scanned_n_to_world_pose_9d = scanned_n_to_world_pose_9d.to(device) # Tensor(S x 9) scanned_n_to_world_pose_9d = scanned_n_to_world_pose_9d.to(device) # Tensor(S x 9)
scanned_pts = scanned_pts.to(device) # Tensor(S x N x 3)
pose_feat_seq = self.pose_encoder.encode_pose(scanned_n_to_world_pose_9d) # Tensor(S x Dp) pose_feat_seq = self.pose_encoder.encode_pose(scanned_n_to_world_pose_9d) # Tensor(S x Dp)
seq_embedding = pose_feat_seq pts_feat_seq = self.pts_encoder.encode_points(scanned_pts, require_per_point_feat=False) # Tensor(S x Dl)
embedding_list_batch.append(seq_embedding) # List(B): Tensor(S x (Dp)) seq_embedding = torch.cat([pose_feat_seq, pts_feat_seq], dim=-1) # Tensor(S x (Dp+Dl))
embedding_list_batch.append(seq_embedding) # List(B): Tensor(S x (Dp+Dl))
seq_feat = self.transformer_seq_encoder.encode_sequence(embedding_list_batch) # Tensor(B x Ds) seq_feat = self.seq_encoder.encode_sequence(embedding_list_batch) # Tensor(B x Ds)
main_feat = torch.cat([seq_feat, global_scanned_feat], dim=-1) # Tensor(B x (Ds+Dg)) main_feat = torch.cat([seq_feat, global_scanned_feat], dim=-1) # Tensor(B x (Ds+Dg))
if torch.isnan(main_feat).any(): if torch.isnan(main_feat).any():