Compare commits
4 Commits
d7fb64ed13
...
new_partia
Author | SHA1 | Date | |
---|---|---|---|
7c7f071f95 | |||
1a0e3c8042 | |||
2fcc650eb7 | |||
b20fa8bb75 |
11
app_sim.py
Normal file
11
app_sim.py
Normal file
@@ -0,0 +1,11 @@
|
|||||||
|
from PytorchBoot.application import PytorchBootApplication
|
||||||
|
from runners.simulator import Simulator
|
||||||
|
|
||||||
|
@PytorchBootApplication("sim")
|
||||||
|
class SimulateApp:
|
||||||
|
@staticmethod
|
||||||
|
def start():
|
||||||
|
simulator = Simulator("configs/local/simulation_config.yaml")
|
||||||
|
simulator.run("create")
|
||||||
|
simulator.run("simulate")
|
||||||
|
|
@@ -6,16 +6,16 @@ runner:
|
|||||||
cuda_visible_devices: "0,1,2,3,4,5,6,7"
|
cuda_visible_devices: "0,1,2,3,4,5,6,7"
|
||||||
|
|
||||||
experiment:
|
experiment:
|
||||||
name: train_ab_global_only_dense
|
name: train_ab_global_only_p++_wp
|
||||||
root_dir: "experiments"
|
root_dir: "experiments"
|
||||||
epoch: 441 # -1 stands for last epoch
|
epoch: 922 # -1 stands for last epoch
|
||||||
|
|
||||||
test:
|
test:
|
||||||
dataset_list:
|
dataset_list:
|
||||||
- OmniObject3d_test
|
- OmniObject3d_test
|
||||||
|
|
||||||
blender_script_path: "/media/hofee/data/project/python/nbv_reconstruction/blender/data_renderer.py"
|
blender_script_path: "/media/hofee/data/project/python/nbv_reconstruction/blender/data_renderer.py"
|
||||||
output_dir: "/media/hofee/data/data/p++_dense"
|
output_dir: "/media/hofee/data/data/p++_wp"
|
||||||
pipeline: nbv_reconstruction_pipeline
|
pipeline: nbv_reconstruction_pipeline
|
||||||
voxel_size: 0.003
|
voxel_size: 0.003
|
||||||
min_new_area: 1.0
|
min_new_area: 1.0
|
||||||
|
36
configs/local/simulation_config.yaml
Normal file
36
configs/local/simulation_config.yaml
Normal file
@@ -0,0 +1,36 @@
|
|||||||
|
runner:
|
||||||
|
general:
|
||||||
|
seed: 0
|
||||||
|
device: cuda
|
||||||
|
cuda_visible_devices: "0,1,2,3,4,5,6,7"
|
||||||
|
|
||||||
|
experiment:
|
||||||
|
name: simulation_debug
|
||||||
|
root_dir: "experiments"
|
||||||
|
|
||||||
|
simulation:
|
||||||
|
robot:
|
||||||
|
urdf_path: "assets/franka_panda/panda.urdf"
|
||||||
|
initial_position: [0, 0, 0] # 机械臂基座位置
|
||||||
|
initial_orientation: [0, 0, 0] # 机械臂基座朝向(欧拉角)
|
||||||
|
|
||||||
|
turntable:
|
||||||
|
radius: 0.3 # 转盘半径(米)
|
||||||
|
height: 0.1 # 转盘高度
|
||||||
|
center_position: [0.8, 0, 0.4]
|
||||||
|
|
||||||
|
target:
|
||||||
|
obj_dir: /media/hofee/data/project/python/nbv_reconstruction/nbv_reconstruction/assets/object_meshes
|
||||||
|
obj_name: "google_scan-box_0185"
|
||||||
|
scale: 1.0 # 缩放系数
|
||||||
|
mass: 0.1 # 质量(kg)
|
||||||
|
rgba_color: [0.8, 0.8, 0.8, 1.0] # 目标物体颜色
|
||||||
|
|
||||||
|
camera:
|
||||||
|
width: 640
|
||||||
|
height: 480
|
||||||
|
fov: 40
|
||||||
|
near: 0.01
|
||||||
|
far: 5.0
|
||||||
|
|
||||||
|
displaytable:
|
@@ -17,7 +17,7 @@ runner:
|
|||||||
plane_size: 10
|
plane_size: 10
|
||||||
max_views: 512
|
max_views: 512
|
||||||
min_views: 128
|
min_views: 128
|
||||||
random_view_ratio: 0.02
|
random_view_ratio: 0.002
|
||||||
min_cam_table_included_degree: 20
|
min_cam_table_included_degree: 20
|
||||||
max_diag: 0.7
|
max_diag: 0.7
|
||||||
min_diag: 0.01
|
min_diag: 0.01
|
||||||
|
@@ -4,10 +4,10 @@ import PytorchBoot.namespace as namespace
|
|||||||
import PytorchBoot.stereotype as stereotype
|
import PytorchBoot.stereotype as stereotype
|
||||||
from PytorchBoot.config import ConfigManager
|
from PytorchBoot.config import ConfigManager
|
||||||
from PytorchBoot.utils.log_util import Log
|
from PytorchBoot.utils.log_util import Log
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
import os
|
import os
|
||||||
import sys
|
import sys
|
||||||
|
import time
|
||||||
|
|
||||||
sys.path.append(r"/data/hofee/project/nbv_rec/nbv_reconstruction")
|
sys.path.append(r"/data/hofee/project/nbv_rec/nbv_reconstruction")
|
||||||
|
|
||||||
@@ -51,7 +51,7 @@ class NBVReconstructionDataset(BaseDataset):
|
|||||||
scene_name_list.append(scene_name)
|
scene_name_list.append(scene_name)
|
||||||
return scene_name_list
|
return scene_name_list
|
||||||
|
|
||||||
def get_datalist(self, bias=False):
|
def get_datalist(self):
|
||||||
datalist = []
|
datalist = []
|
||||||
for scene_name in self.scene_name_list:
|
for scene_name in self.scene_name_list:
|
||||||
seq_num = DataLoadUtil.get_label_num(self.root_dir, scene_name)
|
seq_num = DataLoadUtil.get_label_num(self.root_dir, scene_name)
|
||||||
@@ -80,8 +80,6 @@ class NBVReconstructionDataset(BaseDataset):
|
|||||||
for data_pair in label_data["data_pairs"]:
|
for data_pair in label_data["data_pairs"]:
|
||||||
scanned_views = data_pair[0]
|
scanned_views = data_pair[0]
|
||||||
next_best_view = data_pair[1]
|
next_best_view = data_pair[1]
|
||||||
accept_probability = scanned_views[-1][1]
|
|
||||||
if accept_probability > np.random.rand():
|
|
||||||
datalist.append(
|
datalist.append(
|
||||||
{
|
{
|
||||||
"scanned_views": scanned_views,
|
"scanned_views": scanned_views,
|
||||||
@@ -117,8 +115,13 @@ class NBVReconstructionDataset(BaseDataset):
|
|||||||
except Exception as e:
|
except Exception as e:
|
||||||
Log.error(f"Save cache failed: {e}")
|
Log.error(f"Save cache failed: {e}")
|
||||||
|
|
||||||
def voxel_downsample_with_mask(self, pts, voxel_size):
|
def voxel_downsample_with_mapping(self, point_cloud, voxel_size=0.003):
|
||||||
pass
|
voxel_indices = np.floor(point_cloud / voxel_size).astype(np.int32)
|
||||||
|
unique_voxels, inverse, counts = np.unique(voxel_indices, axis=0, return_inverse=True, return_counts=True)
|
||||||
|
idx_sort = np.argsort(inverse)
|
||||||
|
idx_unique = idx_sort[np.cumsum(counts)-counts]
|
||||||
|
downsampled_points = point_cloud[idx_unique]
|
||||||
|
return downsampled_points, inverse
|
||||||
|
|
||||||
|
|
||||||
def __getitem__(self, index):
|
def __getitem__(self, index):
|
||||||
@@ -132,6 +135,9 @@ class NBVReconstructionDataset(BaseDataset):
|
|||||||
scanned_coverages_rate,
|
scanned_coverages_rate,
|
||||||
scanned_n_to_world_pose,
|
scanned_n_to_world_pose,
|
||||||
) = ([], [], [])
|
) = ([], [], [])
|
||||||
|
start_time = time.time()
|
||||||
|
start_indices = [0]
|
||||||
|
total_points = 0
|
||||||
for view in scanned_views:
|
for view in scanned_views:
|
||||||
frame_idx = view[0]
|
frame_idx = view[0]
|
||||||
coverage_rate = view[1]
|
coverage_rate = view[1]
|
||||||
@@ -153,8 +159,12 @@ class NBVReconstructionDataset(BaseDataset):
|
|||||||
n_to_world_trans = n_to_world_pose[:3, 3]
|
n_to_world_trans = n_to_world_pose[:3, 3]
|
||||||
n_to_world_9d = np.concatenate([n_to_world_6d, n_to_world_trans], axis=0)
|
n_to_world_9d = np.concatenate([n_to_world_6d, n_to_world_trans], axis=0)
|
||||||
scanned_n_to_world_pose.append(n_to_world_9d)
|
scanned_n_to_world_pose.append(n_to_world_9d)
|
||||||
|
total_points += len(downsampled_target_point_cloud)
|
||||||
|
start_indices.append(total_points)
|
||||||
|
|
||||||
|
|
||||||
|
end_time = time.time()
|
||||||
|
#Log.info(f"load data time: {end_time - start_time}")
|
||||||
nbv_idx, nbv_coverage_rate = nbv[0], nbv[1]
|
nbv_idx, nbv_coverage_rate = nbv[0], nbv[1]
|
||||||
nbv_path = DataLoadUtil.get_path(self.root_dir, scene_name, nbv_idx)
|
nbv_path = DataLoadUtil.get_path(self.root_dir, scene_name, nbv_idx)
|
||||||
cam_info = DataLoadUtil.load_cam_info(nbv_path)
|
cam_info = DataLoadUtil.load_cam_info(nbv_path)
|
||||||
@@ -169,12 +179,25 @@ class NBVReconstructionDataset(BaseDataset):
|
|||||||
)
|
)
|
||||||
|
|
||||||
combined_scanned_views_pts = np.concatenate(scanned_views_pts, axis=0)
|
combined_scanned_views_pts = np.concatenate(scanned_views_pts, axis=0)
|
||||||
voxel_downsampled_combined_scanned_pts_np = PtsUtil.voxel_downsample_point_cloud(combined_scanned_views_pts, 0.002)
|
voxel_downsampled_combined_scanned_pts_np, inverse = self.voxel_downsample_with_mapping(combined_scanned_views_pts, 0.003)
|
||||||
random_downsampled_combined_scanned_pts_np = PtsUtil.random_downsample_point_cloud(voxel_downsampled_combined_scanned_pts_np, self.pts_num)
|
random_downsampled_combined_scanned_pts_np, random_downsample_idx = PtsUtil.random_downsample_point_cloud(voxel_downsampled_combined_scanned_pts_np, self.pts_num, require_idx=True)
|
||||||
|
|
||||||
|
all_idx_unique = np.arange(len(voxel_downsampled_combined_scanned_pts_np))
|
||||||
|
all_random_downsample_idx = all_idx_unique[random_downsample_idx]
|
||||||
|
scanned_pts_mask = []
|
||||||
|
for idx, start_idx in enumerate(start_indices):
|
||||||
|
if idx == len(start_indices) - 1:
|
||||||
|
break
|
||||||
|
end_idx = start_indices[idx+1]
|
||||||
|
view_inverse = inverse[start_idx:end_idx]
|
||||||
|
view_unique_downsampled_idx = np.unique(view_inverse)
|
||||||
|
view_unique_downsampled_idx_set = set(view_unique_downsampled_idx)
|
||||||
|
mask = np.array([idx in view_unique_downsampled_idx_set for idx in all_random_downsample_idx])
|
||||||
|
scanned_pts_mask.append(mask)
|
||||||
data_item = {
|
data_item = {
|
||||||
"scanned_pts": np.asarray(scanned_views_pts, dtype=np.float32), # Ndarray(S x Nv x 3)
|
"scanned_pts": np.asarray(scanned_views_pts, dtype=np.float32), # Ndarray(S x Nv x 3)
|
||||||
"combined_scanned_pts": np.asarray(random_downsampled_combined_scanned_pts_np, dtype=np.float32), # Ndarray(N x 3)
|
"combined_scanned_pts": np.asarray(random_downsampled_combined_scanned_pts_np, dtype=np.float32), # Ndarray(N x 3)
|
||||||
|
"scanned_pts_mask": np.asarray(scanned_pts_mask, dtype=np.bool), # Ndarray(N)
|
||||||
"scanned_coverage_rate": scanned_coverages_rate, # List(S): Float, range(0, 1)
|
"scanned_coverage_rate": scanned_coverages_rate, # List(S): Float, range(0, 1)
|
||||||
"scanned_n_to_world_pose_9d": np.asarray(scanned_n_to_world_pose, dtype=np.float32), # Ndarray(S x 9)
|
"scanned_n_to_world_pose_9d": np.asarray(scanned_n_to_world_pose, dtype=np.float32), # Ndarray(S x 9)
|
||||||
"best_coverage_rate": nbv_coverage_rate, # Float, range(0, 1)
|
"best_coverage_rate": nbv_coverage_rate, # Float, range(0, 1)
|
||||||
@@ -200,7 +223,9 @@ class NBVReconstructionDataset(BaseDataset):
|
|||||||
collate_data["scanned_n_to_world_pose_9d"] = [
|
collate_data["scanned_n_to_world_pose_9d"] = [
|
||||||
torch.tensor(item["scanned_n_to_world_pose_9d"]) for item in batch
|
torch.tensor(item["scanned_n_to_world_pose_9d"]) for item in batch
|
||||||
]
|
]
|
||||||
|
collate_data["scanned_pts_mask"] = [
|
||||||
|
torch.tensor(item["scanned_pts_mask"]) for item in batch
|
||||||
|
]
|
||||||
''' ------ Fixed Length ------ '''
|
''' ------ Fixed Length ------ '''
|
||||||
|
|
||||||
collate_data["best_to_world_pose_9d"] = torch.stack(
|
collate_data["best_to_world_pose_9d"] = torch.stack(
|
||||||
@@ -209,12 +234,14 @@ class NBVReconstructionDataset(BaseDataset):
|
|||||||
collate_data["combined_scanned_pts"] = torch.stack(
|
collate_data["combined_scanned_pts"] = torch.stack(
|
||||||
[torch.tensor(item["combined_scanned_pts"]) for item in batch]
|
[torch.tensor(item["combined_scanned_pts"]) for item in batch]
|
||||||
)
|
)
|
||||||
|
|
||||||
for key in batch[0].keys():
|
for key in batch[0].keys():
|
||||||
if key not in [
|
if key not in [
|
||||||
"scanned_pts",
|
"scanned_pts",
|
||||||
"scanned_n_to_world_pose_9d",
|
"scanned_n_to_world_pose_9d",
|
||||||
"best_to_world_pose_9d",
|
"best_to_world_pose_9d",
|
||||||
"combined_scanned_pts",
|
"combined_scanned_pts",
|
||||||
|
"scanned_pts_mask",
|
||||||
]:
|
]:
|
||||||
collate_data[key] = [item[key] for item in batch]
|
collate_data[key] = [item[key] for item in batch]
|
||||||
return collate_data
|
return collate_data
|
||||||
@@ -230,10 +257,9 @@ if __name__ == "__main__":
|
|||||||
torch.manual_seed(seed)
|
torch.manual_seed(seed)
|
||||||
np.random.seed(seed)
|
np.random.seed(seed)
|
||||||
config = {
|
config = {
|
||||||
"root_dir": "/data/hofee/data/new_full_data",
|
"root_dir": "/data/hofee/nbv_rec_part2_preprocessed",
|
||||||
"model_dir": "../data/scaled_object_meshes",
|
|
||||||
"source": "nbv_reconstruction_dataset",
|
"source": "nbv_reconstruction_dataset",
|
||||||
"split_file": "/data/hofee/data/new_full_data_list/OmniObject3d_train.txt",
|
"split_file": "/data/hofee/data/sample.txt",
|
||||||
"load_from_preprocess": True,
|
"load_from_preprocess": True,
|
||||||
"ratio": 0.5,
|
"ratio": 0.5,
|
||||||
"batch_size": 2,
|
"batch_size": 2,
|
||||||
|
@@ -91,25 +91,49 @@ class NBVReconstructionPipeline(nn.Module):
|
|||||||
"scanned_n_to_world_pose_9d"
|
"scanned_n_to_world_pose_9d"
|
||||||
] # List(B): Tensor(S x 9)
|
] # List(B): Tensor(S x 9)
|
||||||
|
|
||||||
|
scanned_pts_mask_batch = data["scanned_pts_mask"] # List(B): Tensor(N)
|
||||||
|
|
||||||
device = next(self.parameters()).device
|
device = next(self.parameters()).device
|
||||||
|
|
||||||
embedding_list_batch = []
|
embedding_list_batch = []
|
||||||
|
|
||||||
combined_scanned_pts_batch = data["combined_scanned_pts"] # Tensor(B x N x 3)
|
combined_scanned_pts_batch = data["combined_scanned_pts"] # Tensor(B x N x 3)
|
||||||
global_scanned_feat = self.pts_encoder.encode_points(
|
global_scanned_feat, per_point_feat_batch = self.pts_encoder.encode_points(
|
||||||
combined_scanned_pts_batch, require_per_point_feat=False
|
combined_scanned_pts_batch, require_per_point_feat=True
|
||||||
) # global_scanned_feat: Tensor(B x Dg)
|
) # global_scanned_feat: Tensor(B x Dg)
|
||||||
|
batch_size = len(scanned_n_to_world_pose_9d_batch)
|
||||||
|
for i in range(batch_size):
|
||||||
|
seq_len = len(scanned_n_to_world_pose_9d_batch[i])
|
||||||
|
scanned_n_to_world_pose_9d = scanned_n_to_world_pose_9d_batch[i].to(device) # Tensor(S x 9)
|
||||||
|
scanned_pts_mask = scanned_pts_mask_batch[i] # Tensor(S x N)
|
||||||
|
per_point_feat = per_point_feat_batch[i] # Tensor(N x Dp)
|
||||||
|
partial_point_feat_seq = []
|
||||||
|
for j in range(seq_len):
|
||||||
|
partial_per_point_feat = per_point_feat[scanned_pts_mask[j]]
|
||||||
|
if partial_per_point_feat.shape[0] == 0:
|
||||||
|
partial_point_feat = torch.zeros(per_point_feat.shape[1], device=device)
|
||||||
|
else:
|
||||||
|
partial_point_feat = torch.mean(partial_per_point_feat, dim=0) # Tensor(Dp)
|
||||||
|
partial_point_feat_seq.append(partial_point_feat)
|
||||||
|
partial_point_feat_seq = torch.stack(partial_point_feat_seq, dim=0) # Tensor(S x Dp)
|
||||||
|
|
||||||
for scanned_n_to_world_pose_9d in scanned_n_to_world_pose_9d_batch:
|
|
||||||
scanned_n_to_world_pose_9d = scanned_n_to_world_pose_9d.to(device) # Tensor(S x 9)
|
|
||||||
pose_feat_seq = self.pose_encoder.encode_pose(scanned_n_to_world_pose_9d) # Tensor(S x Dp)
|
pose_feat_seq = self.pose_encoder.encode_pose(scanned_n_to_world_pose_9d) # Tensor(S x Dp)
|
||||||
seq_embedding = pose_feat_seq
|
|
||||||
|
seq_embedding = torch.cat([partial_point_feat_seq, pose_feat_seq], dim=-1)
|
||||||
|
|
||||||
embedding_list_batch.append(seq_embedding) # List(B): Tensor(S x (Dp))
|
embedding_list_batch.append(seq_embedding) # List(B): Tensor(S x (Dp))
|
||||||
|
|
||||||
seq_feat = self.seq_encoder.encode_sequence(embedding_list_batch) # Tensor(B x Ds)
|
seq_feat = self.seq_encoder.encode_sequence(embedding_list_batch) # Tensor(B x Ds)
|
||||||
main_feat = torch.cat([seq_feat, global_scanned_feat], dim=-1) # Tensor(B x (Ds+Dg))
|
main_feat = torch.cat([seq_feat, global_scanned_feat], dim=-1) # Tensor(B x (Ds+Dg))
|
||||||
|
|
||||||
if torch.isnan(main_feat).any():
|
if torch.isnan(main_feat).any():
|
||||||
|
for i in range(len(main_feat)):
|
||||||
|
if torch.isnan(main_feat[i]).any():
|
||||||
|
scanned_pts_mask = scanned_pts_mask_batch[i]
|
||||||
|
Log.info(f"scanned_pts_mask shape: {scanned_pts_mask.shape}")
|
||||||
|
Log.info(f"scanned_pts_mask sum: {scanned_pts_mask.sum()}")
|
||||||
|
import ipdb
|
||||||
|
ipdb.set_trace()
|
||||||
Log.error("nan in main_feat", True)
|
Log.error("nan in main_feat", True)
|
||||||
|
|
||||||
return main_feat
|
return main_feat
|
||||||
|
@@ -45,15 +45,16 @@ ClsMSG_CFG_Light_2048 = {
|
|||||||
}
|
}
|
||||||
|
|
||||||
ClsMSG_CFG_Strong = {
|
ClsMSG_CFG_Strong = {
|
||||||
'NPOINTS': [1024, 512, 256, 128, None], # 增加采样点,获取更多细节
|
'NPOINTS': [512, 256, 128, 64, None],
|
||||||
'RADIUS': [[0.02, 0.05], [0.05, 0.1], [0.1, 0.2], [0.2, 0.4], [None, None]], # 增大感受野
|
'RADIUS': [[0.02, 0.04], [0.04, 0.08], [0.08, 0.16],[0.16, 0.32], [None, None]],
|
||||||
'NSAMPLE': [[32, 64], [32, 64], [32, 64], [32, 64], [None, None]], # 提高每层的采样点数
|
'NSAMPLE': [[16, 32], [16, 32], [16, 32], [16, 32], [None, None]],
|
||||||
'MLPS': [[[32, 32, 64], [64, 64, 128]], # 增强 MLP 层,增加特征提取能力
|
'MLPS': [[[16, 16, 32], [32, 32, 64]],
|
||||||
[[128, 128, 256], [128, 128, 256]],
|
[[64, 64, 128], [64, 96, 128]],
|
||||||
[[256, 256, 512], [256, 384, 512]],
|
[[128, 196, 256], [128, 196, 256]],
|
||||||
[[512, 512, 1024], [512, 768, 1024]],
|
[[256, 256, 512], [256, 512, 512]],
|
||||||
[[1024, 1024, 2048], [1024, 1024, 2048]]], # 增加更深的特征层
|
[[512, 512, 2048], [512, 1024, 2048]]
|
||||||
'DP_RATIO': 0.4, # Dropout 比率稍微降低,以保留更多信息
|
],
|
||||||
|
'DP_RATIO': 0.5,
|
||||||
}
|
}
|
||||||
|
|
||||||
ClsMSG_CFG_Lighter = {
|
ClsMSG_CFG_Lighter = {
|
||||||
|
@@ -137,7 +137,7 @@ class Inferencer(Runner):
|
|||||||
pred_cr_seq = [last_pred_cr]
|
pred_cr_seq = [last_pred_cr]
|
||||||
success = 0
|
success = 0
|
||||||
last_pts_num = PtsUtil.voxel_downsample_point_cloud(data["first_scanned_pts"][0], voxel_threshold).shape[0]
|
last_pts_num = PtsUtil.voxel_downsample_point_cloud(data["first_scanned_pts"][0], voxel_threshold).shape[0]
|
||||||
import time
|
#import time
|
||||||
while len(pred_cr_seq) < max_iter and retry < max_retry and success < max_success:
|
while len(pred_cr_seq) < max_iter and retry < max_retry and success < max_success:
|
||||||
Log.green(f"iter: {len(pred_cr_seq)}, retry: {retry}/{max_retry}, success: {success}/{max_success}")
|
Log.green(f"iter: {len(pred_cr_seq)}, retry: {retry}/{max_retry}, success: {success}/{max_success}")
|
||||||
combined_scanned_pts = np.vstack(scanned_view_pts)
|
combined_scanned_pts = np.vstack(scanned_view_pts)
|
||||||
@@ -229,7 +229,6 @@ class Inferencer(Runner):
|
|||||||
Log.success(f"delta pts num < {self.min_new_pts_num}:, {pts_num}, {last_pts_num}")
|
Log.success(f"delta pts num < {self.min_new_pts_num}:, {pts_num}, {last_pts_num}")
|
||||||
|
|
||||||
last_pts_num = pts_num
|
last_pts_num = pts_num
|
||||||
break
|
|
||||||
|
|
||||||
|
|
||||||
input_data["scanned_n_to_world_pose_9d"] = input_data["scanned_n_to_world_pose_9d"][0].cpu().numpy().tolist()
|
input_data["scanned_n_to_world_pose_9d"] = input_data["scanned_n_to_world_pose_9d"][0].cpu().numpy().tolist()
|
||||||
|
456
runners/simulator.py
Normal file
456
runners/simulator.py
Normal file
@@ -0,0 +1,456 @@
|
|||||||
|
import pybullet as p
|
||||||
|
import pybullet_data
|
||||||
|
import numpy as np
|
||||||
|
import os
|
||||||
|
import time
|
||||||
|
from PytorchBoot.runners.runner import Runner
|
||||||
|
import PytorchBoot.stereotype as stereotype
|
||||||
|
from PytorchBoot.config import ConfigManager
|
||||||
|
from utils.control import ControlUtil
|
||||||
|
|
||||||
|
|
||||||
|
@stereotype.runner("simulator")
|
||||||
|
class Simulator(Runner):
|
||||||
|
CREATE: str = "create"
|
||||||
|
SIMULATE: str = "simulate"
|
||||||
|
INIT_GRIPPER_POSE:np.ndarray = np.asarray(
|
||||||
|
[[0.41869126 ,0.87596275 , 0.23951774 , 0.36005292],
|
||||||
|
[ 0.70787907 ,-0.4800251 , 0.51813998 ,-0.40499909],
|
||||||
|
[ 0.56884584, -0.04739109 ,-0.82107382 ,0.76881103],
|
||||||
|
[ 0. , 0. , 0. , 1. ]])
|
||||||
|
TURNTABLE_WORLD_TO_PYBULLET_WORLD:np.ndarray = np.asarray(
|
||||||
|
[[1, 0, 0, 0.8],
|
||||||
|
[0, 1, 0, 0],
|
||||||
|
[0, 0, 1, 0.5],
|
||||||
|
[0, 0, 0, 1]])
|
||||||
|
|
||||||
|
debug_pose = np.asarray([
|
||||||
|
[
|
||||||
|
0.992167055606842,
|
||||||
|
-0.10552699863910675,
|
||||||
|
0.06684812903404236,
|
||||||
|
-0.07388903945684433
|
||||||
|
],
|
||||||
|
[
|
||||||
|
0.10134342312812805,
|
||||||
|
0.3670985698699951,
|
||||||
|
-0.9246448874473572,
|
||||||
|
-0.41582486033439636
|
||||||
|
],
|
||||||
|
[
|
||||||
|
0.07303514331579208,
|
||||||
|
0.9241767525672913,
|
||||||
|
0.37491756677627563,
|
||||||
|
1.0754833221435547
|
||||||
|
],
|
||||||
|
[
|
||||||
|
0.0,
|
||||||
|
0.0,
|
||||||
|
0.0,
|
||||||
|
1.0
|
||||||
|
]])
|
||||||
|
|
||||||
|
def __init__(self, config_path):
|
||||||
|
super().__init__(config_path)
|
||||||
|
self.config_path = config_path
|
||||||
|
self.robot_id = None
|
||||||
|
self.turntable_id = None
|
||||||
|
self.target_id = None
|
||||||
|
camera_config = ConfigManager.get("simulation", "camera")
|
||||||
|
self.camera_params = {
|
||||||
|
'width': camera_config["width"],
|
||||||
|
'height': camera_config["height"],
|
||||||
|
'fov': camera_config["fov"],
|
||||||
|
'near': camera_config["near"],
|
||||||
|
'far': camera_config["far"]
|
||||||
|
}
|
||||||
|
self.sim_config = ConfigManager.get("simulation")
|
||||||
|
|
||||||
|
def run(self, cmd):
|
||||||
|
print(f"Simulator run {cmd}")
|
||||||
|
if cmd == self.CREATE:
|
||||||
|
self.prepare_env()
|
||||||
|
self.create_env()
|
||||||
|
elif cmd == self.SIMULATE:
|
||||||
|
self.simulate()
|
||||||
|
|
||||||
|
def simulate(self):
|
||||||
|
self.reset()
|
||||||
|
self.init()
|
||||||
|
debug_pose = Simulator.debug_pose
|
||||||
|
offset = np.asarray([[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, 1]])
|
||||||
|
debug_pose = debug_pose @ offset
|
||||||
|
for _ in range(10000):
|
||||||
|
debug_pose_2 = np.eye(4)
|
||||||
|
debug_pose_2[0,0] = -1
|
||||||
|
debug_pose_2[2,3] = 0.5
|
||||||
|
self.move_to(debug_pose_2)
|
||||||
|
# Wait for the system to stabilize
|
||||||
|
for _ in range(20): # Simulate 20 steps to ensure stability
|
||||||
|
p.stepSimulation()
|
||||||
|
time.sleep(0.001) # Add small delay to ensure physics simulation
|
||||||
|
|
||||||
|
depth_img, segm_img = self.take_picture()
|
||||||
|
p.stepSimulation()
|
||||||
|
|
||||||
|
def prepare_env(self):
|
||||||
|
p.connect(p.GUI)
|
||||||
|
p.setAdditionalSearchPath(pybullet_data.getDataPath())
|
||||||
|
p.setGravity(0, 0, 0)
|
||||||
|
p.loadURDF("plane.urdf")
|
||||||
|
|
||||||
|
def create_env(self):
|
||||||
|
print(self.config)
|
||||||
|
robot_config = self.sim_config["robot"]
|
||||||
|
turntable_config = self.sim_config["turntable"]
|
||||||
|
target_config = self.sim_config["target"]
|
||||||
|
|
||||||
|
self.robot_id = p.loadURDF(
|
||||||
|
robot_config["urdf_path"],
|
||||||
|
robot_config["initial_position"],
|
||||||
|
p.getQuaternionFromEuler(robot_config["initial_orientation"]),
|
||||||
|
useFixedBase=True
|
||||||
|
)
|
||||||
|
|
||||||
|
p.changeDynamics(
|
||||||
|
self.robot_id,
|
||||||
|
linkIndex=-1,
|
||||||
|
mass=0,
|
||||||
|
linearDamping=0,
|
||||||
|
angularDamping=0,
|
||||||
|
lateralFriction=0
|
||||||
|
)
|
||||||
|
|
||||||
|
visual_shape_id = p.createVisualShape(
|
||||||
|
shapeType=p.GEOM_CYLINDER,
|
||||||
|
radius=turntable_config["radius"],
|
||||||
|
length=turntable_config["height"],
|
||||||
|
rgbaColor=[0.7, 0.7, 0.7, 1]
|
||||||
|
)
|
||||||
|
collision_shape_id = p.createCollisionShape(
|
||||||
|
shapeType=p.GEOM_CYLINDER,
|
||||||
|
radius=turntable_config["radius"],
|
||||||
|
height=turntable_config["height"]
|
||||||
|
)
|
||||||
|
self.turntable_id = p.createMultiBody(
|
||||||
|
baseMass=0, # 设置质量为0使其成为静态物体
|
||||||
|
baseCollisionShapeIndex=collision_shape_id,
|
||||||
|
baseVisualShapeIndex=visual_shape_id,
|
||||||
|
basePosition=turntable_config["center_position"]
|
||||||
|
)
|
||||||
|
|
||||||
|
# 禁用转盘的动力学
|
||||||
|
p.changeDynamics(
|
||||||
|
self.turntable_id,
|
||||||
|
-1, # -1 表示基座
|
||||||
|
mass=0,
|
||||||
|
linearDamping=0,
|
||||||
|
angularDamping=0,
|
||||||
|
lateralFriction=0
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
obj_path = os.path.join(target_config["obj_dir"], target_config["obj_name"], "mesh.obj")
|
||||||
|
|
||||||
|
assert os.path.exists(obj_path), f"Error: File not found at {obj_path}"
|
||||||
|
|
||||||
|
# 加载OBJ文件作为目标物体
|
||||||
|
target_visual = p.createVisualShape(
|
||||||
|
shapeType=p.GEOM_MESH,
|
||||||
|
fileName=obj_path,
|
||||||
|
rgbaColor=target_config["rgba_color"],
|
||||||
|
specularColor=[0.4, 0.4, 0.4],
|
||||||
|
meshScale=[target_config["scale"]] * 3
|
||||||
|
)
|
||||||
|
|
||||||
|
# 使用简化的碰撞形状
|
||||||
|
target_collision = p.createCollisionShape(
|
||||||
|
shapeType=p.GEOM_MESH,
|
||||||
|
fileName=obj_path,
|
||||||
|
meshScale=[target_config["scale"]] * 3,
|
||||||
|
flags=p.GEOM_FORCE_CONCAVE_TRIMESH # 尝试使用凹面网格
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
# 创建目标物体
|
||||||
|
self.target_id = p.createMultiBody(
|
||||||
|
baseMass=0, # 设置质量为0使其成为静态物体
|
||||||
|
baseCollisionShapeIndex=target_collision,
|
||||||
|
baseVisualShapeIndex=target_visual,
|
||||||
|
basePosition=[
|
||||||
|
turntable_config["center_position"][0],
|
||||||
|
turntable_config["center_position"][1],
|
||||||
|
turntable_config["height"] + turntable_config["center_position"][2]
|
||||||
|
],
|
||||||
|
baseOrientation=p.getQuaternionFromEuler([np.pi/2, 0, 0])
|
||||||
|
)
|
||||||
|
|
||||||
|
# 禁用目标物体的动力学
|
||||||
|
p.changeDynamics(
|
||||||
|
self.target_id,
|
||||||
|
-1, # -1 表示基座
|
||||||
|
mass=0,
|
||||||
|
linearDamping=0,
|
||||||
|
angularDamping=0,
|
||||||
|
lateralFriction=0
|
||||||
|
)
|
||||||
|
|
||||||
|
# 创建固定约束,将目标物体固定在转盘上
|
||||||
|
cid = p.createConstraint(
|
||||||
|
parentBodyUniqueId=self.turntable_id,
|
||||||
|
parentLinkIndex=-1, # -1 表示基座
|
||||||
|
childBodyUniqueId=self.target_id,
|
||||||
|
childLinkIndex=-1, # -1 表示基座
|
||||||
|
jointType=p.JOINT_FIXED,
|
||||||
|
jointAxis=[0, 0, 0],
|
||||||
|
parentFramePosition=[0, 0, 0], # 相对于转盘中心的偏移
|
||||||
|
childFramePosition=[0, 0, 0] # 相对于物体中心的偏移
|
||||||
|
)
|
||||||
|
|
||||||
|
# 设置约束参数
|
||||||
|
p.changeConstraint(cid, maxForce=100) # 设置最大力,确保约束稳定
|
||||||
|
|
||||||
|
def move_robot_to_pose(self, target_matrix):
|
||||||
|
# 从4x4齐次矩阵中提取位置(前3个元素)
|
||||||
|
position = target_matrix[:3, 3]
|
||||||
|
|
||||||
|
# 从3x3旋转矩阵中提取方向四元数
|
||||||
|
R = target_matrix[:3, :3]
|
||||||
|
|
||||||
|
# 计算四元数的w分量
|
||||||
|
w = np.sqrt(max(0, 1 + R[0,0] + R[1,1] + R[2,2])) / 2
|
||||||
|
|
||||||
|
# 避免除零错误,同时处理不同情况
|
||||||
|
if abs(w) < 1e-8:
|
||||||
|
# 当w接近0时的特殊情况
|
||||||
|
x = np.sqrt(max(0, 1 + R[0,0] - R[1,1] - R[2,2])) / 2
|
||||||
|
y = np.sqrt(max(0, 1 - R[0,0] + R[1,1] - R[2,2])) / 2
|
||||||
|
z = np.sqrt(max(0, 1 - R[0,0] - R[1,1] + R[2,2])) / 2
|
||||||
|
|
||||||
|
# 确定符号
|
||||||
|
if R[2,1] - R[1,2] < 0: x = -x
|
||||||
|
if R[0,2] - R[2,0] < 0: y = -y
|
||||||
|
if R[1,0] - R[0,1] < 0: z = -z
|
||||||
|
else:
|
||||||
|
# 正常情况
|
||||||
|
x = (R[2,1] - R[1,2]) / (4 * w)
|
||||||
|
y = (R[0,2] - R[2,0]) / (4 * w)
|
||||||
|
z = (R[1,0] - R[0,1]) / (4 * w)
|
||||||
|
|
||||||
|
orientation = (x, y, z, w)
|
||||||
|
|
||||||
|
# 设置IK求解参数
|
||||||
|
num_joints = p.getNumJoints(self.robot_id)
|
||||||
|
lower_limits = []
|
||||||
|
upper_limits = []
|
||||||
|
joint_ranges = []
|
||||||
|
rest_poses = []
|
||||||
|
|
||||||
|
# 获取关节限制和默认姿态
|
||||||
|
for i in range(num_joints):
|
||||||
|
joint_info = p.getJointInfo(self.robot_id, i)
|
||||||
|
lower_limits.append(joint_info[8])
|
||||||
|
upper_limits.append(joint_info[9])
|
||||||
|
joint_ranges.append(joint_info[9] - joint_info[8])
|
||||||
|
rest_poses.append(0) # 可以设置一个较好的默认姿态
|
||||||
|
|
||||||
|
# 使用增强版IK求解器,考虑碰撞避障
|
||||||
|
joint_poses = p.calculateInverseKinematics(
|
||||||
|
self.robot_id,
|
||||||
|
7, # end effector link index
|
||||||
|
position,
|
||||||
|
orientation,
|
||||||
|
lowerLimits=lower_limits,
|
||||||
|
upperLimits=upper_limits,
|
||||||
|
jointRanges=joint_ranges,
|
||||||
|
restPoses=rest_poses,
|
||||||
|
maxNumIterations=100,
|
||||||
|
residualThreshold=1e-4
|
||||||
|
)
|
||||||
|
|
||||||
|
# 分步移动到目标位置,同时检查碰撞
|
||||||
|
current_poses = [p.getJointState(self.robot_id, i)[0] for i in range(7)]
|
||||||
|
steps = 50 # 分50步移动
|
||||||
|
|
||||||
|
for step in range(steps):
|
||||||
|
# 线性插值计算中间位置
|
||||||
|
intermediate_poses = []
|
||||||
|
for current, target in zip(current_poses, joint_poses):
|
||||||
|
t = (step + 1) / steps
|
||||||
|
intermediate = current + (target - current) * t
|
||||||
|
intermediate_poses.append(intermediate)
|
||||||
|
|
||||||
|
# 设置关节位置
|
||||||
|
for i in range(7):
|
||||||
|
p.setJointMotorControl2(
|
||||||
|
self.robot_id,
|
||||||
|
i,
|
||||||
|
p.POSITION_CONTROL,
|
||||||
|
intermediate_poses[i]
|
||||||
|
)
|
||||||
|
|
||||||
|
# 执行一步模拟
|
||||||
|
p.stepSimulation()
|
||||||
|
|
||||||
|
# 检查碰撞
|
||||||
|
if p.getContactPoints(self.robot_id, self.turntable_id):
|
||||||
|
print("检测到潜在碰撞,停止移动")
|
||||||
|
return False
|
||||||
|
|
||||||
|
return True
|
||||||
|
|
||||||
|
|
||||||
|
def rotate_turntable(self, angle_degrees):
|
||||||
|
# 旋转转盘
|
||||||
|
current_pos, current_orn = p.getBasePositionAndOrientation(self.turntable_id)
|
||||||
|
current_orn = p.getEulerFromQuaternion(current_orn)
|
||||||
|
|
||||||
|
new_orn = list(current_orn)
|
||||||
|
new_orn[2] += np.radians(angle_degrees)
|
||||||
|
new_orn_quat = p.getQuaternionFromEuler(new_orn)
|
||||||
|
|
||||||
|
p.resetBasePositionAndOrientation(
|
||||||
|
self.turntable_id,
|
||||||
|
current_pos,
|
||||||
|
new_orn_quat
|
||||||
|
)
|
||||||
|
|
||||||
|
# 同时旋转目标物体
|
||||||
|
target_pos, target_orn = p.getBasePositionAndOrientation(self.target_id)
|
||||||
|
target_orn = p.getEulerFromQuaternion(target_orn)
|
||||||
|
|
||||||
|
# 更新目标物体的方向
|
||||||
|
target_orn = list(target_orn)
|
||||||
|
target_orn[2] += np.radians(angle_degrees)
|
||||||
|
target_orn_quat = p.getQuaternionFromEuler(target_orn)
|
||||||
|
|
||||||
|
# 计算物体新的位置(绕转盘中心旋转)
|
||||||
|
turntable_center = current_pos
|
||||||
|
relative_pos = np.array(target_pos) - np.array(turntable_center)
|
||||||
|
|
||||||
|
# 创建旋转矩阵
|
||||||
|
theta = np.radians(angle_degrees)
|
||||||
|
rotation_matrix = np.array([
|
||||||
|
[np.cos(theta), -np.sin(theta), 0],
|
||||||
|
[np.sin(theta), np.cos(theta), 0],
|
||||||
|
[0, 0, 1]
|
||||||
|
])
|
||||||
|
|
||||||
|
# 计算新的相对位置
|
||||||
|
new_relative_pos = rotation_matrix.dot(relative_pos)
|
||||||
|
new_pos = np.array(turntable_center) + new_relative_pos
|
||||||
|
|
||||||
|
# 更新目标物体的位置和方向
|
||||||
|
p.resetBasePositionAndOrientation(
|
||||||
|
self.target_id,
|
||||||
|
new_pos,
|
||||||
|
target_orn_quat
|
||||||
|
)
|
||||||
|
|
||||||
|
def get_camera_pose(self):
|
||||||
|
end_effector_link = 7 # Franka末端执行器的链接索引
|
||||||
|
state = p.getLinkState(self.robot_id, end_effector_link)
|
||||||
|
ee_pos = state[0] # 世界坐标系中的位置
|
||||||
|
camera_orn = state[1] # 世界坐标系中的朝向(四元数)
|
||||||
|
|
||||||
|
# 计算相机的视角矩阵
|
||||||
|
rot_matrix = p.getMatrixFromQuaternion(camera_orn)
|
||||||
|
rot_matrix = np.array(rot_matrix).reshape(3, 3)
|
||||||
|
|
||||||
|
# 相机的前向向量(与末端执行器的x轴对齐)
|
||||||
|
camera_forward = rot_matrix.dot(np.array([0, 0, 1])) # x轴方向
|
||||||
|
|
||||||
|
# 将相机位置向前偏移0.1米
|
||||||
|
offset = 0.12
|
||||||
|
camera_pos = np.array(ee_pos) + camera_forward * offset
|
||||||
|
camera_target = camera_pos + camera_forward
|
||||||
|
|
||||||
|
# 相机的上向量(与末端执行器的z轴对齐)
|
||||||
|
camera_up = rot_matrix.dot(np.array([1, 0, 0])) # z轴方向
|
||||||
|
|
||||||
|
return camera_pos, camera_target, camera_up
|
||||||
|
|
||||||
|
def take_picture(self):
|
||||||
|
camera_pos, camera_target, camera_up = self.get_camera_pose()
|
||||||
|
|
||||||
|
view_matrix = p.computeViewMatrix(
|
||||||
|
cameraEyePosition=camera_pos,
|
||||||
|
cameraTargetPosition=camera_target,
|
||||||
|
cameraUpVector=camera_up
|
||||||
|
)
|
||||||
|
|
||||||
|
projection_matrix = p.computeProjectionMatrixFOV(
|
||||||
|
fov=self.camera_params['fov'],
|
||||||
|
aspect=self.camera_params['width'] / self.camera_params['height'],
|
||||||
|
nearVal=self.camera_params['near'],
|
||||||
|
farVal=self.camera_params['far']
|
||||||
|
)
|
||||||
|
|
||||||
|
_,_,rgb_img,depth_img,segm_img = p.getCameraImage(
|
||||||
|
width=self.camera_params['width'],
|
||||||
|
height=self.camera_params['height'],
|
||||||
|
viewMatrix=view_matrix,
|
||||||
|
projectionMatrix=projection_matrix,
|
||||||
|
renderer=p.ER_BULLET_HARDWARE_OPENGL
|
||||||
|
)
|
||||||
|
|
||||||
|
depth_img = self.camera_params['far'] * self.camera_params['near'] / (
|
||||||
|
self.camera_params['far'] - (self.camera_params['far'] - self.camera_params['near']) * depth_img)
|
||||||
|
|
||||||
|
depth_img = np.array(depth_img)
|
||||||
|
segm_img = np.array(segm_img)
|
||||||
|
|
||||||
|
return depth_img, segm_img
|
||||||
|
|
||||||
|
def reset(self):
|
||||||
|
target_pos = [0.5, 0, 1]
|
||||||
|
target_orn = p.getQuaternionFromEuler([np.pi, 0, 0])
|
||||||
|
target_matrix = np.eye(4)
|
||||||
|
target_matrix[:3, 3] = target_pos
|
||||||
|
target_matrix[:3, :3] = np.asarray(p.getMatrixFromQuaternion(target_orn)).reshape(3,3)
|
||||||
|
self.move_robot_to_pose(target_matrix)
|
||||||
|
|
||||||
|
def init(self):
|
||||||
|
self.move_to(Simulator.INIT_GRIPPER_POSE)
|
||||||
|
|
||||||
|
def move_to(self, pose: np.ndarray):
|
||||||
|
#delta_degree, min_new_cam_to_world = ControlUtil.solve_display_table_rot_and_cam_to_world(pose)
|
||||||
|
#print(delta_degree)
|
||||||
|
min_new_cam_to_pybullet_world = Simulator.TURNTABLE_WORLD_TO_PYBULLET_WORLD@pose
|
||||||
|
self.move_to_cam_pose(min_new_cam_to_pybullet_world)
|
||||||
|
#self.rotate_turntable(delta_degree)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
def __del__(self):
|
||||||
|
p.disconnect()
|
||||||
|
|
||||||
|
def create_experiment(self, backup_name=None):
|
||||||
|
return super().create_experiment(backup_name)
|
||||||
|
|
||||||
|
def load_experiment(self, backup_name=None):
|
||||||
|
super().load_experiment(backup_name)
|
||||||
|
|
||||||
|
def move_to_cam_pose(self, camera_pose: np.ndarray):
|
||||||
|
# 从相机位姿矩阵中提取位置和旋转矩阵
|
||||||
|
camera_pos = camera_pose[:3, 3]
|
||||||
|
R_camera = camera_pose[:3, :3]
|
||||||
|
|
||||||
|
# 相机的朝向向量(z轴)
|
||||||
|
forward = R_camera[:, 2]
|
||||||
|
|
||||||
|
# 由于相机与末端执行器之间有固定偏移,需要计算末端执行器位置
|
||||||
|
# 相机在末端执行器前方0.12米
|
||||||
|
gripper_pos = camera_pos - forward * 0.12
|
||||||
|
|
||||||
|
# 末端执行器的旋转矩阵需要考虑与相机坐标系的固定变换
|
||||||
|
# 假设相机的forward对应gripper的z轴,相机的x轴对应gripper的x轴
|
||||||
|
R_gripper = R_camera
|
||||||
|
|
||||||
|
# 构建4x4齐次变换矩阵
|
||||||
|
gripper_pose = np.eye(4)
|
||||||
|
gripper_pose[:3, :3] = R_gripper
|
||||||
|
gripper_pose[:3, 3] = gripper_pos
|
||||||
|
print(gripper_pose)
|
||||||
|
# 移动机器人到计算出的位姿
|
||||||
|
return self.move_robot_to_pose(gripper_pose)
|
59
utils/control.py
Normal file
59
utils/control.py
Normal file
@@ -0,0 +1,59 @@
|
|||||||
|
import numpy as np
|
||||||
|
from scipy.spatial.transform import Rotation as R
|
||||||
|
import time
|
||||||
|
|
||||||
|
class ControlUtil:
|
||||||
|
|
||||||
|
curr_rotation = 0
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def check_limit(new_cam_to_world):
|
||||||
|
if new_cam_to_world[0,3] < 0 or new_cam_to_world[1,3] > 0:
|
||||||
|
# if new_cam_to_world[0,3] > 0:
|
||||||
|
return False
|
||||||
|
x = abs(new_cam_to_world[0,3])
|
||||||
|
y = abs(new_cam_to_world[1,3])
|
||||||
|
tan_y_x = y/x
|
||||||
|
min_angle = 0 / 180 * np.pi
|
||||||
|
max_angle = 90 / 180 * np.pi
|
||||||
|
if tan_y_x < np.tan(min_angle) or tan_y_x > np.tan(max_angle):
|
||||||
|
return False
|
||||||
|
|
||||||
|
return True
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def solve_display_table_rot_and_cam_to_world(cam_to_world: np.ndarray) -> tuple:
|
||||||
|
if ControlUtil.check_limit(cam_to_world):
|
||||||
|
return 0, cam_to_world
|
||||||
|
else:
|
||||||
|
min_display_table_rot = 180
|
||||||
|
min_new_cam_to_world = None
|
||||||
|
for display_table_rot in np.linspace(0.1,360, 1800):
|
||||||
|
new_world_to_world = ControlUtil.get_z_axis_rot_mat(display_table_rot)
|
||||||
|
new_cam_to_new_world = cam_to_world
|
||||||
|
new_cam_to_world = new_world_to_world @ new_cam_to_new_world
|
||||||
|
|
||||||
|
if ControlUtil.check_limit(new_cam_to_world):
|
||||||
|
if display_table_rot < min_display_table_rot:
|
||||||
|
min_display_table_rot, min_new_cam_to_world = display_table_rot, new_cam_to_world
|
||||||
|
if abs(display_table_rot - 360) < min_display_table_rot:
|
||||||
|
min_display_table_rot, min_new_cam_to_world = display_table_rot - 360, new_cam_to_world
|
||||||
|
|
||||||
|
if min_new_cam_to_world is None:
|
||||||
|
raise ValueError("No valid display table rotation found")
|
||||||
|
|
||||||
|
delta_degree = min_display_table_rot - ControlUtil.curr_rotation
|
||||||
|
ControlUtil.curr_rotation = min_display_table_rot
|
||||||
|
return delta_degree, min_new_cam_to_world
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def get_z_axis_rot_mat(degree):
|
||||||
|
radian = np.radians(degree)
|
||||||
|
return np.array([
|
||||||
|
[np.cos(radian), -np.sin(radian), 0, 0],
|
||||||
|
[np.sin(radian), np.cos(radian), 0, 0],
|
||||||
|
[0, 0, 1, 0],
|
||||||
|
[0, 0, 0, 1]
|
||||||
|
])
|
||||||
|
|
||||||
|
|
@@ -70,7 +70,7 @@ class RenderUtil:
|
|||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def render_pts(cam_pose, scene_path, script_path, scan_points, voxel_threshold=0.005, filter_degree=75, nO_to_nL_pose=None, require_full_scene=False):
|
def render_pts(cam_pose, scene_path, script_path, scan_points, voxel_threshold=0.005, filter_degree=75, nO_to_nL_pose=None, require_full_scene=False):
|
||||||
|
import ipdb; ipdb.set_trace()
|
||||||
nO_to_world_pose = DataLoadUtil.get_real_cam_O_from_cam_L(cam_pose, nO_to_nL_pose, scene_path=scene_path)
|
nO_to_world_pose = DataLoadUtil.get_real_cam_O_from_cam_L(cam_pose, nO_to_nL_pose, scene_path=scene_path)
|
||||||
|
|
||||||
|
|
||||||
|
Reference in New Issue
Block a user