Compare commits
36 Commits
be67be95e9
...
ab_global_
Author | SHA1 | Date | |
---|---|---|---|
26c3cb4c7a | |||
830d51fc80 | |||
e81d6c9bd1 | |||
b30e9d535a | |||
d8c95b6f0c | |||
ab31ba46a9 | |||
f533104e4a | |||
a21538c90a | |||
872405e239 | |||
b13e45bafc | |||
63a246c0c8 | |||
9e39c6c6c9 | |||
3c9e2c8d12 | |||
a883a31968 | |||
49bcf203a8 | |||
![]() |
1c443e533d | ||
![]() |
3b9c966fd9 | ||
![]() |
a41571e79c | ||
bd27226f0f | |||
5c56dae24f | |||
ebb1ab3c61 | |||
![]() |
a1226eb294 | ||
![]() |
9d0119549e | ||
![]() |
64891ef189 | ||
75c70a9e59 | |||
![]() |
7e68259f6d | ||
64b22fd0f4 | |||
b18c1591b7 | |||
![]() |
c55a398b6d | ||
![]() |
e25f7b3334 | ||
![]() |
cd56d9ea58 | ||
![]() |
d58c7980ed | ||
![]() |
41eddda8d4 | ||
![]() |
ccec9b8e8a | ||
0f61e1d64d | |||
9ca0851bf7 |
192
Readme.md
Normal file
192
Readme.md
Normal file
@@ -0,0 +1,192 @@
|
|||||||
|
# Next Best View for Reconstruction
|
||||||
|
|
||||||
|
## 1. Setup Environment
|
||||||
|
### 1.1 Install Main Project
|
||||||
|
```bash
|
||||||
|
mkdir nbv_rec
|
||||||
|
cd nbv_rec
|
||||||
|
git clone https://git.hofee.top/hofee/nbv_reconstruction.git
|
||||||
|
```
|
||||||
|
### 1.2 Install PytorchBoot
|
||||||
|
the environment is based on PytorchBoot, clone and install it from [PytorchBoot](https://git.hofee.top/hofee/PyTorchBoot.git)
|
||||||
|
```bash
|
||||||
|
git clone https://git.hofee.top/hofee/PyTorchBoot.git
|
||||||
|
cd PyTorchBoot
|
||||||
|
pip install .
|
||||||
|
cd ..
|
||||||
|
```
|
||||||
|
### 1.3 Install Blender (Optional)
|
||||||
|
If you want to render your own dataset as described in [section 2. Render Datasets](#2-render-datasets), you'll need to install Blender version 4.0 from [Blender Release](https://download.blender.org/release/Blender4.0/). Here is an example of installing Blender on Ubuntu:
|
||||||
|
```bash
|
||||||
|
wget https://download.blender.org/release/Blender4.0/blender-4.0.2-linux-x64.tar.xz
|
||||||
|
tar -xvf blender-4.0.2-linux-x64.tar.xz
|
||||||
|
```
|
||||||
|
If blender is not in your PATH, you can add it by:
|
||||||
|
```bash
|
||||||
|
export PATH=$PATH:/path/to/blender/blender-4.0.2-linux-x64
|
||||||
|
```
|
||||||
|
To run the blender script, you need to install the `pyyaml` and `scipy` package into your blender python environment. Run the following command to print the python path of your blender:
|
||||||
|
```bash
|
||||||
|
./blender -b --python-expr "import sys; print(sys.executable)"
|
||||||
|
```
|
||||||
|
Then copy the python path `/path/to/blender_python` shown in the output and run the following command to install the packages:
|
||||||
|
```bash
|
||||||
|
/path/to/blender_python -m pip install pyyaml scipy
|
||||||
|
```
|
||||||
|
### 1.4 Install Blender Render Script (Optional)
|
||||||
|
Clone the script from [nbv_rec_blender_render](https://git.hofee.top/hofee/nbv_rec_blender_render.git) and rename it to `blender`:
|
||||||
|
```bash
|
||||||
|
git clone https://git.hofee.top/hofee/nbv_rec_blender_render.git
|
||||||
|
mv nbv_rec_blender_render blender
|
||||||
|
```
|
||||||
|
|
||||||
|
### 1.5 Check Dependencies
|
||||||
|
Switch to the project root directory and run `pytorch-boot scan` or `ptb scan` to check if all dependencies are installed:
|
||||||
|
```bash
|
||||||
|
cd nbv_reconstruction
|
||||||
|
pytorch-boot scan
|
||||||
|
# or
|
||||||
|
ptb scan
|
||||||
|
```
|
||||||
|
If you see project structure information in the output, it means all dependencies are correctly installed. Otherwise, you may need to run `pip install xxx` to install the missing packages.
|
||||||
|
|
||||||
|
## 2. Render Datasets (Optional)
|
||||||
|
### 2.1 Download Object Mesh Models
|
||||||
|
Download the mesh models divided into three parts from:
|
||||||
|
- [object_meshes_part1.zip](None)
|
||||||
|
- [object_meshes_part2.zip](https://pan.baidu.com/s/1pBPhrFtBwEGp1g4vwsLIxA?pwd=1234)
|
||||||
|
- [object_meshes_part3.zip](https://pan.baidu.com/s/1peE8HqFFL0qNFhM5OC69gA?pwd=1234)
|
||||||
|
|
||||||
|
or download the whole dataset from [object_meshes.zip](https://pan.baidu.com/s/1ilWWgzg_l7_pPBv64eSgzA?pwd=1234)
|
||||||
|
|
||||||
|
Download the table model from [table.obj](https://pan.baidu.com/s/1sjjiID25Es_kmcdUIjU_Dw?pwd=1234)
|
||||||
|
|
||||||
|
### 2.2 Set Render Configurations
|
||||||
|
Open file `configs/local/view_generate_config.yaml` and modify the parameters to fit your needs. You are required to at least set the following parameters in `runner-generate`:
|
||||||
|
- `object_dir`: the directory of the downloaded object mesh models
|
||||||
|
- `output_dir`: the directory to save the rendered dataset
|
||||||
|
- `table_model_path`: the path of the downloaded table model
|
||||||
|
|
||||||
|
### 2.3 Render Dataset
|
||||||
|
|
||||||
|
There are two ways to render the dataset:
|
||||||
|
|
||||||
|
#### 2.3.1 Render with Visual Monitoring
|
||||||
|
|
||||||
|
If you want to visually monitor the rendering progress and machine resource usage:
|
||||||
|
|
||||||
|
1. In the terminal, run:
|
||||||
|
```
|
||||||
|
ptb ui
|
||||||
|
```
|
||||||
|
2. Open your browser and visit http://localhost:5000
|
||||||
|
3. Navigate to `Project Dashboard - Project Structure - Applications - generate_view`
|
||||||
|
4. Click the `Run` button to execute the rendering script
|
||||||
|
|
||||||
|
#### 2.3.2 Render in Terminal
|
||||||
|
|
||||||
|
If you don't need visual monitoring and prefer to run the rendering process directly in the terminal, simply run:
|
||||||
|
|
||||||
|
```
|
||||||
|
ptb run generate_view
|
||||||
|
```
|
||||||
|
|
||||||
|
This command will start the rendering process without launching the UI.
|
||||||
|
|
||||||
|
## 3. Preprocess
|
||||||
|
|
||||||
|
⚠️ The preprocessing code is currently not managed by `PytorchBoot`. To run the preprocessing:
|
||||||
|
|
||||||
|
1. Open the `./preprocess/preprocessor.py` file.
|
||||||
|
2. Locate the `if __name__ == "__main__":` block at the bottom of the file.
|
||||||
|
3. Specify the dataset folder by setting `root = "path/to/your/dataset"`.
|
||||||
|
4. Run the preprocessing script directly:
|
||||||
|
|
||||||
|
```
|
||||||
|
python ./preprocess/preprocessor.py
|
||||||
|
```
|
||||||
|
|
||||||
|
This will preprocess the data in the specified dataset folder.
|
||||||
|
|
||||||
|
## 4. Generate Strategy Label
|
||||||
|
|
||||||
|
### 4.1 Set Configuration
|
||||||
|
|
||||||
|
Open the file `configs/local/strategy_generate_config.yaml` and modify the parameters to fit your needs. You are required to at least set the following parameter:
|
||||||
|
|
||||||
|
- `datasets.OmniObject3d.root_dir`: the directory of your dataset
|
||||||
|
|
||||||
|
### 4.2 Generate Strategy Label
|
||||||
|
|
||||||
|
There are two ways to generate the strategy label:
|
||||||
|
|
||||||
|
#### 4.2.1 Generate with Visual Monitoring
|
||||||
|
|
||||||
|
If you want to visually monitor the generation progress and machine resource usage:
|
||||||
|
|
||||||
|
1. In the terminal, run:
|
||||||
|
```
|
||||||
|
ptb ui
|
||||||
|
```
|
||||||
|
2. Open your browser and visit http://localhost:5000
|
||||||
|
3. Navigate to Project Dashboard - Project Structure - Applications - generate_strategy
|
||||||
|
4. Click the `Run` button to execute the generation script
|
||||||
|
|
||||||
|
#### 4.2.2 Generate in Terminal
|
||||||
|
|
||||||
|
If you don't need visual monitoring and prefer to run the generation process directly in the terminal, simply run:
|
||||||
|
|
||||||
|
```
|
||||||
|
ptb run generate_strategy
|
||||||
|
```
|
||||||
|
|
||||||
|
This command will start the strategy label generation process without launching the UI.
|
||||||
|
|
||||||
|
## 5. Train
|
||||||
|
|
||||||
|
### 5.1 Set Configuration
|
||||||
|
|
||||||
|
Open the file `configs/local/train_config.yaml` and modify the parameters to fit your needs. You are required to at least set the following parameters in the `experiment` section:
|
||||||
|
|
||||||
|
```yaml
|
||||||
|
experiment:
|
||||||
|
name: your_experiment_name
|
||||||
|
root_dir: path/to/your/experiment_dir
|
||||||
|
use_checkpoint: False # if True, the checkpoint will be loaded
|
||||||
|
epoch: 600 # specific epoch to load, -1 stands for last epoch
|
||||||
|
max_epochs: 5000 # maximum epochs to train
|
||||||
|
save_checkpoint_interval: 1 # save checkpoint interval
|
||||||
|
test_first: True # if True, test process will be performed before training at each epoch
|
||||||
|
```
|
||||||
|
|
||||||
|
Adjust these parameters according to your training requirements.
|
||||||
|
|
||||||
|
|
||||||
|
### 5.2 Start Training
|
||||||
|
|
||||||
|
There are two ways to start the training process:
|
||||||
|
|
||||||
|
#### 5.2.1 Train with Visual Monitoring
|
||||||
|
|
||||||
|
If you want to visually monitor the training progress and machine resource usage:
|
||||||
|
|
||||||
|
1. In the terminal, run:
|
||||||
|
```
|
||||||
|
ptb ui
|
||||||
|
```
|
||||||
|
2. Open your browser and visit http://localhost:5000
|
||||||
|
3. Navigate to Project Dashboard - Project Structure - Applications - train
|
||||||
|
4. Click the `Run` button to start the training process
|
||||||
|
|
||||||
|
#### 5.2.2 Train in Terminal
|
||||||
|
|
||||||
|
If you don't need visual monitoring and prefer to run the training process directly in the terminal, simply run:
|
||||||
|
|
||||||
|
```
|
||||||
|
ptb run train
|
||||||
|
```
|
||||||
|
|
||||||
|
This command will start the training process without launching the UI.
|
||||||
|
|
||||||
|
## 6. Evaluation
|
||||||
|
...
|
22
TODO.md
22
TODO.md
@@ -1,22 +0,0 @@
|
|||||||
# TODO
|
|
||||||
## 预处理数据
|
|
||||||
### 1. 生成view阶段
|
|
||||||
**input**: 物体mesh
|
|
||||||
|
|
||||||
### 2. 生成label阶段
|
|
||||||
**input**: 目标物体点云、目标物体点云法线、桌面扫描点、被拍到的桌面扫描点
|
|
||||||
|
|
||||||
**可以删掉的数据**: mask、normal
|
|
||||||
|
|
||||||
### 3. 训练阶段
|
|
||||||
**input**: 完整点云、pose、label
|
|
||||||
|
|
||||||
**可以删掉的数据**:depth
|
|
||||||
|
|
||||||
### view生成后
|
|
||||||
预处理目标物体点云、目标物体点云法线、桌面扫描点、被拍到的桌面扫描点、完整点云
|
|
||||||
|
|
||||||
删除depth、mask、normal
|
|
||||||
|
|
||||||
### label生成后
|
|
||||||
只上传:完整点云、pose、label
|
|
@@ -5,5 +5,5 @@ from runners.strategy_generator import StrategyGenerator
|
|||||||
class DataGenerateApp:
|
class DataGenerateApp:
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def start():
|
def start():
|
||||||
StrategyGenerator("configs/server/server_strategy_generate_config.yaml").run()
|
StrategyGenerator("configs/local/strategy_generate_config.yaml").run()
|
||||||
|
|
@@ -5,5 +5,5 @@ from runners.data_spliter import DataSpliter
|
|||||||
class DataSplitApp:
|
class DataSplitApp:
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def start():
|
def start():
|
||||||
DataSpliter("configs/server/split_dataset_config.yaml").run()
|
DataSpliter("configs/server/server_split_dataset_config.yaml").run()
|
||||||
|
|
@@ -12,26 +12,16 @@ runner:
|
|||||||
|
|
||||||
generate:
|
generate:
|
||||||
voxel_threshold: 0.003
|
voxel_threshold: 0.003
|
||||||
soft_overlap_threshold: 0.3
|
overlap_area_threshold: 30
|
||||||
hard_overlap_threshold: 0.6
|
compute_with_normal: False
|
||||||
filter_degree: 75
|
scan_points_threshold: 10
|
||||||
to_specified_dir: True # if True, output_dir is used, otherwise, root_dir is used
|
|
||||||
save_points: True
|
|
||||||
load_points: True
|
|
||||||
save_best_combined_points: False
|
|
||||||
save_mesh: True
|
|
||||||
overwrite: False
|
overwrite: False
|
||||||
seq_num: 15
|
seq_num: 10
|
||||||
dataset_list:
|
dataset_list:
|
||||||
- OmniObject3d
|
- OmniObject3d
|
||||||
|
|
||||||
datasets:
|
datasets:
|
||||||
OmniObject3d:
|
OmniObject3d:
|
||||||
#"/media/hofee/data/data/temp_output"
|
root_dir: /data/hofee/nbv_rec_part2_preprocessed
|
||||||
root_dir: /media/hofee/repository/full_data_output
|
from: 155
|
||||||
model_dir: /media/hofee/data/data/scaled_object_meshes
|
to: 165 # ..-1 means end
|
||||||
from: 0
|
|
||||||
to: -1 # -1 means end
|
|
||||||
#output_dir: "/media/hofee/data/data/label_output"
|
|
||||||
|
|
||||||
|
|
||||||
|
@@ -84,7 +84,7 @@ module:
|
|||||||
gf_view_finder:
|
gf_view_finder:
|
||||||
t_feat_dim: 128
|
t_feat_dim: 128
|
||||||
pose_feat_dim: 256
|
pose_feat_dim: 256
|
||||||
main_feat_dim: 2048
|
main_feat_dim: 3072
|
||||||
regression_head: Rx_Ry_and_T
|
regression_head: Rx_Ry_and_T
|
||||||
pose_mode: rot_matrix
|
pose_mode: rot_matrix
|
||||||
per_point_feature: False
|
per_point_feature: False
|
||||||
|
@@ -7,12 +7,12 @@ runner:
|
|||||||
name: debug
|
name: debug
|
||||||
root_dir: experiments
|
root_dir: experiments
|
||||||
generate:
|
generate:
|
||||||
port: 5004
|
port: 5002
|
||||||
from: 0
|
from: 600
|
||||||
to: 1 # -1 means all
|
to: -1 # -1 means all
|
||||||
object_dir: H:\\AI\\Datasets\\scaled_object_box_meshes
|
object_dir: /media/hofee/data/data/object_meshes_part1
|
||||||
table_model_path: "H:\\AI\\Datasets\\table.obj"
|
table_model_path: "/media/hofee/data/data/others/table.obj"
|
||||||
output_dir: C:\\Document\\Local Project\\nbv_rec\\nbv_reconstruction\\temp
|
output_dir: /media/hofee/repository/data_part_1
|
||||||
binocular_vision: true
|
binocular_vision: true
|
||||||
plane_size: 10
|
plane_size: 10
|
||||||
max_views: 512
|
max_views: 512
|
||||||
|
@@ -10,13 +10,13 @@ runner:
|
|||||||
root_dir: "experiments"
|
root_dir: "experiments"
|
||||||
|
|
||||||
split: #
|
split: #
|
||||||
root_dir: "/home/data/hofee/project/nbv_rec/data/nbv_rec_data_512_preproc_npy"
|
root_dir: "/data/hofee/data/packed_preprocessed_data"
|
||||||
type: "unseen_instance" # "unseen_category"
|
type: "unseen_instance" # "unseen_category"
|
||||||
datasets:
|
datasets:
|
||||||
OmniObject3d_train:
|
OmniObject3d_train:
|
||||||
path: "../data/sample_for_training_preprocessed/OmniObject3d_train.txt"
|
path: "/data/hofee/data/OmniObject3d_train.txt"
|
||||||
ratio: 0.9
|
ratio: 0.9
|
||||||
|
|
||||||
OmniObject3d_test:
|
OmniObject3d_test:
|
||||||
path: "../data/sample_for_training_preprocessed/OmniObject3d_test.txt"
|
path: "/data/hofee/data/OmniObject3d_test.txt"
|
||||||
ratio: 0.1
|
ratio: 0.1
|
@@ -1,37 +0,0 @@
|
|||||||
|
|
||||||
runner:
|
|
||||||
general:
|
|
||||||
seed: 0
|
|
||||||
device: cpu
|
|
||||||
cuda_visible_devices: "0,1,2,3,4,5,6,7"
|
|
||||||
|
|
||||||
|
|
||||||
experiment:
|
|
||||||
name: debug
|
|
||||||
root_dir: "experiments"
|
|
||||||
|
|
||||||
generate:
|
|
||||||
voxel_threshold: 0.003
|
|
||||||
soft_overlap_threshold: 0.3
|
|
||||||
hard_overlap_threshold: 0.6
|
|
||||||
filter_degree: 75
|
|
||||||
to_specified_dir: True # if True, output_dir is used, otherwise, root_dir is used
|
|
||||||
save_points: True
|
|
||||||
load_points: True
|
|
||||||
save_best_combined_points: False
|
|
||||||
save_mesh: True
|
|
||||||
overwrite: False
|
|
||||||
seq_num: 15
|
|
||||||
dataset_list:
|
|
||||||
- OmniObject3d
|
|
||||||
|
|
||||||
datasets:
|
|
||||||
OmniObject3d:
|
|
||||||
#"/media/hofee/data/data/temp_output"
|
|
||||||
root_dir: /data/hofee/data/packed_preprocessed_data
|
|
||||||
model_dir: /media/hofee/data/data/scaled_object_meshes
|
|
||||||
from: 0
|
|
||||||
to: -1 # -1 means end
|
|
||||||
#output_dir: "/media/hofee/data/data/label_output"
|
|
||||||
|
|
||||||
|
|
@@ -3,17 +3,17 @@ runner:
|
|||||||
general:
|
general:
|
||||||
seed: 0
|
seed: 0
|
||||||
device: cuda
|
device: cuda
|
||||||
cuda_visible_devices: "1"
|
cuda_visible_devices: "0"
|
||||||
parallel: False
|
parallel: False
|
||||||
|
|
||||||
experiment:
|
experiment:
|
||||||
name: full_w_global_feat_wo_local_pts_feat
|
name: overfit_ab_global_and_local
|
||||||
root_dir: "experiments"
|
root_dir: "experiments"
|
||||||
use_checkpoint: False
|
use_checkpoint: False
|
||||||
epoch: -1 # -1 stands for last epoch
|
epoch: -1 # -1 stands for last epoch
|
||||||
max_epochs: 5000
|
max_epochs: 5000
|
||||||
save_checkpoint_interval: 1
|
save_checkpoint_interval: 1
|
||||||
test_first: True
|
test_first: False
|
||||||
|
|
||||||
train:
|
train:
|
||||||
optimizer:
|
optimizer:
|
||||||
@@ -25,60 +25,60 @@ runner:
|
|||||||
test:
|
test:
|
||||||
frequency: 3 # test frequency
|
frequency: 3 # test frequency
|
||||||
dataset_list:
|
dataset_list:
|
||||||
- OmniObject3d_test
|
#- OmniObject3d_test
|
||||||
- OmniObject3d_val
|
- OmniObject3d_val
|
||||||
|
|
||||||
pipeline: nbv_reconstruction_global_pts_pipeline
|
pipeline: nbv_reconstruction_pipeline
|
||||||
|
|
||||||
dataset:
|
dataset:
|
||||||
OmniObject3d_train:
|
OmniObject3d_train:
|
||||||
root_dir: "/home/data/hofee/project/nbv_rec/data/nbv_rec_data_512_preproc_npy"
|
root_dir: "/data/hofee/nbv_rec_part2_preprocessed"
|
||||||
model_dir: "../data/scaled_object_meshes"
|
model_dir: "../data/scaled_object_meshes"
|
||||||
source: nbv_reconstruction_dataset
|
source: nbv_reconstruction_dataset
|
||||||
split_file: "/home/data/hofee/project/nbv_rec/data/OmniObject3d_train.txt"
|
split_file: "/data/hofee/data/sample.txt"
|
||||||
type: train
|
type: train
|
||||||
cache: True
|
cache: True
|
||||||
ratio: 1
|
ratio: 1
|
||||||
batch_size: 160
|
batch_size: 32
|
||||||
num_workers: 16
|
num_workers: 16
|
||||||
pts_num: 4096
|
pts_num: 8192
|
||||||
load_from_preprocess: True
|
load_from_preprocess: True
|
||||||
|
|
||||||
OmniObject3d_test:
|
OmniObject3d_test:
|
||||||
root_dir: "/home/data/hofee/project/nbv_rec/data/nbv_rec_data_512_preproc_npy"
|
root_dir: "/data/hofee/nbv_rec_part2_preprocessed"
|
||||||
model_dir: "../data/scaled_object_meshes"
|
model_dir: "../data/scaled_object_meshes"
|
||||||
source: nbv_reconstruction_dataset
|
source: nbv_reconstruction_dataset
|
||||||
split_file: "/home/data/hofee/project/nbv_rec/data/OmniObject3d_test.txt"
|
split_file: "/data/hofee/data/sample.txt"
|
||||||
type: test
|
type: test
|
||||||
cache: True
|
cache: True
|
||||||
filter_degree: 75
|
filter_degree: 75
|
||||||
eval_list:
|
eval_list:
|
||||||
- pose_diff
|
- pose_diff
|
||||||
ratio: 0.05
|
ratio: 1
|
||||||
batch_size: 160
|
batch_size: 32
|
||||||
num_workers: 12
|
num_workers: 12
|
||||||
pts_num: 4096
|
pts_num: 8192
|
||||||
load_from_preprocess: True
|
load_from_preprocess: True
|
||||||
|
|
||||||
OmniObject3d_val:
|
OmniObject3d_val:
|
||||||
root_dir: "/home/data/hofee/project/nbv_rec/data/nbv_rec_data_512_preproc_npy"
|
root_dir: "/data/hofee/nbv_rec_part2_preprocessed"
|
||||||
model_dir: "../data/scaled_object_meshes"
|
model_dir: "../data/scaled_object_meshes"
|
||||||
source: nbv_reconstruction_dataset
|
source: nbv_reconstruction_dataset
|
||||||
split_file: "/home/data/hofee/project/nbv_rec/data/OmniObject3d_train.txt"
|
split_file: "/data/hofee/data/sample.txt"
|
||||||
type: test
|
type: test
|
||||||
cache: True
|
cache: True
|
||||||
filter_degree: 75
|
filter_degree: 75
|
||||||
eval_list:
|
eval_list:
|
||||||
- pose_diff
|
- pose_diff
|
||||||
ratio: 0.005
|
ratio: 1
|
||||||
batch_size: 160
|
batch_size: 32
|
||||||
num_workers: 12
|
num_workers: 12
|
||||||
pts_num: 4096
|
pts_num: 8192
|
||||||
load_from_preprocess: True
|
load_from_preprocess: True
|
||||||
|
|
||||||
|
|
||||||
pipeline:
|
pipeline:
|
||||||
nbv_reconstruction_local_pts_pipeline:
|
nbv_reconstruction_pipeline:
|
||||||
modules:
|
modules:
|
||||||
pts_encoder: pointnet_encoder
|
pts_encoder: pointnet_encoder
|
||||||
seq_encoder: transformer_seq_encoder
|
seq_encoder: transformer_seq_encoder
|
||||||
@@ -87,27 +87,17 @@ pipeline:
|
|||||||
eps: 1e-5
|
eps: 1e-5
|
||||||
global_scanned_feat: True
|
global_scanned_feat: True
|
||||||
|
|
||||||
nbv_reconstruction_global_pts_pipeline:
|
|
||||||
modules:
|
|
||||||
pts_encoder: pointnet_encoder
|
|
||||||
pose_seq_encoder: transformer_seq_encoder
|
|
||||||
pose_encoder: pose_encoder
|
|
||||||
view_finder: gf_view_finder
|
|
||||||
eps: 1e-5
|
|
||||||
global_scanned_feat: True
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
module:
|
module:
|
||||||
|
|
||||||
pointnet_encoder:
|
pointnet_encoder:
|
||||||
in_dim: 3
|
in_dim: 3
|
||||||
out_dim: 1024
|
out_dim: 512
|
||||||
global_feat: True
|
global_feat: True
|
||||||
feature_transform: False
|
feature_transform: False
|
||||||
|
|
||||||
transformer_seq_encoder:
|
transformer_seq_encoder:
|
||||||
embed_dim: 1344
|
embed_dim: 768
|
||||||
num_heads: 4
|
num_heads: 4
|
||||||
ffn_dim: 256
|
ffn_dim: 256
|
||||||
num_layers: 3
|
num_layers: 3
|
||||||
@@ -116,7 +106,7 @@ module:
|
|||||||
gf_view_finder:
|
gf_view_finder:
|
||||||
t_feat_dim: 128
|
t_feat_dim: 128
|
||||||
pose_feat_dim: 256
|
pose_feat_dim: 256
|
||||||
main_feat_dim: 2048
|
main_feat_dim: 2560
|
||||||
regression_head: Rx_Ry_and_T
|
regression_head: Rx_Ry_and_T
|
||||||
pose_mode: rot_matrix
|
pose_mode: rot_matrix
|
||||||
per_point_feature: False
|
per_point_feature: False
|
||||||
@@ -128,6 +118,9 @@ module:
|
|||||||
pose_dim: 9
|
pose_dim: 9
|
||||||
out_dim: 256
|
out_dim: 256
|
||||||
|
|
||||||
|
pts_num_encoder:
|
||||||
|
out_dim: 64
|
||||||
|
|
||||||
loss_function:
|
loss_function:
|
||||||
gf_loss:
|
gf_loss:
|
||||||
|
|
||||||
|
@@ -8,7 +8,7 @@ import torch
|
|||||||
import os
|
import os
|
||||||
import sys
|
import sys
|
||||||
|
|
||||||
sys.path.append(r"/home/data/hofee/project/nbv_rec/nbv_reconstruction")
|
sys.path.append(r"/data/hofee/project/nbv_rec/nbv_reconstruction")
|
||||||
|
|
||||||
from utils.data_load import DataLoadUtil
|
from utils.data_load import DataLoadUtil
|
||||||
from utils.pose import PoseUtil
|
from utils.pose import PoseUtil
|
||||||
@@ -31,10 +31,10 @@ class NBVReconstructionDataset(BaseDataset):
|
|||||||
self.load_from_preprocess = config.get("load_from_preprocess", False)
|
self.load_from_preprocess = config.get("load_from_preprocess", False)
|
||||||
|
|
||||||
if self.type == namespace.Mode.TEST:
|
if self.type == namespace.Mode.TEST:
|
||||||
self.model_dir = config["model_dir"]
|
#self.model_dir = config["model_dir"]
|
||||||
self.filter_degree = config["filter_degree"]
|
self.filter_degree = config["filter_degree"]
|
||||||
if self.type == namespace.Mode.TRAIN:
|
if self.type == namespace.Mode.TRAIN:
|
||||||
scale_ratio = 1
|
scale_ratio = 50
|
||||||
self.datalist = self.datalist*scale_ratio
|
self.datalist = self.datalist*scale_ratio
|
||||||
if self.cache:
|
if self.cache:
|
||||||
expr_root = ConfigManager.get("runner", "experiment", "root_dir")
|
expr_root = ConfigManager.get("runner", "experiment", "root_dir")
|
||||||
@@ -66,7 +66,9 @@ class NBVReconstructionDataset(BaseDataset):
|
|||||||
if max_coverage_rate > scene_max_coverage_rate:
|
if max_coverage_rate > scene_max_coverage_rate:
|
||||||
scene_max_coverage_rate = max_coverage_rate
|
scene_max_coverage_rate = max_coverage_rate
|
||||||
max_coverage_rate_list.append(max_coverage_rate)
|
max_coverage_rate_list.append(max_coverage_rate)
|
||||||
mean_coverage_rate = np.mean(max_coverage_rate_list)
|
|
||||||
|
if max_coverage_rate_list:
|
||||||
|
mean_coverage_rate = np.mean(max_coverage_rate_list)
|
||||||
|
|
||||||
for seq_idx in range(seq_num):
|
for seq_idx in range(seq_num):
|
||||||
label_path = DataLoadUtil.get_label_path(
|
label_path = DataLoadUtil.get_label_path(
|
||||||
@@ -112,6 +114,10 @@ class NBVReconstructionDataset(BaseDataset):
|
|||||||
except Exception as e:
|
except Exception as e:
|
||||||
Log.error(f"Save cache failed: {e}")
|
Log.error(f"Save cache failed: {e}")
|
||||||
|
|
||||||
|
def voxel_downsample_with_mask(self, pts, voxel_size):
|
||||||
|
pass
|
||||||
|
|
||||||
|
|
||||||
def __getitem__(self, index):
|
def __getitem__(self, index):
|
||||||
data_item_info = self.datalist[index]
|
data_item_info = self.datalist[index]
|
||||||
scanned_views = data_item_info["scanned_views"]
|
scanned_views = data_item_info["scanned_views"]
|
||||||
@@ -122,7 +128,7 @@ class NBVReconstructionDataset(BaseDataset):
|
|||||||
scanned_views_pts,
|
scanned_views_pts,
|
||||||
scanned_coverages_rate,
|
scanned_coverages_rate,
|
||||||
scanned_n_to_world_pose,
|
scanned_n_to_world_pose,
|
||||||
) = ([], [], [], [])
|
) = ([], [], [])
|
||||||
for view in scanned_views:
|
for view in scanned_views:
|
||||||
frame_idx = view[0]
|
frame_idx = view[0]
|
||||||
coverage_rate = view[1]
|
coverage_rate = view[1]
|
||||||
@@ -160,27 +166,12 @@ class NBVReconstructionDataset(BaseDataset):
|
|||||||
)
|
)
|
||||||
|
|
||||||
combined_scanned_views_pts = np.concatenate(scanned_views_pts, axis=0)
|
combined_scanned_views_pts = np.concatenate(scanned_views_pts, axis=0)
|
||||||
fps_downsampled_combined_scanned_pts, fps_idx = PtsUtil.fps_downsample_point_cloud(
|
voxel_downsampled_combined_scanned_pts_np = PtsUtil.voxel_downsample_point_cloud(combined_scanned_views_pts, 0.002)
|
||||||
combined_scanned_views_pts, self.pts_num, require_idx=True
|
random_downsampled_combined_scanned_pts_np = PtsUtil.random_downsample_point_cloud(voxel_downsampled_combined_scanned_pts_np, self.pts_num)
|
||||||
)
|
|
||||||
|
|
||||||
combined_scanned_views_pts_mask = np.zeros(len(scanned_views_pts), dtype=np.uint8)
|
|
||||||
|
|
||||||
start_idx = 0
|
|
||||||
for i in range(len(scanned_views_pts)):
|
|
||||||
end_idx = start_idx + len(scanned_views_pts[i])
|
|
||||||
combined_scanned_views_pts_mask[start_idx:end_idx] = i
|
|
||||||
start_idx = end_idx
|
|
||||||
|
|
||||||
fps_downsampled_combined_scanned_pts_mask = combined_scanned_views_pts_mask[fps_idx]
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
data_item = {
|
data_item = {
|
||||||
"scanned_pts": np.asarray(scanned_views_pts, dtype=np.float32), # Ndarray(S x Nv x 3)
|
"scanned_pts": np.asarray(scanned_views_pts, dtype=np.float32), # Ndarray(S x Nv x 3)
|
||||||
"scanned_pts_mask": np.asarray(fps_downsampled_combined_scanned_pts_mask,dtype=np.uint8), # Ndarray(N), range(0, S)
|
"combined_scanned_pts": np.asarray(random_downsampled_combined_scanned_pts_np, dtype=np.float32), # Ndarray(N x 3)
|
||||||
"combined_scanned_pts": np.asarray(fps_downsampled_combined_scanned_pts, dtype=np.float32), # Ndarray(N x 3)
|
|
||||||
"scanned_coverage_rate": scanned_coverages_rate, # List(S): Float, range(0, 1)
|
"scanned_coverage_rate": scanned_coverages_rate, # List(S): Float, range(0, 1)
|
||||||
"scanned_n_to_world_pose_9d": np.asarray(scanned_n_to_world_pose, dtype=np.float32), # Ndarray(S x 9)
|
"scanned_n_to_world_pose_9d": np.asarray(scanned_n_to_world_pose, dtype=np.float32), # Ndarray(S x 9)
|
||||||
"best_coverage_rate": nbv_coverage_rate, # Float, range(0, 1)
|
"best_coverage_rate": nbv_coverage_rate, # Float, range(0, 1)
|
||||||
@@ -215,9 +206,6 @@ class NBVReconstructionDataset(BaseDataset):
|
|||||||
collate_data["combined_scanned_pts"] = torch.stack(
|
collate_data["combined_scanned_pts"] = torch.stack(
|
||||||
[torch.tensor(item["combined_scanned_pts"]) for item in batch]
|
[torch.tensor(item["combined_scanned_pts"]) for item in batch]
|
||||||
)
|
)
|
||||||
collate_data["scanned_pts_mask"] = torch.stack(
|
|
||||||
[torch.tensor(item["scanned_pts_mask"]) for item in batch]
|
|
||||||
)
|
|
||||||
|
|
||||||
for key in batch[0].keys():
|
for key in batch[0].keys():
|
||||||
if key not in [
|
if key not in [
|
||||||
@@ -241,10 +229,9 @@ if __name__ == "__main__":
|
|||||||
torch.manual_seed(seed)
|
torch.manual_seed(seed)
|
||||||
np.random.seed(seed)
|
np.random.seed(seed)
|
||||||
config = {
|
config = {
|
||||||
"root_dir": "/home/data/hofee/project/nbv_rec/data/nbv_rec_data_512_preproc_npy",
|
"root_dir": "/data/hofee/data/packed_preprocessed_data",
|
||||||
"model_dir": "/home/data/hofee/project/nbv_rec/data/scaled_object_meshes",
|
|
||||||
"source": "nbv_reconstruction_dataset",
|
"source": "nbv_reconstruction_dataset",
|
||||||
"split_file": "/home/data/hofee/project/nbv_rec/data/OmniObject3d_test.txt",
|
"split_file": "/data/hofee/data/OmniObject3d_train.txt",
|
||||||
"load_from_preprocess": True,
|
"load_from_preprocess": True,
|
||||||
"ratio": 0.5,
|
"ratio": 0.5,
|
||||||
"batch_size": 2,
|
"batch_size": 2,
|
||||||
|
@@ -1,4 +1,5 @@
|
|||||||
import torch
|
import torch
|
||||||
|
import time
|
||||||
from torch import nn
|
from torch import nn
|
||||||
import PytorchBoot.namespace as namespace
|
import PytorchBoot.namespace as namespace
|
||||||
import PytorchBoot.stereotype as stereotype
|
import PytorchBoot.stereotype as stereotype
|
||||||
@@ -6,10 +7,10 @@ from PytorchBoot.factory.component_factory import ComponentFactory
|
|||||||
from PytorchBoot.utils import Log
|
from PytorchBoot.utils import Log
|
||||||
|
|
||||||
|
|
||||||
@stereotype.pipeline("nbv_reconstruction_global_pts_n_num_pipeline")
|
@stereotype.pipeline("nbv_reconstruction_pipeline")
|
||||||
class NBVReconstructionGlobalPointsPipeline(nn.Module):
|
class NBVReconstructionPipeline(nn.Module):
|
||||||
def __init__(self, config):
|
def __init__(self, config):
|
||||||
super(NBVReconstructionGlobalPointsPipeline, self).__init__()
|
super(NBVReconstructionPipeline, self).__init__()
|
||||||
self.config = config
|
self.config = config
|
||||||
self.module_config = config["modules"]
|
self.module_config = config["modules"]
|
||||||
|
|
||||||
@@ -19,12 +20,8 @@ class NBVReconstructionGlobalPointsPipeline(nn.Module):
|
|||||||
self.pose_encoder = ComponentFactory.create(
|
self.pose_encoder = ComponentFactory.create(
|
||||||
namespace.Stereotype.MODULE, self.module_config["pose_encoder"]
|
namespace.Stereotype.MODULE, self.module_config["pose_encoder"]
|
||||||
)
|
)
|
||||||
self.pts_num_encoder = ComponentFactory.create(
|
self.seq_encoder = ComponentFactory.create(
|
||||||
namespace.Stereotype.MODULE, self.module_config["pts_num_encoder"]
|
namespace.Stereotype.MODULE, self.module_config["seq_encoder"]
|
||||||
)
|
|
||||||
|
|
||||||
self.transformer_seq_encoder = ComponentFactory.create(
|
|
||||||
namespace.Stereotype.MODULE, self.module_config["transformer_seq_encoder"]
|
|
||||||
)
|
)
|
||||||
self.view_finder = ComponentFactory.create(
|
self.view_finder = ComponentFactory.create(
|
||||||
namespace.Stereotype.MODULE, self.module_config["view_finder"]
|
namespace.Stereotype.MODULE, self.module_config["view_finder"]
|
||||||
@@ -58,7 +55,10 @@ class NBVReconstructionGlobalPointsPipeline(nn.Module):
|
|||||||
return perturbed_x, random_t, target_score, std
|
return perturbed_x, random_t, target_score, std
|
||||||
|
|
||||||
def forward_train(self, data):
|
def forward_train(self, data):
|
||||||
|
start_time = time.time()
|
||||||
main_feat = self.get_main_feat(data)
|
main_feat = self.get_main_feat(data)
|
||||||
|
end_time = time.time()
|
||||||
|
print("get_main_feat time: ", end_time - start_time)
|
||||||
""" get std """
|
""" get std """
|
||||||
best_to_world_pose_9d_batch = data["best_to_world_pose_9d"]
|
best_to_world_pose_9d_batch = data["best_to_world_pose_9d"]
|
||||||
perturbed_x, random_t, target_score, std = self.pertube_data(
|
perturbed_x, random_t, target_score, std = self.pertube_data(
|
||||||
@@ -92,47 +92,27 @@ class NBVReconstructionGlobalPointsPipeline(nn.Module):
|
|||||||
scanned_n_to_world_pose_9d_batch = data[
|
scanned_n_to_world_pose_9d_batch = data[
|
||||||
"scanned_n_to_world_pose_9d"
|
"scanned_n_to_world_pose_9d"
|
||||||
] # List(B): Tensor(S x 9)
|
] # List(B): Tensor(S x 9)
|
||||||
scanned_pts_mask_batch = data[
|
scanned_pts_batch = data[
|
||||||
"scanned_pts_mask"
|
"scanned_pts"
|
||||||
] # Tensor(B x N)
|
]
|
||||||
|
|
||||||
device = next(self.parameters()).device
|
device = next(self.parameters()).device
|
||||||
|
|
||||||
embedding_list_batch = []
|
embedding_list_batch = []
|
||||||
|
|
||||||
combined_scanned_pts_batch = data["combined_scanned_pts"] # Tensor(B x N x 3)
|
combined_scanned_pts_batch = data["combined_scanned_pts"] # Tensor(B x N x 3)
|
||||||
global_scanned_feat, perpoint_scanned_feat_batch = self.pts_encoder.encode_points(
|
global_scanned_feat = self.pts_encoder.encode_points(
|
||||||
combined_scanned_pts_batch, require_per_point_feat=True
|
combined_scanned_pts_batch, require_per_point_feat=False
|
||||||
) # global_scanned_feat: Tensor(B x Dg), perpoint_scanned_feat: Tensor(B x N x Dl)
|
) # global_scanned_feat: Tensor(B x Dg)
|
||||||
|
|
||||||
for scanned_n_to_world_pose_9d, scanned_mask, perpoint_scanned_feat in zip(
|
for scanned_n_to_world_pose_9d, scanned_pts in zip(scanned_n_to_world_pose_9d_batch, scanned_pts_batch):
|
||||||
scanned_n_to_world_pose_9d_batch,
|
|
||||||
scanned_pts_mask_batch,
|
|
||||||
perpoint_scanned_feat_batch,
|
|
||||||
):
|
|
||||||
scanned_target_pts_num = [] # List(S): Int
|
|
||||||
partial_feat_seq = []
|
|
||||||
|
|
||||||
seq_len = len(scanned_n_to_world_pose_9d)
|
|
||||||
for seq_idx in range(seq_len):
|
|
||||||
partial_idx_in_combined_pts = scanned_mask == seq_idx # Ndarray(V), N->V idx mask
|
|
||||||
partial_perpoint_feat = perpoint_scanned_feat[partial_idx_in_combined_pts] # Ndarray(V x Dl)
|
|
||||||
partial_feat = torch.mean(partial_perpoint_feat, dim=0)[0] # Tensor(Dl)
|
|
||||||
partial_feat_seq.append(partial_feat)
|
|
||||||
scanned_target_pts_num.append(partial_perpoint_feat.shape[0])
|
|
||||||
|
|
||||||
scanned_target_pts_num = torch.tensor(scanned_target_pts_num, dtype=torch.int32).to(device) # Tensor(S)
|
|
||||||
scanned_n_to_world_pose_9d = scanned_n_to_world_pose_9d.to(device) # Tensor(S x 9)
|
scanned_n_to_world_pose_9d = scanned_n_to_world_pose_9d.to(device) # Tensor(S x 9)
|
||||||
|
scanned_pts = scanned_pts.to(device) # Tensor(S x N x 3)
|
||||||
pose_feat_seq = self.pose_encoder.encode_pose(scanned_n_to_world_pose_9d) # Tensor(S x Dp)
|
pose_feat_seq = self.pose_encoder.encode_pose(scanned_n_to_world_pose_9d) # Tensor(S x Dp)
|
||||||
pts_num_feat_seq = self.pts_num_encoder.encode_pts_num(scanned_target_pts_num) # Tensor(S x Dn)
|
pts_feat_seq = self.pts_encoder.encode_points(scanned_pts, require_per_point_feat=False) # Tensor(S x Dl)
|
||||||
partial_feat_seq = torch.stack(partial_feat_seq) # Tensor(S x Dl)
|
seq_embedding = torch.cat([pose_feat_seq, pts_feat_seq], dim=-1) # Tensor(S x (Dp+Dl))
|
||||||
|
embedding_list_batch.append(seq_embedding) # List(B): Tensor(S x (Dp+Dl))
|
||||||
seq_embedding = torch.cat([pose_feat_seq, pts_num_feat_seq, partial_feat_seq], dim=-1) # Tensor(S x (Dp+Dn+Dl))
|
|
||||||
embedding_list_batch.append(seq_embedding) # List(B): Tensor(S x (Dp+Dn+Dl))
|
seq_feat = self.seq_encoder.encode_sequence(embedding_list_batch) # Tensor(B x Ds)
|
||||||
|
|
||||||
seq_feat = self.transformer_seq_encoder.encode_sequence(embedding_list_batch) # Tensor(B x Ds)
|
|
||||||
|
|
||||||
main_feat = torch.cat([seq_feat, global_scanned_feat], dim=-1) # Tensor(B x (Ds+Dg))
|
main_feat = torch.cat([seq_feat, global_scanned_feat], dim=-1) # Tensor(B x (Ds+Dg))
|
||||||
|
|
||||||
if torch.isnan(main_feat).any():
|
if torch.isnan(main_feat).any():
|
43
preprocess/clean_preprocessed_data.py
Normal file
43
preprocess/clean_preprocessed_data.py
Normal file
@@ -0,0 +1,43 @@
|
|||||||
|
import os
|
||||||
|
import shutil
|
||||||
|
|
||||||
|
def clean_scene_data(root, scene):
|
||||||
|
# 清理目标点云数据
|
||||||
|
pts_dir = os.path.join(root, scene, "pts")
|
||||||
|
if os.path.exists(pts_dir):
|
||||||
|
shutil.rmtree(pts_dir)
|
||||||
|
print(f"已删除 {pts_dir}")
|
||||||
|
|
||||||
|
# 清理法线数据
|
||||||
|
nrm_dir = os.path.join(root, scene, "nrm")
|
||||||
|
if os.path.exists(nrm_dir):
|
||||||
|
shutil.rmtree(nrm_dir)
|
||||||
|
print(f"已删除 {nrm_dir}")
|
||||||
|
|
||||||
|
# 清理扫描点索引数据
|
||||||
|
scan_points_indices_dir = os.path.join(root, scene, "scan_points_indices")
|
||||||
|
if os.path.exists(scan_points_indices_dir):
|
||||||
|
shutil.rmtree(scan_points_indices_dir)
|
||||||
|
print(f"已删除 {scan_points_indices_dir}")
|
||||||
|
|
||||||
|
# 删除扫描点数据文件
|
||||||
|
scan_points_file = os.path.join(root, scene, "scan_points.txt")
|
||||||
|
if os.path.exists(scan_points_file):
|
||||||
|
os.remove(scan_points_file)
|
||||||
|
print(f"已删除 {scan_points_file}")
|
||||||
|
|
||||||
|
def clean_all_scenes(root, scene_list):
|
||||||
|
for idx, scene in enumerate(scene_list):
|
||||||
|
print(f"正在清理场景 {scene} ({idx+1}/{len(scene_list)})")
|
||||||
|
clean_scene_data(root, scene)
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
root = r"c:\Document\Local Project\nbv_rec\nbv_reconstruction\temp"
|
||||||
|
scene_list = os.listdir(root)
|
||||||
|
from_idx = 0
|
||||||
|
to_idx = len(scene_list)
|
||||||
|
print(f"正在清理场景 {scene_list[from_idx:to_idx]}")
|
||||||
|
|
||||||
|
clean_all_scenes(root, scene_list[from_idx:to_idx])
|
||||||
|
print("清理完成")
|
||||||
|
|
48
preprocess/pack_preprocessed_data.py
Normal file
48
preprocess/pack_preprocessed_data.py
Normal file
@@ -0,0 +1,48 @@
|
|||||||
|
import os
|
||||||
|
import shutil
|
||||||
|
|
||||||
|
def pack_scene_data(root, scene, output_dir):
|
||||||
|
scene_dir = os.path.join(output_dir, scene)
|
||||||
|
if not os.path.exists(scene_dir):
|
||||||
|
os.makedirs(scene_dir)
|
||||||
|
|
||||||
|
pts_dir = os.path.join(root, scene, "pts")
|
||||||
|
if os.path.exists(pts_dir):
|
||||||
|
shutil.move(pts_dir, os.path.join(scene_dir, "pts"))
|
||||||
|
|
||||||
|
scan_points_indices_dir = os.path.join(root, scene, "scan_points_indices")
|
||||||
|
if os.path.exists(scan_points_indices_dir):
|
||||||
|
shutil.move(scan_points_indices_dir, os.path.join(scene_dir, "scan_points_indices"))
|
||||||
|
|
||||||
|
scan_points_file = os.path.join(root, scene, "scan_points.txt")
|
||||||
|
if os.path.exists(scan_points_file):
|
||||||
|
shutil.move(scan_points_file, os.path.join(scene_dir, "scan_points.txt"))
|
||||||
|
|
||||||
|
model_pts_nrm_file = os.path.join(root, scene, "points_and_normals.txt")
|
||||||
|
if os.path.exists(model_pts_nrm_file):
|
||||||
|
shutil.move(model_pts_nrm_file, os.path.join(scene_dir, "points_and_normals.txt"))
|
||||||
|
|
||||||
|
camera_dir = os.path.join(root, scene, "camera_params")
|
||||||
|
if os.path.exists(camera_dir):
|
||||||
|
shutil.move(camera_dir, os.path.join(scene_dir, "camera_params"))
|
||||||
|
|
||||||
|
scene_info_file = os.path.join(root, scene, "scene_info.json")
|
||||||
|
if os.path.exists(scene_info_file):
|
||||||
|
shutil.move(scene_info_file, os.path.join(scene_dir, "scene_info.json"))
|
||||||
|
|
||||||
|
def pack_all_scenes(root, scene_list, output_dir):
|
||||||
|
for idx, scene in enumerate(scene_list):
|
||||||
|
print(f"正在打包场景 {scene} ({idx+1}/{len(scene_list)})")
|
||||||
|
pack_scene_data(root, scene, output_dir)
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
root = r"H:\AI\Datasets\nbv_rec_part2"
|
||||||
|
output_dir = r"H:\AI\Datasets\scene_info_part2"
|
||||||
|
scene_list = os.listdir(root)
|
||||||
|
from_idx = 0
|
||||||
|
to_idx = len(scene_list)
|
||||||
|
print(f"正在打包场景 {scene_list[from_idx:to_idx]}")
|
||||||
|
|
||||||
|
pack_all_scenes(root, scene_list[from_idx:to_idx], output_dir)
|
||||||
|
print("打包完成")
|
||||||
|
|
41
preprocess/pack_upload_data.py
Normal file
41
preprocess/pack_upload_data.py
Normal file
@@ -0,0 +1,41 @@
|
|||||||
|
import os
|
||||||
|
import shutil
|
||||||
|
|
||||||
|
def pack_scene_data(root, scene, output_dir):
|
||||||
|
scene_dir = os.path.join(output_dir, scene)
|
||||||
|
if not os.path.exists(scene_dir):
|
||||||
|
os.makedirs(scene_dir)
|
||||||
|
|
||||||
|
pts_dir = os.path.join(root, scene, "pts")
|
||||||
|
if os.path.exists(pts_dir):
|
||||||
|
shutil.move(pts_dir, os.path.join(scene_dir, "pts"))
|
||||||
|
|
||||||
|
camera_dir = os.path.join(root, scene, "camera_params")
|
||||||
|
if os.path.exists(camera_dir):
|
||||||
|
shutil.move(camera_dir, os.path.join(scene_dir, "camera_params"))
|
||||||
|
|
||||||
|
scene_info_file = os.path.join(root, scene, "scene_info.json")
|
||||||
|
if os.path.exists(scene_info_file):
|
||||||
|
shutil.move(scene_info_file, os.path.join(scene_dir, "scene_info.json"))
|
||||||
|
|
||||||
|
label_dir = os.path.join(root, scene, "label")
|
||||||
|
if os.path.exists(label_dir):
|
||||||
|
shutil.move(label_dir, os.path.join(scene_dir, "label"))
|
||||||
|
|
||||||
|
|
||||||
|
def pack_all_scenes(root, scene_list, output_dir):
|
||||||
|
for idx, scene in enumerate(scene_list):
|
||||||
|
print(f"packing {scene} ({idx+1}/{len(scene_list)})")
|
||||||
|
pack_scene_data(root, scene, output_dir)
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
root = r"H:\AI\Datasets\nbv_rec_part2"
|
||||||
|
output_dir = r"H:\AI\Datasets\upload_part2"
|
||||||
|
scene_list = os.listdir(root)
|
||||||
|
from_idx = 0
|
||||||
|
to_idx = len(scene_list)
|
||||||
|
print(f"packing {scene_list[from_idx:to_idx]}")
|
||||||
|
|
||||||
|
pack_all_scenes(root, scene_list[from_idx:to_idx], output_dir)
|
||||||
|
print("packing done")
|
||||||
|
|
@@ -9,8 +9,6 @@ from utils.reconstruction import ReconstructionUtil
|
|||||||
from utils.data_load import DataLoadUtil
|
from utils.data_load import DataLoadUtil
|
||||||
from utils.pts import PtsUtil
|
from utils.pts import PtsUtil
|
||||||
|
|
||||||
# scan shoe 536
|
|
||||||
|
|
||||||
def save_np_pts(path, pts: np.ndarray, file_type="txt"):
|
def save_np_pts(path, pts: np.ndarray, file_type="txt"):
|
||||||
if file_type == "txt":
|
if file_type == "txt":
|
||||||
np.savetxt(path, pts)
|
np.savetxt(path, pts)
|
||||||
@@ -23,6 +21,12 @@ def save_target_points(root, scene, frame_idx, target_points: np.ndarray, file_t
|
|||||||
if not os.path.exists(os.path.join(root,scene, "pts")):
|
if not os.path.exists(os.path.join(root,scene, "pts")):
|
||||||
os.makedirs(os.path.join(root,scene, "pts"))
|
os.makedirs(os.path.join(root,scene, "pts"))
|
||||||
save_np_pts(pts_path, target_points, file_type)
|
save_np_pts(pts_path, target_points, file_type)
|
||||||
|
|
||||||
|
def save_target_normals(root, scene, frame_idx, target_normals: np.ndarray, file_type="txt"):
|
||||||
|
pts_path = os.path.join(root,scene, "nrm", f"{frame_idx}.{file_type}")
|
||||||
|
if not os.path.exists(os.path.join(root,scene, "nrm")):
|
||||||
|
os.makedirs(os.path.join(root,scene, "nrm"))
|
||||||
|
save_np_pts(pts_path, target_normals, file_type)
|
||||||
|
|
||||||
def save_scan_points_indices(root, scene, frame_idx, scan_points_indices: np.ndarray, file_type="txt"):
|
def save_scan_points_indices(root, scene, frame_idx, scan_points_indices: np.ndarray, file_type="txt"):
|
||||||
indices_path = os.path.join(root,scene, "scan_points_indices", f"{frame_idx}.{file_type}")
|
indices_path = os.path.join(root,scene, "scan_points_indices", f"{frame_idx}.{file_type}")
|
||||||
@@ -87,8 +91,8 @@ def get_scan_points_indices(scan_points, mask, display_table_mask_label, cam_int
|
|||||||
def save_scene_data(root, scene, scene_idx=0, scene_total=1,file_type="txt"):
|
def save_scene_data(root, scene, scene_idx=0, scene_total=1,file_type="txt"):
|
||||||
|
|
||||||
''' configuration '''
|
''' configuration '''
|
||||||
target_mask_label = (0, 255, 0, 255)
|
target_mask_label = (0, 255, 0)
|
||||||
display_table_mask_label=(0, 0, 255, 255)
|
display_table_mask_label=(0, 0, 255)
|
||||||
random_downsample_N = 32768
|
random_downsample_N = 32768
|
||||||
voxel_size=0.003
|
voxel_size=0.003
|
||||||
filter_degree = 75
|
filter_degree = 75
|
||||||
@@ -137,7 +141,7 @@ def save_scene_data(root, scene, scene_idx=0, scene_total=1,file_type="txt"):
|
|||||||
has_points = target_points.shape[0] > 0
|
has_points = target_points.shape[0] > 0
|
||||||
|
|
||||||
if has_points:
|
if has_points:
|
||||||
target_points = PtsUtil.filter_points(
|
target_points, target_normals = PtsUtil.filter_points(
|
||||||
target_points, sampled_target_normal_L, cam_info["cam_to_world"], theta_limit = filter_degree, z_range=(min_z, max_z)
|
target_points, sampled_target_normal_L, cam_info["cam_to_world"], theta_limit = filter_degree, z_range=(min_z, max_z)
|
||||||
)
|
)
|
||||||
|
|
||||||
@@ -149,8 +153,10 @@ def save_scene_data(root, scene, scene_idx=0, scene_total=1,file_type="txt"):
|
|||||||
|
|
||||||
if not has_points:
|
if not has_points:
|
||||||
target_points = np.zeros((0, 3))
|
target_points = np.zeros((0, 3))
|
||||||
|
target_normals = np.zeros((0, 3))
|
||||||
|
|
||||||
save_target_points(root, scene, frame_id, target_points, file_type=file_type)
|
save_target_points(root, scene, frame_id, target_points, file_type=file_type)
|
||||||
|
save_target_normals(root, scene, frame_id, target_normals, file_type=file_type)
|
||||||
save_scan_points_indices(root, scene, frame_id, scan_points_indices, file_type=file_type)
|
save_scan_points_indices(root, scene, frame_id, scan_points_indices, file_type=file_type)
|
||||||
|
|
||||||
save_scan_points(root, scene, scan_points) # The "done" flag of scene preprocess
|
save_scan_points(root, scene, scan_points) # The "done" flag of scene preprocess
|
||||||
@@ -158,17 +164,10 @@ def save_scene_data(root, scene, scene_idx=0, scene_total=1,file_type="txt"):
|
|||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
#root = "/media/hofee/repository/new_data_with_normal"
|
#root = "/media/hofee/repository/new_data_with_normal"
|
||||||
root = r"C:\\Document\\Local Project\\nbv_rec\\nbv_reconstruction\\temp"
|
root = r"H:\AI\Datasets\nbv_rec_part2"
|
||||||
# list_path = r"/media/hofee/repository/full_list.txt"
|
|
||||||
# scene_list = []
|
|
||||||
|
|
||||||
# with open(list_path, "r") as f:
|
|
||||||
# for line in f:
|
|
||||||
# scene_list.append(line.strip())
|
|
||||||
scene_list = os.listdir(root)
|
scene_list = os.listdir(root)
|
||||||
from_idx = 0 # 1000
|
from_idx = 0 # 1000
|
||||||
to_idx = 1 # 1500
|
to_idx = 600 # 1500
|
||||||
print(scene_list)
|
|
||||||
|
|
||||||
|
|
||||||
cnt = 0
|
cnt = 0
|
||||||
@@ -176,6 +175,10 @@ if __name__ == "__main__":
|
|||||||
total = to_idx - from_idx
|
total = to_idx - from_idx
|
||||||
for scene in scene_list[from_idx:to_idx]:
|
for scene in scene_list[from_idx:to_idx]:
|
||||||
start = time.time()
|
start = time.time()
|
||||||
|
if os.path.exists(os.path.join(root, scene, "scan_points.txt")):
|
||||||
|
print(f"Scene {scene} has been processed")
|
||||||
|
cnt+=1
|
||||||
|
continue
|
||||||
save_scene_data(root, scene, cnt, total, file_type="npy")
|
save_scene_data(root, scene, cnt, total, file_type="npy")
|
||||||
cnt+=1
|
cnt+=1
|
||||||
end = time.time()
|
end = time.time()
|
||||||
|
109
runners/inferece_server.py
Normal file
109
runners/inferece_server.py
Normal file
@@ -0,0 +1,109 @@
|
|||||||
|
import os
|
||||||
|
import json
|
||||||
|
import torch
|
||||||
|
import numpy as np
|
||||||
|
from flask import Flask, request, jsonify
|
||||||
|
|
||||||
|
import PytorchBoot.namespace as namespace
|
||||||
|
import PytorchBoot.stereotype as stereotype
|
||||||
|
from PytorchBoot.factory import ComponentFactory
|
||||||
|
|
||||||
|
from PytorchBoot.runners.runner import Runner
|
||||||
|
from PytorchBoot.utils import Log
|
||||||
|
|
||||||
|
from utils.pts import PtsUtil
|
||||||
|
|
||||||
|
@stereotype.runner("inferencer")
|
||||||
|
class InferencerServer(Runner):
|
||||||
|
def __init__(self, config_path):
|
||||||
|
super().__init__(config_path)
|
||||||
|
|
||||||
|
''' Web Server '''
|
||||||
|
self.app = Flask(__name__)
|
||||||
|
''' Pipeline '''
|
||||||
|
self.pipeline_name = self.config[namespace.Stereotype.PIPELINE]
|
||||||
|
self.pipeline:torch.nn.Module = ComponentFactory.create(namespace.Stereotype.PIPELINE, self.pipeline_name)
|
||||||
|
self.pipeline = self.pipeline.to(self.device)
|
||||||
|
|
||||||
|
''' Experiment '''
|
||||||
|
self.load_experiment("nbv_evaluator")
|
||||||
|
|
||||||
|
def get_input_data(self, data):
|
||||||
|
input_data = {}
|
||||||
|
scanned_pts = data["scanned_pts"]
|
||||||
|
scanned_n_to_world_pose_9d = data["scanned_n_to_world_pose_9d"]
|
||||||
|
combined_scanned_views_pts = np.concatenate(scanned_pts, axis=0)
|
||||||
|
fps_downsampled_combined_scanned_pts, fps_idx = PtsUtil.fps_downsample_point_cloud(
|
||||||
|
combined_scanned_views_pts, self.pts_num, require_idx=True
|
||||||
|
)
|
||||||
|
combined_scanned_views_pts_mask = np.zeros(len(scanned_pts), dtype=np.uint8)
|
||||||
|
start_idx = 0
|
||||||
|
for i in range(len(scanned_pts)):
|
||||||
|
end_idx = start_idx + len(scanned_pts[i])
|
||||||
|
combined_scanned_views_pts_mask[start_idx:end_idx] = i
|
||||||
|
start_idx = end_idx
|
||||||
|
|
||||||
|
fps_downsampled_combined_scanned_pts_mask = combined_scanned_views_pts_mask[fps_idx]
|
||||||
|
|
||||||
|
input_data["scanned_pts_mask"] = np.asarray(fps_downsampled_combined_scanned_pts_mask, dtype=np.uint8)
|
||||||
|
input_data["scanned_n_to_world_pose_9d"] = np.asarray(scanned_n_to_world_pose_9d, dtype=np.float32)
|
||||||
|
input_data["combined_scanned_pts"] = np.asarray(fps_downsampled_combined_scanned_pts, dtype=np.float32)
|
||||||
|
return input_data
|
||||||
|
|
||||||
|
def get_result(self, output_data):
|
||||||
|
|
||||||
|
estimated_delta_rot_9d = output_data["pred_pose_9d"]
|
||||||
|
result = {
|
||||||
|
"estimated_delta_rot_9d": estimated_delta_rot_9d.tolist()
|
||||||
|
}
|
||||||
|
return result
|
||||||
|
|
||||||
|
def run(self):
|
||||||
|
Log.info("Loading from epoch {}.".format(self.current_epoch))
|
||||||
|
|
||||||
|
@self.app.route("/inference", methods=["POST"])
|
||||||
|
def inference():
|
||||||
|
data = request.json
|
||||||
|
input_data = self.get_input_data(data)
|
||||||
|
output_data = self.pipeline.forward_test(input_data)
|
||||||
|
result = self.get_result(output_data)
|
||||||
|
return jsonify(result)
|
||||||
|
|
||||||
|
|
||||||
|
self.app.run(host="0.0.0.0", port=5000)
|
||||||
|
|
||||||
|
def get_checkpoint_path(self, is_last=False):
|
||||||
|
return os.path.join(self.experiment_path, namespace.Direcotry.CHECKPOINT_DIR_NAME,
|
||||||
|
"Epoch_{}.pth".format(
|
||||||
|
self.current_epoch if self.current_epoch != -1 and not is_last else "last"))
|
||||||
|
|
||||||
|
def load_checkpoint(self, is_last=False):
|
||||||
|
self.load(self.get_checkpoint_path(is_last))
|
||||||
|
Log.success(f"Loaded checkpoint from {self.get_checkpoint_path(is_last)}")
|
||||||
|
if is_last:
|
||||||
|
checkpoint_root = os.path.join(self.experiment_path, namespace.Direcotry.CHECKPOINT_DIR_NAME)
|
||||||
|
meta_path = os.path.join(checkpoint_root, "meta.json")
|
||||||
|
if not os.path.exists(meta_path):
|
||||||
|
raise FileNotFoundError(
|
||||||
|
"No checkpoint meta.json file in the experiment {}".format(self.experiments_config["name"]))
|
||||||
|
file_path = os.path.join(checkpoint_root, "meta.json")
|
||||||
|
with open(file_path, "r") as f:
|
||||||
|
meta = json.load(f)
|
||||||
|
self.current_epoch = meta["last_epoch"]
|
||||||
|
self.current_iter = meta["last_iter"]
|
||||||
|
|
||||||
|
def load_experiment(self, backup_name=None):
|
||||||
|
super().load_experiment(backup_name)
|
||||||
|
self.current_epoch = self.experiments_config["epoch"]
|
||||||
|
self.load_checkpoint(is_last=(self.current_epoch == -1))
|
||||||
|
|
||||||
|
def create_experiment(self, backup_name=None):
|
||||||
|
super().create_experiment(backup_name)
|
||||||
|
|
||||||
|
|
||||||
|
def load(self, path):
|
||||||
|
state_dict = torch.load(path)
|
||||||
|
self.pipeline.load_state_dict(state_dict)
|
||||||
|
|
||||||
|
|
||||||
|
|
@@ -22,20 +22,17 @@ class StrategyGenerator(Runner):
|
|||||||
"app_name": "generate_strategy",
|
"app_name": "generate_strategy",
|
||||||
"runner_name": "strategy_generator"
|
"runner_name": "strategy_generator"
|
||||||
}
|
}
|
||||||
self.to_specified_dir = ConfigManager.get("runner", "generate", "to_specified_dir")
|
|
||||||
self.save_best_combined_pts = ConfigManager.get("runner", "generate", "save_best_combined_points")
|
|
||||||
self.save_mesh = ConfigManager.get("runner", "generate", "save_mesh")
|
|
||||||
self.load_pts = ConfigManager.get("runner", "generate", "load_points")
|
|
||||||
self.filter_degree = ConfigManager.get("runner", "generate", "filter_degree")
|
|
||||||
self.overwrite = ConfigManager.get("runner", "generate", "overwrite")
|
self.overwrite = ConfigManager.get("runner", "generate", "overwrite")
|
||||||
self.save_pts = ConfigManager.get("runner","generate","save_points")
|
|
||||||
self.seq_num = ConfigManager.get("runner","generate","seq_num")
|
self.seq_num = ConfigManager.get("runner","generate","seq_num")
|
||||||
|
self.overlap_area_threshold = ConfigManager.get("runner","generate","overlap_area_threshold")
|
||||||
|
self.compute_with_normal = ConfigManager.get("runner","generate","compute_with_normal")
|
||||||
|
self.scan_points_threshold = ConfigManager.get("runner","generate","scan_points_threshold")
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def run(self):
|
def run(self):
|
||||||
dataset_name_list = ConfigManager.get("runner", "generate", "dataset_list")
|
dataset_name_list = ConfigManager.get("runner", "generate", "dataset_list")
|
||||||
voxel_threshold, soft_overlap_threshold, hard_overlap_threshold = ConfigManager.get("runner","generate","voxel_threshold"), ConfigManager.get("runner","generate","soft_overlap_threshold"), ConfigManager.get("runner","generate","hard_overlap_threshold")
|
voxel_threshold = ConfigManager.get("runner","generate","voxel_threshold")
|
||||||
for dataset_idx in range(len(dataset_name_list)):
|
for dataset_idx in range(len(dataset_name_list)):
|
||||||
dataset_name = dataset_name_list[dataset_idx]
|
dataset_name = dataset_name_list[dataset_idx]
|
||||||
status_manager.set_progress("generate_strategy", "strategy_generator", "dataset", dataset_idx, len(dataset_name_list))
|
status_manager.set_progress("generate_strategy", "strategy_generator", "dataset", dataset_idx, len(dataset_name_list))
|
||||||
@@ -57,7 +54,7 @@ class StrategyGenerator(Runner):
|
|||||||
cnt += 1
|
cnt += 1
|
||||||
continue
|
continue
|
||||||
|
|
||||||
self.generate_sequence(root_dir, scene_name,voxel_threshold, soft_overlap_threshold, hard_overlap_threshold)
|
self.generate_sequence(root_dir, scene_name,voxel_threshold)
|
||||||
cnt += 1
|
cnt += 1
|
||||||
status_manager.set_progress("generate_strategy", "strategy_generator", "scene", total, total)
|
status_manager.set_progress("generate_strategy", "strategy_generator", "scene", total, total)
|
||||||
status_manager.set_progress("generate_strategy", "strategy_generator", "dataset", len(dataset_name_list), len(dataset_name_list))
|
status_manager.set_progress("generate_strategy", "strategy_generator", "dataset", len(dataset_name_list), len(dataset_name_list))
|
||||||
@@ -70,28 +67,36 @@ class StrategyGenerator(Runner):
|
|||||||
def load_experiment(self, backup_name=None):
|
def load_experiment(self, backup_name=None):
|
||||||
super().load_experiment(backup_name)
|
super().load_experiment(backup_name)
|
||||||
|
|
||||||
def generate_sequence(self, root, scene_name, voxel_threshold, soft_overlap_threshold, hard_overlap_threshold):
|
def generate_sequence(self, root, scene_name, voxel_threshold):
|
||||||
status_manager.set_status("generate_strategy", "strategy_generator", "scene", scene_name)
|
status_manager.set_status("generate_strategy", "strategy_generator", "scene", scene_name)
|
||||||
frame_num = DataLoadUtil.get_scene_seq_length(root, scene_name)
|
frame_num = DataLoadUtil.get_scene_seq_length(root, scene_name)
|
||||||
|
|
||||||
model_points_normals = DataLoadUtil.load_points_normals(root, scene_name)
|
model_points_normals = DataLoadUtil.load_points_normals(root, scene_name)
|
||||||
model_pts = model_points_normals[:,:3]
|
model_pts = model_points_normals[:,:3]
|
||||||
down_sampled_model_pts = PtsUtil.voxel_downsample_point_cloud(model_pts, voxel_threshold)
|
down_sampled_model_pts, idx = PtsUtil.voxel_downsample_point_cloud(model_pts, voxel_threshold, require_idx=True)
|
||||||
|
down_sampled_model_nrm = model_points_normals[idx, 3:]
|
||||||
pts_list = []
|
pts_list = []
|
||||||
|
nrm_list = []
|
||||||
scan_points_indices_list = []
|
scan_points_indices_list = []
|
||||||
non_zero_cnt = 0
|
non_zero_cnt = 0
|
||||||
|
|
||||||
for frame_idx in range(frame_num):
|
for frame_idx in range(frame_num):
|
||||||
status_manager.set_progress("generate_strategy", "strategy_generator", "loading frame", frame_idx, frame_num)
|
status_manager.set_progress("generate_strategy", "strategy_generator", "loading frame", frame_idx, frame_num)
|
||||||
pts_path = os.path.join(root,scene_name, "pts", f"{frame_idx}.npy")
|
pts_path = os.path.join(root,scene_name, "pts", f"{frame_idx}.npy")
|
||||||
|
nrm_path = os.path.join(root,scene_name, "nrm", f"{frame_idx}.npy")
|
||||||
idx_path = os.path.join(root,scene_name, "scan_points_indices", f"{frame_idx}.npy")
|
idx_path = os.path.join(root,scene_name, "scan_points_indices", f"{frame_idx}.npy")
|
||||||
point_cloud = np.load(pts_path)
|
|
||||||
sampled_point_cloud = PtsUtil.voxel_downsample_point_cloud(point_cloud, voxel_threshold)
|
|
||||||
indices = np.load(idx_path)
|
|
||||||
pts_list.append(sampled_point_cloud)
|
|
||||||
|
|
||||||
|
pts = np.load(pts_path)
|
||||||
|
if self.compute_with_normal:
|
||||||
|
if pts.shape[0] == 0:
|
||||||
|
nrm = np.zeros((0,3))
|
||||||
|
else:
|
||||||
|
nrm = np.load(nrm_path)
|
||||||
|
nrm_list.append(nrm)
|
||||||
|
pts_list.append(pts)
|
||||||
|
indices = np.load(idx_path)
|
||||||
scan_points_indices_list.append(indices)
|
scan_points_indices_list.append(indices)
|
||||||
if sampled_point_cloud.shape[0] > 0:
|
if pts.shape[0] > 0:
|
||||||
non_zero_cnt += 1
|
non_zero_cnt += 1
|
||||||
status_manager.set_progress("generate_strategy", "strategy_generator", "loading frame", frame_num, frame_num)
|
status_manager.set_progress("generate_strategy", "strategy_generator", "loading frame", frame_num, frame_num)
|
||||||
|
|
||||||
@@ -99,7 +104,7 @@ class StrategyGenerator(Runner):
|
|||||||
init_view_list = []
|
init_view_list = []
|
||||||
idx = 0
|
idx = 0
|
||||||
while len(init_view_list) < seq_num and idx < len(pts_list):
|
while len(init_view_list) < seq_num and idx < len(pts_list):
|
||||||
if pts_list[idx].shape[0] > 100:
|
if pts_list[idx].shape[0] > 50:
|
||||||
init_view_list.append(idx)
|
init_view_list.append(idx)
|
||||||
idx += 1
|
idx += 1
|
||||||
|
|
||||||
@@ -108,8 +113,13 @@ class StrategyGenerator(Runner):
|
|||||||
for init_view in init_view_list:
|
for init_view in init_view_list:
|
||||||
status_manager.set_progress("generate_strategy", "strategy_generator", "computing sequence", seq_idx, len(init_view_list))
|
status_manager.set_progress("generate_strategy", "strategy_generator", "computing sequence", seq_idx, len(init_view_list))
|
||||||
start = time.time()
|
start = time.time()
|
||||||
limited_useful_view, _, _ = ReconstructionUtil.compute_next_best_view_sequence_with_overlap(down_sampled_model_pts, pts_list, scan_points_indices_list = scan_points_indices_list,init_view=init_view,
|
|
||||||
threshold=voxel_threshold, soft_overlap_threshold=soft_overlap_threshold, hard_overlap_threshold= hard_overlap_threshold, scan_points_threshold=10, status_info=self.status_info)
|
if not self.compute_with_normal:
|
||||||
|
limited_useful_view, _, _ = ReconstructionUtil.compute_next_best_view_sequence(down_sampled_model_pts, pts_list, scan_points_indices_list = scan_points_indices_list,init_view=init_view,
|
||||||
|
threshold=voxel_threshold, scan_points_threshold=self.scan_points_threshold, overlap_area_threshold=self.overlap_area_threshold, status_info=self.status_info)
|
||||||
|
else:
|
||||||
|
limited_useful_view, _, _ = ReconstructionUtil.compute_next_best_view_sequence_with_normal(down_sampled_model_pts, down_sampled_model_nrm, pts_list, nrm_list, scan_points_indices_list = scan_points_indices_list,init_view=init_view,
|
||||||
|
threshold=voxel_threshold, scan_points_threshold=self.scan_points_threshold, overlap_area_threshold=self.overlap_area_threshold, status_info=self.status_info)
|
||||||
end = time.time()
|
end = time.time()
|
||||||
print(f"Time: {end-start}")
|
print(f"Time: {end-start}")
|
||||||
data_pairs = self.generate_data_pairs(limited_useful_view)
|
data_pairs = self.generate_data_pairs(limited_useful_view)
|
||||||
|
@@ -9,7 +9,7 @@ class ViewGenerator(Runner):
|
|||||||
self.config_path = config_path
|
self.config_path = config_path
|
||||||
|
|
||||||
def run(self):
|
def run(self):
|
||||||
result = subprocess.run(['blender', '-b', '-P', '../blender/run_blender.py', '--', self.config_path])
|
result = subprocess.run(['/home/hofee/blender-4.0.2-linux-x64/blender', '-b', '-P', '../blender/run_blender.py', '--', self.config_path])
|
||||||
print()
|
print()
|
||||||
|
|
||||||
def create_experiment(self, backup_name=None):
|
def create_experiment(self, backup_name=None):
|
||||||
|
@@ -14,23 +14,16 @@ class DataLoadUtil:
|
|||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def load_exr_image(file_path):
|
def load_exr_image(file_path):
|
||||||
# 打开 EXR 文件
|
|
||||||
exr_file = OpenEXR.InputFile(file_path)
|
exr_file = OpenEXR.InputFile(file_path)
|
||||||
|
|
||||||
# 获取 EXR 文件的头部信息,包括尺寸
|
|
||||||
header = exr_file.header()
|
header = exr_file.header()
|
||||||
dw = header['dataWindow']
|
dw = header['dataWindow']
|
||||||
width = dw.max.x - dw.min.x + 1
|
width = dw.max.x - dw.min.x + 1
|
||||||
height = dw.max.y - dw.min.y + 1
|
height = dw.max.y - dw.min.y + 1
|
||||||
|
|
||||||
# 定义通道,通常法线图像是 RGB
|
|
||||||
float_channels = ['R', 'G', 'B']
|
float_channels = ['R', 'G', 'B']
|
||||||
|
|
||||||
# 读取 EXR 文件中的每个通道并转化为浮点数数组
|
|
||||||
img_data = []
|
img_data = []
|
||||||
for channel in float_channels:
|
for channel in float_channels:
|
||||||
channel_data = exr_file.channel(channel, Imath.PixelType(Imath.PixelType.FLOAT))
|
channel_data = exr_file.channel(channel)
|
||||||
img_data.append(np.frombuffer(channel_data, dtype=np.float32).reshape((height, width)))
|
img_data.append(np.frombuffer(channel_data, dtype=np.float16).reshape((height, width)))
|
||||||
|
|
||||||
# 将各通道组合成一个 (height, width, 3) 的 RGB 图像
|
# 将各通道组合成一个 (height, width, 3) 的 RGB 图像
|
||||||
img = np.stack(img_data, axis=-1)
|
img = np.stack(img_data, axis=-1)
|
||||||
@@ -60,6 +53,8 @@ class DataLoadUtil:
|
|||||||
@staticmethod
|
@staticmethod
|
||||||
def get_label_num(root, scene_name):
|
def get_label_num(root, scene_name):
|
||||||
label_dir = os.path.join(root, scene_name, "label")
|
label_dir = os.path.join(root, scene_name, "label")
|
||||||
|
if not os.path.exists(label_dir):
|
||||||
|
return 0
|
||||||
return len(os.listdir(label_dir))
|
return len(os.listdir(label_dir))
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
@@ -141,8 +136,8 @@ class DataLoadUtil:
|
|||||||
if binocular and not left_only:
|
if binocular and not left_only:
|
||||||
|
|
||||||
def clean_mask(mask_image):
|
def clean_mask(mask_image):
|
||||||
green = [0, 255, 0, 255]
|
green = [0, 255, 0]
|
||||||
red = [255, 0, 0, 255]
|
red = [255, 0, 0]
|
||||||
threshold = 2
|
threshold = 2
|
||||||
mask_image = np.where(
|
mask_image = np.where(
|
||||||
np.abs(mask_image - green) <= threshold, green, mask_image
|
np.abs(mask_image - green) <= threshold, green, mask_image
|
||||||
@@ -217,6 +212,17 @@ class DataLoadUtil:
|
|||||||
else:
|
else:
|
||||||
pts = np.load(npy_path)
|
pts = np.load(npy_path)
|
||||||
return pts
|
return pts
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def load_from_preprocessed_nrm(path, file_type="npy"):
|
||||||
|
npy_path = os.path.join(
|
||||||
|
os.path.dirname(path), "nrm", os.path.basename(path) + "." + file_type
|
||||||
|
)
|
||||||
|
if file_type == "txt":
|
||||||
|
nrm = np.loadtxt(npy_path)
|
||||||
|
else:
|
||||||
|
nrm = np.load(npy_path)
|
||||||
|
return nrm
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def cam_pose_transformation(cam_pose_before):
|
def cam_pose_transformation(cam_pose_before):
|
||||||
|
19
utils/pts.py
19
utils/pts.py
@@ -5,10 +5,17 @@ import torch
|
|||||||
class PtsUtil:
|
class PtsUtil:
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def voxel_downsample_point_cloud(point_cloud, voxel_size=0.005):
|
def voxel_downsample_point_cloud(point_cloud, voxel_size=0.005, require_idx=False):
|
||||||
voxel_indices = np.floor(point_cloud / voxel_size).astype(np.int32)
|
voxel_indices = np.floor(point_cloud / voxel_size).astype(np.int32)
|
||||||
unique_voxels = np.unique(voxel_indices, axis=0, return_inverse=True)
|
if require_idx:
|
||||||
return unique_voxels[0]*voxel_size
|
_, inverse, counts = np.unique(voxel_indices, axis=0, return_inverse=True, return_counts=True)
|
||||||
|
idx_sort = np.argsort(inverse)
|
||||||
|
idx_unique = idx_sort[np.cumsum(counts)-counts]
|
||||||
|
downsampled_points = point_cloud[idx_unique]
|
||||||
|
return downsampled_points, idx_unique
|
||||||
|
else:
|
||||||
|
unique_voxels = np.unique(voxel_indices, axis=0, return_inverse=True)
|
||||||
|
return unique_voxels[0]*voxel_size
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def random_downsample_point_cloud(point_cloud, num_points, require_idx=False):
|
def random_downsample_point_cloud(point_cloud, num_points, require_idx=False):
|
||||||
@@ -84,14 +91,14 @@ class PtsUtil:
|
|||||||
theta = np.arccos(cos_theta) * 180 / np.pi
|
theta = np.arccos(cos_theta) * 180 / np.pi
|
||||||
idx = theta < theta_limit
|
idx = theta < theta_limit
|
||||||
filtered_sampled_points = points[idx]
|
filtered_sampled_points = points[idx]
|
||||||
|
filtered_normals = normals[idx]
|
||||||
|
|
||||||
""" filter with z range """
|
""" filter with z range """
|
||||||
points_cam = PtsUtil.transform_point_cloud(filtered_sampled_points, np.linalg.inv(cam_pose))
|
points_cam = PtsUtil.transform_point_cloud(filtered_sampled_points, np.linalg.inv(cam_pose))
|
||||||
idx = (points_cam[:, 2] > z_range[0]) & (points_cam[:, 2] < z_range[1])
|
idx = (points_cam[:, 2] > z_range[0]) & (points_cam[:, 2] < z_range[1])
|
||||||
z_filtered_points = filtered_sampled_points[idx]
|
z_filtered_points = filtered_sampled_points[idx]
|
||||||
|
z_filtered_normals = filtered_normals[idx]
|
||||||
return z_filtered_points[:, :3]
|
return z_filtered_points[:, :3], z_filtered_normals
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def point_to_hash(point, voxel_size):
|
def point_to_hash(point, voxel_size):
|
||||||
|
@@ -8,16 +8,23 @@ class ReconstructionUtil:
|
|||||||
def compute_coverage_rate(target_point_cloud, combined_point_cloud, threshold=0.01):
|
def compute_coverage_rate(target_point_cloud, combined_point_cloud, threshold=0.01):
|
||||||
kdtree = cKDTree(combined_point_cloud)
|
kdtree = cKDTree(combined_point_cloud)
|
||||||
distances, _ = kdtree.query(target_point_cloud)
|
distances, _ = kdtree.query(target_point_cloud)
|
||||||
covered_points_num = np.sum(distances < threshold)
|
covered_points_num = np.sum(distances < threshold*2)
|
||||||
coverage_rate = covered_points_num / target_point_cloud.shape[0]
|
coverage_rate = covered_points_num / target_point_cloud.shape[0]
|
||||||
return coverage_rate, covered_points_num
|
return coverage_rate, covered_points_num
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
def compute_coverage_rate_with_normal(target_point_cloud, combined_point_cloud, target_normal, combined_normal, threshold=0.01, normal_threshold=0.1):
|
def compute_coverage_rate_with_normal(target_point_cloud, combined_point_cloud, target_normal, combined_normal, threshold=0.01, normal_threshold=0.1):
|
||||||
kdtree = cKDTree(combined_point_cloud)
|
kdtree = cKDTree(combined_point_cloud)
|
||||||
distances, indices = kdtree.query(target_point_cloud)
|
distances, indices = kdtree.query(target_point_cloud)
|
||||||
is_covered_by_distance = distances < threshold
|
is_covered_by_distance = distances < threshold*2
|
||||||
normal_dots = np.einsum('ij,ij->i', target_normal, combined_normal[indices])
|
normal_dots = np.einsum('ij,ij->i', target_normal, combined_normal[indices])
|
||||||
is_covered_by_normal = normal_dots > normal_threshold
|
is_covered_by_normal = normal_dots > normal_threshold
|
||||||
|
|
||||||
|
pts_nrm_target = np.hstack([target_point_cloud, target_normal])
|
||||||
|
np.savetxt("pts_nrm_target.txt", pts_nrm_target)
|
||||||
|
pts_nrm_combined = np.hstack([combined_point_cloud, combined_normal])
|
||||||
|
np.savetxt("pts_nrm_combined.txt", pts_nrm_combined)
|
||||||
|
import ipdb; ipdb.set_trace()
|
||||||
covered_points_num = np.sum(is_covered_by_distance & is_covered_by_normal)
|
covered_points_num = np.sum(is_covered_by_distance & is_covered_by_normal)
|
||||||
coverage_rate = covered_points_num / target_point_cloud.shape[0]
|
coverage_rate = covered_points_num / target_point_cloud.shape[0]
|
||||||
|
|
||||||
@@ -25,15 +32,14 @@ class ReconstructionUtil:
|
|||||||
|
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def compute_overlap_rate(new_point_cloud, combined_point_cloud, threshold=0.01):
|
def check_overlap(new_point_cloud, combined_point_cloud, overlap_area_threshold=25, voxel_size=0.01):
|
||||||
kdtree = cKDTree(combined_point_cloud)
|
kdtree = cKDTree(combined_point_cloud)
|
||||||
distances, _ = kdtree.query(new_point_cloud)
|
distances, _ = kdtree.query(new_point_cloud)
|
||||||
overlapping_points = np.sum(distances < threshold)
|
overlapping_points = np.sum(distances < voxel_size*2)
|
||||||
if new_point_cloud.shape[0] == 0:
|
cm = 0.01
|
||||||
overlap_rate = 0
|
voxel_size_cm = voxel_size / cm
|
||||||
else:
|
overlap_area = overlapping_points * voxel_size_cm * voxel_size_cm
|
||||||
overlap_rate = overlapping_points / new_point_cloud.shape[0]
|
return overlap_area > overlap_area_threshold
|
||||||
return overlap_rate
|
|
||||||
|
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
@@ -49,14 +55,14 @@ class ReconstructionUtil:
|
|||||||
return new_added_points
|
return new_added_points
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def compute_next_best_view_sequence_with_overlap(target_point_cloud, point_cloud_list, scan_points_indices_list, threshold=0.01, soft_overlap_threshold=0.5, hard_overlap_threshold=0.7, init_view = 0, scan_points_threshold=5, status_info=None):
|
def compute_next_best_view_sequence(target_point_cloud, point_cloud_list, scan_points_indices_list, threshold=0.01, overlap_area_threshold=25, init_view = 0, scan_points_threshold=5, status_info=None):
|
||||||
selected_views = [init_view]
|
selected_views = [init_view]
|
||||||
combined_point_cloud = point_cloud_list[init_view]
|
combined_point_cloud = point_cloud_list[init_view]
|
||||||
history_indices = [scan_points_indices_list[init_view]]
|
history_indices = [scan_points_indices_list[init_view]]
|
||||||
|
|
||||||
max_rec_pts = np.vstack(point_cloud_list)
|
max_rec_pts = np.vstack(point_cloud_list)
|
||||||
downsampled_max_rec_pts = PtsUtil.voxel_downsample_point_cloud(max_rec_pts, threshold)
|
downsampled_max_rec_pts = PtsUtil.voxel_downsample_point_cloud(max_rec_pts, threshold)
|
||||||
|
combined_point_cloud = PtsUtil.voxel_downsample_point_cloud(combined_point_cloud, threshold)
|
||||||
max_rec_pts_num = downsampled_max_rec_pts.shape[0]
|
max_rec_pts_num = downsampled_max_rec_pts.shape[0]
|
||||||
max_real_rec_pts_coverage, _ = ReconstructionUtil.compute_coverage_rate(target_point_cloud, downsampled_max_rec_pts, threshold)
|
max_real_rec_pts_coverage, _ = ReconstructionUtil.compute_coverage_rate(target_point_cloud, downsampled_max_rec_pts, threshold)
|
||||||
|
|
||||||
@@ -69,6 +75,7 @@ class ReconstructionUtil:
|
|||||||
cnt_processed_view = 0
|
cnt_processed_view = 0
|
||||||
remaining_views.remove(init_view)
|
remaining_views.remove(init_view)
|
||||||
curr_rec_pts_num = combined_point_cloud.shape[0]
|
curr_rec_pts_num = combined_point_cloud.shape[0]
|
||||||
|
drop_output_ratio = 0.4
|
||||||
|
|
||||||
import time
|
import time
|
||||||
while remaining_views:
|
while remaining_views:
|
||||||
@@ -78,27 +85,23 @@ class ReconstructionUtil:
|
|||||||
best_covered_num = 0
|
best_covered_num = 0
|
||||||
|
|
||||||
for view_index in remaining_views:
|
for view_index in remaining_views:
|
||||||
|
if np.random.rand() < drop_output_ratio:
|
||||||
|
continue
|
||||||
if point_cloud_list[view_index].shape[0] == 0:
|
if point_cloud_list[view_index].shape[0] == 0:
|
||||||
continue
|
continue
|
||||||
if selected_views:
|
if selected_views:
|
||||||
new_scan_points_indices = scan_points_indices_list[view_index]
|
new_scan_points_indices = scan_points_indices_list[view_index]
|
||||||
if not ReconstructionUtil.check_scan_points_overlap(history_indices, new_scan_points_indices, scan_points_threshold):
|
if not ReconstructionUtil.check_scan_points_overlap(history_indices, new_scan_points_indices, scan_points_threshold):
|
||||||
overlap_threshold = hard_overlap_threshold
|
curr_overlap_area_threshold = overlap_area_threshold
|
||||||
else:
|
else:
|
||||||
overlap_threshold = soft_overlap_threshold
|
curr_overlap_area_threshold = overlap_area_threshold * 0.5
|
||||||
start = time.time()
|
|
||||||
overlap_rate = ReconstructionUtil.compute_overlap_rate(point_cloud_list[view_index],combined_point_cloud, threshold)
|
if not ReconstructionUtil.check_overlap(point_cloud_list[view_index], combined_point_cloud, overlap_area_threshold = curr_overlap_area_threshold, voxel_size=threshold):
|
||||||
end = time.time()
|
|
||||||
# print(f"overlap_rate Time: {end-start}")
|
|
||||||
if overlap_rate < overlap_threshold:
|
|
||||||
continue
|
continue
|
||||||
|
|
||||||
start = time.time()
|
|
||||||
new_combined_point_cloud = np.vstack([combined_point_cloud, point_cloud_list[view_index]])
|
new_combined_point_cloud = np.vstack([combined_point_cloud, point_cloud_list[view_index]])
|
||||||
new_downsampled_combined_point_cloud = PtsUtil.voxel_downsample_point_cloud(new_combined_point_cloud,threshold)
|
new_downsampled_combined_point_cloud = PtsUtil.voxel_downsample_point_cloud(new_combined_point_cloud,threshold)
|
||||||
new_coverage, new_covered_num = ReconstructionUtil.compute_coverage_rate(downsampled_max_rec_pts, new_downsampled_combined_point_cloud, threshold)
|
new_coverage, new_covered_num = ReconstructionUtil.compute_coverage_rate(downsampled_max_rec_pts, new_downsampled_combined_point_cloud, threshold)
|
||||||
end = time.time()
|
|
||||||
#print(f"compute_coverage_rate Time: {end-start}")
|
|
||||||
coverage_increase = new_coverage - current_coverage
|
coverage_increase = new_coverage - current_coverage
|
||||||
if coverage_increase > best_coverage_increase:
|
if coverage_increase > best_coverage_increase:
|
||||||
best_coverage_increase = coverage_increase
|
best_coverage_increase = coverage_increase
|
||||||
@@ -107,6 +110,100 @@ class ReconstructionUtil:
|
|||||||
best_combined_point_cloud = new_downsampled_combined_point_cloud
|
best_combined_point_cloud = new_downsampled_combined_point_cloud
|
||||||
|
|
||||||
|
|
||||||
|
if best_view is not None:
|
||||||
|
if best_coverage_increase <=1e-3 or best_covered_num - current_covered_num <= 5:
|
||||||
|
break
|
||||||
|
|
||||||
|
selected_views.append(best_view)
|
||||||
|
best_rec_pts_num = best_combined_point_cloud.shape[0]
|
||||||
|
print(f"Current rec pts num: {curr_rec_pts_num}, Best rec pts num: {best_rec_pts_num}, Best cover pts: {best_covered_num}, Max rec pts num: {max_rec_pts_num}")
|
||||||
|
print(f"Current coverage: {current_coverage+best_coverage_increase}, Best coverage increase: {best_coverage_increase}, Max Real coverage: {max_real_rec_pts_coverage}")
|
||||||
|
current_covered_num = best_covered_num
|
||||||
|
curr_rec_pts_num = best_rec_pts_num
|
||||||
|
combined_point_cloud = best_combined_point_cloud
|
||||||
|
remaining_views.remove(best_view)
|
||||||
|
history_indices.append(scan_points_indices_list[best_view])
|
||||||
|
current_coverage += best_coverage_increase
|
||||||
|
cnt_processed_view += 1
|
||||||
|
if status_info is not None:
|
||||||
|
sm = status_info["status_manager"]
|
||||||
|
app_name = status_info["app_name"]
|
||||||
|
runner_name = status_info["runner_name"]
|
||||||
|
sm.set_status(app_name, runner_name, "current coverage", current_coverage)
|
||||||
|
sm.set_progress(app_name, runner_name, "processed view", cnt_processed_view, len(point_cloud_list))
|
||||||
|
|
||||||
|
view_sequence.append((best_view, current_coverage))
|
||||||
|
|
||||||
|
else:
|
||||||
|
break
|
||||||
|
if status_info is not None:
|
||||||
|
sm = status_info["status_manager"]
|
||||||
|
app_name = status_info["app_name"]
|
||||||
|
runner_name = status_info["runner_name"]
|
||||||
|
sm.set_progress(app_name, runner_name, "processed view", len(point_cloud_list), len(point_cloud_list))
|
||||||
|
return view_sequence, remaining_views, combined_point_cloud
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def compute_next_best_view_sequence_with_normal(target_point_cloud, target_normal, point_cloud_list, normal_list, scan_points_indices_list, threshold=0.01, overlap_area_threshold=25, init_view = 0, scan_points_threshold=5, status_info=None):
|
||||||
|
selected_views = [init_view]
|
||||||
|
combined_point_cloud = point_cloud_list[init_view]
|
||||||
|
combined_normal = normal_list[init_view]
|
||||||
|
history_indices = [scan_points_indices_list[init_view]]
|
||||||
|
|
||||||
|
max_rec_pts = np.vstack(point_cloud_list)
|
||||||
|
max_rec_nrm = np.vstack(normal_list)
|
||||||
|
downsampled_max_rec_pts, idx = PtsUtil.voxel_downsample_point_cloud(max_rec_pts, threshold, require_idx=True)
|
||||||
|
downsampled_max_rec_nrm = max_rec_nrm[idx]
|
||||||
|
max_rec_pts_num = downsampled_max_rec_pts.shape[0]
|
||||||
|
try:
|
||||||
|
max_real_rec_pts_coverage, _ = ReconstructionUtil.compute_coverage_rate_with_normal(target_point_cloud, downsampled_max_rec_pts, target_normal, downsampled_max_rec_nrm, threshold)
|
||||||
|
except:
|
||||||
|
import ipdb; ipdb.set_trace()
|
||||||
|
|
||||||
|
new_coverage, new_covered_num = ReconstructionUtil.compute_coverage_rate_with_normal(downsampled_max_rec_pts, combined_point_cloud, downsampled_max_rec_nrm, combined_normal, threshold)
|
||||||
|
current_coverage = new_coverage
|
||||||
|
current_covered_num = new_covered_num
|
||||||
|
|
||||||
|
remaining_views = list(range(len(point_cloud_list)))
|
||||||
|
view_sequence = [(init_view, current_coverage)]
|
||||||
|
cnt_processed_view = 0
|
||||||
|
remaining_views.remove(init_view)
|
||||||
|
curr_rec_pts_num = combined_point_cloud.shape[0]
|
||||||
|
|
||||||
|
while remaining_views:
|
||||||
|
best_view = None
|
||||||
|
best_coverage_increase = -1
|
||||||
|
best_combined_point_cloud = None
|
||||||
|
best_combined_normal = None
|
||||||
|
best_covered_num = 0
|
||||||
|
|
||||||
|
for view_index in remaining_views:
|
||||||
|
if point_cloud_list[view_index].shape[0] == 0:
|
||||||
|
continue
|
||||||
|
if selected_views:
|
||||||
|
new_scan_points_indices = scan_points_indices_list[view_index]
|
||||||
|
if not ReconstructionUtil.check_scan_points_overlap(history_indices, new_scan_points_indices, scan_points_threshold):
|
||||||
|
curr_overlap_area_threshold = overlap_area_threshold
|
||||||
|
else:
|
||||||
|
curr_overlap_area_threshold = overlap_area_threshold * 0.5
|
||||||
|
|
||||||
|
if not ReconstructionUtil.check_overlap(point_cloud_list[view_index], combined_point_cloud, overlap_area_threshold = curr_overlap_area_threshold, voxel_size=threshold):
|
||||||
|
continue
|
||||||
|
|
||||||
|
new_combined_point_cloud = np.vstack([combined_point_cloud, point_cloud_list[view_index]])
|
||||||
|
new_combined_normal = np.vstack([combined_normal, normal_list[view_index]])
|
||||||
|
new_downsampled_combined_point_cloud, idx = PtsUtil.voxel_downsample_point_cloud(new_combined_point_cloud,threshold, require_idx=True)
|
||||||
|
new_downsampled_combined_normal = new_combined_normal[idx]
|
||||||
|
new_coverage, new_covered_num = ReconstructionUtil.compute_coverage_rate_with_normal(downsampled_max_rec_pts, new_downsampled_combined_point_cloud, downsampled_max_rec_nrm, new_downsampled_combined_normal, threshold)
|
||||||
|
coverage_increase = new_coverage - current_coverage
|
||||||
|
if coverage_increase > best_coverage_increase:
|
||||||
|
best_coverage_increase = coverage_increase
|
||||||
|
best_view = view_index
|
||||||
|
best_covered_num = new_covered_num
|
||||||
|
best_combined_point_cloud = new_downsampled_combined_point_cloud
|
||||||
|
best_combined_normal = new_downsampled_combined_normal
|
||||||
|
|
||||||
|
|
||||||
if best_view is not None:
|
if best_view is not None:
|
||||||
if best_coverage_increase <=1e-3 or best_covered_num - current_covered_num <= 5:
|
if best_coverage_increase <=1e-3 or best_covered_num - current_covered_num <= 5:
|
||||||
break
|
break
|
||||||
@@ -118,6 +215,7 @@ class ReconstructionUtil:
|
|||||||
current_covered_num = best_covered_num
|
current_covered_num = best_covered_num
|
||||||
curr_rec_pts_num = best_rec_pts_num
|
curr_rec_pts_num = best_rec_pts_num
|
||||||
combined_point_cloud = best_combined_point_cloud
|
combined_point_cloud = best_combined_point_cloud
|
||||||
|
combined_normal = best_combined_normal
|
||||||
remaining_views.remove(best_view)
|
remaining_views.remove(best_view)
|
||||||
history_indices.append(scan_points_indices_list[best_view])
|
history_indices.append(scan_points_indices_list[best_view])
|
||||||
current_coverage += best_coverage_increase
|
current_coverage += best_coverage_increase
|
||||||
|
73
utils/vis.py
73
utils/vis.py
@@ -47,6 +47,42 @@ class visualizeUtil:
|
|||||||
all_combined_pts = np.vstack(all_combined_pts)
|
all_combined_pts = np.vstack(all_combined_pts)
|
||||||
downsampled_all_pts = PtsUtil.voxel_downsample_point_cloud(all_combined_pts, 0.001)
|
downsampled_all_pts = PtsUtil.voxel_downsample_point_cloud(all_combined_pts, 0.001)
|
||||||
np.savetxt(os.path.join(output_dir, "all_combined_pts.txt"), downsampled_all_pts)
|
np.savetxt(os.path.join(output_dir, "all_combined_pts.txt"), downsampled_all_pts)
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def save_seq_cam_pos_and_cam_axis(root, scene, frame_idx_list, output_dir):
|
||||||
|
all_cam_pos = []
|
||||||
|
all_cam_axis = []
|
||||||
|
for i in frame_idx_list:
|
||||||
|
path = DataLoadUtil.get_path(root, scene, i)
|
||||||
|
cam_info = DataLoadUtil.load_cam_info(path, binocular=True)
|
||||||
|
cam_pose = cam_info["cam_to_world"]
|
||||||
|
cam_pos = cam_pose[:3, 3]
|
||||||
|
cam_axis = cam_pose[:3, 2]
|
||||||
|
|
||||||
|
num_samples = 10
|
||||||
|
sample_points = [cam_pos + 0.02*t * cam_axis for t in range(num_samples)]
|
||||||
|
sample_points = np.array(sample_points)
|
||||||
|
|
||||||
|
all_cam_pos.append(cam_pos)
|
||||||
|
all_cam_axis.append(sample_points)
|
||||||
|
|
||||||
|
all_cam_pos = np.array(all_cam_pos)
|
||||||
|
all_cam_axis = np.array(all_cam_axis).reshape(-1, 3)
|
||||||
|
np.savetxt(os.path.join(output_dir, "seq_cam_pos.txt"), all_cam_pos)
|
||||||
|
np.savetxt(os.path.join(output_dir, "seq_cam_axis.txt"), all_cam_axis)
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def save_seq_combined_pts(root, scene, frame_idx_list, output_dir):
|
||||||
|
all_combined_pts = []
|
||||||
|
for i in frame_idx_list:
|
||||||
|
path = DataLoadUtil.get_path(root, scene, i)
|
||||||
|
pts = DataLoadUtil.load_from_preprocessed_pts(path,"npy")
|
||||||
|
if pts.shape[0] == 0:
|
||||||
|
continue
|
||||||
|
all_combined_pts.append(pts)
|
||||||
|
all_combined_pts = np.vstack(all_combined_pts)
|
||||||
|
downsampled_all_pts = PtsUtil.voxel_downsample_point_cloud(all_combined_pts, 0.001)
|
||||||
|
np.savetxt(os.path.join(output_dir, "seq_combined_pts.txt"), downsampled_all_pts)
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def save_target_mesh_at_world_space(
|
def save_target_mesh_at_world_space(
|
||||||
@@ -120,18 +156,37 @@ class visualizeUtil:
|
|||||||
sampled_visualized_normal = np.array(sampled_visualized_normal).reshape(-1, 3)
|
sampled_visualized_normal = np.array(sampled_visualized_normal).reshape(-1, 3)
|
||||||
np.savetxt(os.path.join(output_dir, "target_pts.txt"), sampled_target_points)
|
np.savetxt(os.path.join(output_dir, "target_pts.txt"), sampled_target_points)
|
||||||
np.savetxt(os.path.join(output_dir, "target_normal.txt"), sampled_visualized_normal)
|
np.savetxt(os.path.join(output_dir, "target_normal.txt"), sampled_visualized_normal)
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def save_pts_nrm(root, scene, frame_idx, output_dir, binocular=False):
|
||||||
|
path = DataLoadUtil.get_path(root, scene, frame_idx)
|
||||||
|
pts_world = DataLoadUtil.load_from_preprocessed_pts(path, "npy")
|
||||||
|
nrm_camera = DataLoadUtil.load_from_preprocessed_nrm(path, "npy")
|
||||||
|
cam_info = DataLoadUtil.load_cam_info(path, binocular=binocular)
|
||||||
|
cam_to_world = cam_info["cam_to_world"]
|
||||||
|
nrm_world = nrm_camera @ cam_to_world[:3, :3].T
|
||||||
|
visualized_nrm = []
|
||||||
|
num_samples = 10
|
||||||
|
for i in range(len(pts_world)):
|
||||||
|
for t in range(num_samples):
|
||||||
|
visualized_nrm.append(pts_world[i] - 0.02 * t * nrm_world[i])
|
||||||
|
|
||||||
|
visualized_nrm = np.array(visualized_nrm)
|
||||||
|
np.savetxt(os.path.join(output_dir, "nrm.txt"), visualized_nrm)
|
||||||
|
np.savetxt(os.path.join(output_dir, "pts.txt"), pts_world)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
# ------ Debug ------
|
# ------ Debug ------
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
root = r"/home/yan20/nbv_rec/project/franka_control/temp"
|
root = r"C:\Document\Local Project\nbv_rec\nbv_reconstruction\temp"
|
||||||
model_dir = r"H:\\AI\\Datasets\\scaled_object_box_meshes"
|
model_dir = r"H:\\AI\\Datasets\\scaled_object_box_meshes"
|
||||||
scene = "cad_model_world"
|
scene = "box"
|
||||||
output_dir = r"/home/yan20/nbv_rec/project/franka_control/temp/output"
|
output_dir = r"C:\Document\Local Project\nbv_rec\nbv_reconstruction\test"
|
||||||
|
|
||||||
visualizeUtil.save_all_cam_pos_and_cam_axis(root, scene, output_dir)
|
#visualizeUtil.save_all_cam_pos_and_cam_axis(root, scene, output_dir)
|
||||||
visualizeUtil.save_all_combined_pts(root, scene, output_dir)
|
# visualizeUtil.save_all_combined_pts(root, scene, output_dir)
|
||||||
visualizeUtil.save_target_mesh_at_world_space(root, model_dir, scene)
|
# visualizeUtil.save_seq_combined_pts(root, scene, [0, 121, 286, 175, 111,366,45,230,232,225,255,17,199,78,60], output_dir)
|
||||||
#visualizeUtil.save_points_and_normals(root, scene,"10", output_dir, binocular=True)
|
# visualizeUtil.save_seq_cam_pos_and_cam_axis(root, scene, [0, 121, 286, 175, 111,366,45,230,232,225,255,17,199,78,60], output_dir)
|
||||||
|
# visualizeUtil.save_target_mesh_at_world_space(root, model_dir, scene)
|
||||||
|
#visualizeUtil.save_points_and_normals(root, scene,"10", output_dir, binocular=True)
|
||||||
|
visualizeUtil.save_pts_nrm(root, scene, "116", output_dir, binocular=True)
|
||||||
|
Reference in New Issue
Block a user