8 Commits

Author SHA1 Message Date
985a08d89c global: upd inference 2024-11-01 08:43:13 +00:00
b221036e8b global: upd 2024-10-31 16:02:26 +00:00
097712c0ea global_only: ratio2 2024-10-30 15:58:32 +00:00
a954ed0998 global_only: ratio2 2024-10-30 15:49:59 +00:00
f5f8e4266f global_only: ratio 2024-10-30 15:49:11 +00:00
8a05b7883d global_only: train 2024-10-30 15:46:15 +00:00
e23697eb87 global_only: debug 2024-10-29 16:21:30 +00:00
2487039445 global_only: config 2024-10-29 12:18:51 +00:00
8 changed files with 438 additions and 249 deletions

View File

@@ -6,71 +6,67 @@ runner:
cuda_visible_devices: "0,1,2,3,4,5,6,7" cuda_visible_devices: "0,1,2,3,4,5,6,7"
experiment: experiment:
name: w_gf_wo_lf_full name: overfit_ab_global_only
root_dir: "experiments" root_dir: "experiments"
epoch: 1 # -1 stands for last epoch epoch: -1 # -1 stands for last epoch
test: test:
dataset_list: dataset_list:
- OmniObject3d_train - OmniObject3d_train
blender_script_path: "/media/hofee/data/project/python/nbv_reconstruction/blender/data_renderer.py" blender_script_path: "/data/hofee/project/nbv_rec/blender/data_renderer.py"
output_dir: "/media/hofee/data/project/python/nbv_reconstruction/nbv_reconstruction/test/inference_global_full_on_testset" output_dir: "/data/hofee/data/inference_global_full_on_testset"
pipeline: nbv_reconstruction_global_pts_pipeline pipeline: nbv_reconstruction_pipeline
voxel_size: 0.003
dataset: dataset:
OmniObject3d_train: OmniObject3d_train:
root_dir: "/media/hofee/repository/nbv_reconstruction_data_512" root_dir: "/data/hofee/data/new_full_data"
model_dir: "/media/hofee/data/data/scaled_object_meshes" model_dir: "/data/hofee/data/scaled_object_meshes"
source: seq_nbv_reconstruction_dataset source: seq_reconstruction_dataset
split_file: "/media/hofee/data/project/python/nbv_reconstruction/nbv_reconstruction/test/test_set_list.txt" split_file: "/data/hofee/data/sample.txt"
type: test type: test
filter_degree: 75 filter_degree: 75
ratio: 1 ratio: 1
batch_size: 1 batch_size: 1
num_workers: 12 num_workers: 12
pts_num: 4096 pts_num: 8192
load_from_preprocess: False load_from_preprocess: True
OmniObject3d_test:
root_dir: "/data/hofee/data/new_full_data"
model_dir: "/data/hofee/data/scaled_object_meshes"
source: seq_reconstruction_dataset
split_file: "/data/hofee/data/sample.txt"
type: test
filter_degree: 75
eval_list:
- pose_diff
- coverage_rate_increase
ratio: 0.1
batch_size: 1
num_workers: 12
pts_num: 8192
load_from_preprocess: True
pipeline: pipeline:
nbv_reconstruction_local_pts_pipeline: nbv_reconstruction_pipeline:
modules: modules:
pts_encoder: pointnet_encoder pts_encoder: pointnet_encoder
seq_encoder: transformer_seq_encoder seq_encoder: transformer_seq_encoder
pose_encoder: pose_encoder pose_encoder: pose_encoder
view_finder: gf_view_finder view_finder: gf_view_finder
eps: 1e-5 eps: 1e-5
global_scanned_feat: False
nbv_reconstruction_global_pts_pipeline:
modules:
pts_encoder: pointnet_encoder
pose_seq_encoder: transformer_pose_seq_encoder
pose_encoder: pose_encoder
view_finder: gf_view_finder
eps: 1e-5
global_scanned_feat: True global_scanned_feat: True
module: module:
pointnet_encoder: pointnet_encoder:
in_dim: 3 in_dim: 3
out_dim: 1024 out_dim: 1024
global_feat: True global_feat: True
feature_transform: False feature_transform: False
transformer_seq_encoder: transformer_seq_encoder:
pts_embed_dim: 1024 embed_dim: 256
pose_embed_dim: 256
num_heads: 4
ffn_dim: 256
num_layers: 3
output_dim: 2048
transformer_pose_seq_encoder:
pose_embed_dim: 256
num_heads: 4 num_heads: 4
ffn_dim: 256 ffn_dim: 256
num_layers: 3 num_layers: 3
@@ -86,7 +82,8 @@ module:
sample_mode: ode sample_mode: ode
sampling_steps: 500 sampling_steps: 500
sde_mode: ve sde_mode: ve
pose_encoder: pose_encoder:
pose_dim: 9 pose_dim: 9
out_dim: 256 out_dim: 256
pts_num_encoder:
out_dim: 64

View File

@@ -3,17 +3,17 @@ runner:
general: general:
seed: 0 seed: 0
device: cuda device: cuda
cuda_visible_devices: "1" cuda_visible_devices: "0"
parallel: False parallel: False
experiment: experiment:
name: overfit_ab_local_only name: train_ab_global_only
root_dir: "experiments" root_dir: "experiments"
use_checkpoint: False use_checkpoint: False
epoch: -1 # -1 stands for last epoch epoch: -1 # -1 stands for last epoch
max_epochs: 5000 max_epochs: 5000
save_checkpoint_interval: 1 save_checkpoint_interval: 1
test_first: False test_first: True
train: train:
optimizer: optimizer:
@@ -25,53 +25,53 @@ runner:
test: test:
frequency: 3 # test frequency frequency: 3 # test frequency
dataset_list: dataset_list:
#- OmniObject3d_test - OmniObject3d_test
- OmniObject3d_val - OmniObject3d_val
pipeline: nbv_reconstruction_pipeline pipeline: nbv_reconstruction_pipeline
dataset: dataset:
OmniObject3d_train: OmniObject3d_train:
root_dir: "/data/hofee/nbv_rec_part2_preprocessed" root_dir: "/data/hofee/data/new_full_data"
model_dir: "../data/scaled_object_meshes" model_dir: "../data/scaled_object_meshes"
source: nbv_reconstruction_dataset source: nbv_reconstruction_dataset
split_file: "/data/hofee/data/sample.txt" split_file: "/data/hofee/data/new_full_data_list/OmniObject3d_train.txt"
type: train type: train
cache: True cache: True
ratio: 1 ratio: 1
batch_size: 32 batch_size: 80
num_workers: 16 num_workers: 128
pts_num: 8192 pts_num: 8192
load_from_preprocess: True load_from_preprocess: True
OmniObject3d_test: OmniObject3d_test:
root_dir: "/data/hofee/nbv_rec_part2_preprocessed" root_dir: "/data/hofee/data/new_full_data"
model_dir: "../data/scaled_object_meshes" model_dir: "../data/scaled_object_meshes"
source: nbv_reconstruction_dataset source: nbv_reconstruction_dataset
split_file: "/data/hofee/data/sample.txt" split_file: "/data/hofee/data/new_full_data_list/OmniObject3d_test.txt"
type: test type: test
cache: True cache: True
filter_degree: 75 filter_degree: 75
eval_list: eval_list:
- pose_diff - pose_diff
ratio: 1 ratio: 1
batch_size: 32 batch_size: 80
num_workers: 12 num_workers: 12
pts_num: 8192 pts_num: 8192
load_from_preprocess: True load_from_preprocess: True
OmniObject3d_val: OmniObject3d_val:
root_dir: "/data/hofee/nbv_rec_part2_preprocessed" root_dir: "/data/hofee/data/new_full_data"
model_dir: "../data/scaled_object_meshes" model_dir: "../data/scaled_object_meshes"
source: nbv_reconstruction_dataset source: nbv_reconstruction_dataset
split_file: "/data/hofee/data/sample.txt" split_file: "/data/hofee/data/new_full_data_list/OmniObject3d_train.txt"
type: test type: test
cache: True cache: True
filter_degree: 75 filter_degree: 75
eval_list: eval_list:
- pose_diff - pose_diff
ratio: 1 ratio: 0.1
batch_size: 32 batch_size: 80
num_workers: 12 num_workers: 12
pts_num: 8192 pts_num: 8192
load_from_preprocess: True load_from_preprocess: True
@@ -92,16 +92,16 @@ module:
pointnet_encoder: pointnet_encoder:
in_dim: 3 in_dim: 3
out_dim: 512 out_dim: 1024
global_feat: True global_feat: True
feature_transform: False feature_transform: False
transformer_seq_encoder: transformer_seq_encoder:
embed_dim: 768 embed_dim: 256
num_heads: 4 num_heads: 4
ffn_dim: 256 ffn_dim: 256
num_layers: 3 num_layers: 3
output_dim: 2048 output_dim: 1024
gf_view_finder: gf_view_finder:
t_feat_dim: 128 t_feat_dim: 128

View File

@@ -34,7 +34,7 @@ class NBVReconstructionDataset(BaseDataset):
#self.model_dir = config["model_dir"] #self.model_dir = config["model_dir"]
self.filter_degree = config["filter_degree"] self.filter_degree = config["filter_degree"]
if self.type == namespace.Mode.TRAIN: if self.type == namespace.Mode.TRAIN:
scale_ratio = 50 scale_ratio = 1
self.datalist = self.datalist*scale_ratio self.datalist = self.datalist*scale_ratio
if self.cache: if self.cache:
expr_root = ConfigManager.get("runner", "experiment", "root_dir") expr_root = ConfigManager.get("runner", "experiment", "root_dir")
@@ -165,8 +165,13 @@ class NBVReconstructionDataset(BaseDataset):
[best_to_world_6d, best_to_world_trans], axis=0 [best_to_world_6d, best_to_world_trans], axis=0
) )
combined_scanned_views_pts = np.concatenate(scanned_views_pts, axis=0)
voxel_downsampled_combined_scanned_pts_np = PtsUtil.voxel_downsample_point_cloud(combined_scanned_views_pts, 0.002)
random_downsampled_combined_scanned_pts_np = PtsUtil.random_downsample_point_cloud(voxel_downsampled_combined_scanned_pts_np, self.pts_num)
data_item = { data_item = {
"scanned_pts": np.asarray(scanned_views_pts, dtype=np.float32), # Ndarray(S x Nv x 3) "scanned_pts": np.asarray(scanned_views_pts, dtype=np.float32), # Ndarray(S x Nv x 3)
"combined_scanned_pts": np.asarray(random_downsampled_combined_scanned_pts_np, dtype=np.float32), # Ndarray(N x 3)
"scanned_coverage_rate": scanned_coverages_rate, # List(S): Float, range(0, 1) "scanned_coverage_rate": scanned_coverages_rate, # List(S): Float, range(0, 1)
"scanned_n_to_world_pose_9d": np.asarray(scanned_n_to_world_pose, dtype=np.float32), # Ndarray(S x 9) "scanned_n_to_world_pose_9d": np.asarray(scanned_n_to_world_pose, dtype=np.float32), # Ndarray(S x 9)
"best_coverage_rate": nbv_coverage_rate, # Float, range(0, 1) "best_coverage_rate": nbv_coverage_rate, # Float, range(0, 1)
@@ -198,13 +203,15 @@ class NBVReconstructionDataset(BaseDataset):
collate_data["best_to_world_pose_9d"] = torch.stack( collate_data["best_to_world_pose_9d"] = torch.stack(
[torch.tensor(item["best_to_world_pose_9d"]) for item in batch] [torch.tensor(item["best_to_world_pose_9d"]) for item in batch]
) )
collate_data["combined_scanned_pts"] = torch.stack(
[torch.tensor(item["combined_scanned_pts"]) for item in batch]
)
for key in batch[0].keys(): for key in batch[0].keys():
if key not in [ if key not in [
"scanned_pts", "scanned_pts",
"scanned_pts_mask",
"scanned_n_to_world_pose_9d", "scanned_n_to_world_pose_9d",
"best_to_world_pose_9d", "best_to_world_pose_9d",
"combined_scanned_pts",
]: ]:
collate_data[key] = [item[key] for item in batch] collate_data[key] = [item[key] for item in batch]
return collate_data return collate_data

154
core/old_seq_dataset.py Normal file
View File

@@ -0,0 +1,154 @@
import numpy as np
from PytorchBoot.dataset import BaseDataset
import PytorchBoot.namespace as namespace
import PytorchBoot.stereotype as stereotype
from PytorchBoot.utils.log_util import Log
import torch
import os
import sys
sys.path.append(r"/home/data/hofee/project/nbv_rec/nbv_reconstruction")
from utils.data_load import DataLoadUtil
from utils.pose import PoseUtil
from utils.pts import PtsUtil
@stereotype.dataset("old_seq_nbv_reconstruction_dataset")
class SeqNBVReconstructionDataset(BaseDataset):
def __init__(self, config):
super(SeqNBVReconstructionDataset, self).__init__(config)
self.type = config["type"]
if self.type != namespace.Mode.TEST:
Log.error("Dataset <seq_nbv_reconstruction_dataset> Only support test mode", terminate=True)
self.config = config
self.root_dir = config["root_dir"]
self.split_file_path = config["split_file"]
self.scene_name_list = self.load_scene_name_list()
self.datalist = self.get_datalist()
self.pts_num = config["pts_num"]
self.model_dir = config["model_dir"]
self.filter_degree = config["filter_degree"]
self.load_from_preprocess = config.get("load_from_preprocess", False)
def load_scene_name_list(self):
scene_name_list = []
with open(self.split_file_path, "r") as f:
for line in f:
scene_name = line.strip()
scene_name_list.append(scene_name)
return scene_name_list
def get_datalist(self):
datalist = []
for scene_name in self.scene_name_list:
seq_num = DataLoadUtil.get_label_num(self.root_dir, scene_name)
scene_max_coverage_rate = 0
scene_max_cr_idx = 0
for seq_idx in range(seq_num):
label_path = DataLoadUtil.get_label_path(self.root_dir, scene_name, seq_idx)
label_data = DataLoadUtil.load_label(label_path)
max_coverage_rate = label_data["max_coverage_rate"]
if max_coverage_rate > scene_max_coverage_rate:
scene_max_coverage_rate = max_coverage_rate
scene_max_cr_idx = seq_idx
label_path = DataLoadUtil.get_label_path(self.root_dir, scene_name, scene_max_cr_idx)
label_data = DataLoadUtil.load_label(label_path)
first_frame = label_data["best_sequence"][0]
best_seq_len = len(label_data["best_sequence"])
datalist.append({
"scene_name": scene_name,
"first_frame": first_frame,
"max_coverage_rate": scene_max_coverage_rate,
"best_seq_len": best_seq_len,
"label_idx": scene_max_cr_idx,
})
return datalist
def __getitem__(self, index):
data_item_info = self.datalist[index]
first_frame_idx = data_item_info["first_frame"][0]
first_frame_coverage = data_item_info["first_frame"][1]
max_coverage_rate = data_item_info["max_coverage_rate"]
scene_name = data_item_info["scene_name"]
first_cam_info = DataLoadUtil.load_cam_info(DataLoadUtil.get_path(self.root_dir, scene_name, first_frame_idx), binocular=True)
first_view_path = DataLoadUtil.get_path(self.root_dir, scene_name, first_frame_idx)
first_left_cam_pose = first_cam_info["cam_to_world"]
first_center_cam_pose = first_cam_info["cam_to_world_O"]
first_target_point_cloud = DataLoadUtil.load_from_preprocessed_pts(first_view_path)
first_pts_num = first_target_point_cloud.shape[0]
first_downsampled_target_point_cloud = PtsUtil.random_downsample_point_cloud(first_target_point_cloud, self.pts_num)
first_to_world_rot_6d = PoseUtil.matrix_to_rotation_6d_numpy(np.asarray(first_left_cam_pose[:3,:3]))
first_to_world_trans = first_left_cam_pose[:3,3]
first_to_world_9d = np.concatenate([first_to_world_rot_6d, first_to_world_trans], axis=0)
diag = DataLoadUtil.get_bbox_diag(self.model_dir, scene_name)
voxel_threshold = diag*0.02
first_O_to_first_L_pose = np.dot(np.linalg.inv(first_left_cam_pose), first_center_cam_pose)
scene_path = os.path.join(self.root_dir, scene_name)
model_points_normals = DataLoadUtil.load_points_normals(self.root_dir, scene_name)
data_item = {
"first_pts_num": np.asarray(
first_pts_num, dtype=np.int32
),
"first_pts": np.asarray([first_downsampled_target_point_cloud],dtype=np.float32),
"combined_scanned_pts": np.asarray(first_downsampled_target_point_cloud,dtype=np.float32),
"first_to_world_9d": np.asarray([first_to_world_9d],dtype=np.float32),
"scene_name": scene_name,
"max_coverage_rate": max_coverage_rate,
"voxel_threshold": voxel_threshold,
"filter_degree": self.filter_degree,
"O_to_L_pose": first_O_to_first_L_pose,
"first_frame_coverage": first_frame_coverage,
"scene_path": scene_path,
"model_points_normals": model_points_normals,
"best_seq_len": data_item_info["best_seq_len"],
"first_frame_id": first_frame_idx,
}
return data_item
def __len__(self):
return len(self.datalist)
def get_collate_fn(self):
def collate_fn(batch):
collate_data = {}
collate_data["first_pts"] = [torch.tensor(item['first_pts']) for item in batch]
collate_data["first_to_world_9d"] = [torch.tensor(item['first_to_world_9d']) for item in batch]
collate_data["combined_scanned_pts"] = torch.stack([torch.tensor(item['combined_scanned_pts']) for item in batch])
for key in batch[0].keys():
if key not in ["first_pts", "first_to_world_9d", "combined_scanned_pts"]:
collate_data[key] = [item[key] for item in batch]
return collate_data
return collate_fn
# -------------- Debug ---------------- #
if __name__ == "__main__":
import torch
seed = 0
torch.manual_seed(seed)
np.random.seed(seed)
config = {
"root_dir": "/home/data/hofee/project/nbv_rec/data/nbv_rec_data_512_preproc_npy",
"split_file": "/home/data/hofee/project/nbv_rec/data/OmniObject3d_train.txt",
"model_dir": "/home/data/hofee/project/nbv_rec/data/scaled_object_meshes",
"ratio": 0.005,
"batch_size": 2,
"filter_degree": 75,
"num_workers": 0,
"pts_num": 32684,
"type": namespace.Mode.TEST,
"load_from_preprocess": True
}
ds = SeqNBVReconstructionDataset(config)
print(len(ds))
#ds.__getitem__(10)
dl = ds.get_loader(shuffle=True)
for idx, data in enumerate(dl):
data = ds.process_batch(data, "cuda:0")
print(data)
# ------ Debug Start ------
import ipdb;ipdb.set_trace()
# ------ Debug End ------+

View File

@@ -29,7 +29,6 @@ class NBVReconstructionPipeline(nn.Module):
self.eps = float(self.config["eps"]) self.eps = float(self.config["eps"])
self.enable_global_scanned_feat = self.config["global_scanned_feat"]
def forward(self, data): def forward(self, data):
mode = data["mode"] mode = data["mode"]
@@ -55,10 +54,7 @@ class NBVReconstructionPipeline(nn.Module):
return perturbed_x, random_t, target_score, std return perturbed_x, random_t, target_score, std
def forward_train(self, data): def forward_train(self, data):
start_time = time.time()
main_feat = self.get_main_feat(data) main_feat = self.get_main_feat(data)
end_time = time.time()
print("get_main_feat time: ", end_time - start_time)
""" get std """ """ get std """
best_to_world_pose_9d_batch = data["best_to_world_pose_9d"] best_to_world_pose_9d_batch = data["best_to_world_pose_9d"]
perturbed_x, random_t, target_score, std = self.pertube_data( perturbed_x, random_t, target_score, std = self.pertube_data(
@@ -92,23 +88,24 @@ class NBVReconstructionPipeline(nn.Module):
scanned_n_to_world_pose_9d_batch = data[ scanned_n_to_world_pose_9d_batch = data[
"scanned_n_to_world_pose_9d" "scanned_n_to_world_pose_9d"
] # List(B): Tensor(S x 9) ] # List(B): Tensor(S x 9)
scanned_pts_batch = data[
"scanned_pts"
]
device = next(self.parameters()).device device = next(self.parameters()).device
embedding_list_batch = [] embedding_list_batch = []
for scanned_n_to_world_pose_9d, scanned_pts in zip(scanned_n_to_world_pose_9d_batch, scanned_pts_batch): combined_scanned_pts_batch = data["combined_scanned_pts"] # Tensor(B x N x 3)
global_scanned_feat = self.pts_encoder.encode_points(
combined_scanned_pts_batch, require_per_point_feat=False
) # global_scanned_feat: Tensor(B x Dg)
for scanned_n_to_world_pose_9d in scanned_n_to_world_pose_9d_batch:
scanned_n_to_world_pose_9d = scanned_n_to_world_pose_9d.to(device) # Tensor(S x 9) scanned_n_to_world_pose_9d = scanned_n_to_world_pose_9d.to(device) # Tensor(S x 9)
scanned_pts = scanned_pts.to(device) # Tensor(S x N x 3)
pose_feat_seq = self.pose_encoder.encode_pose(scanned_n_to_world_pose_9d) # Tensor(S x Dp) pose_feat_seq = self.pose_encoder.encode_pose(scanned_n_to_world_pose_9d) # Tensor(S x Dp)
pts_feat_seq = self.pts_encoder.encode_points(scanned_pts, require_per_point_feat=False) # Tensor(S x Dl) seq_embedding = pose_feat_seq
seq_embedding = torch.cat([pose_feat_seq, pts_feat_seq], dim=-1) # Tensor(S x (Dp+Dl)) embedding_list_batch.append(seq_embedding) # List(B): Tensor(S x (Dp))
embedding_list_batch.append(seq_embedding) # List(B): Tensor(S x (Dp+Dl))
seq_feat = self.seq_encoder.encode_sequence(embedding_list_batch) # Tensor(B x Ds) seq_feat = self.seq_encoder.encode_sequence(embedding_list_batch) # Tensor(B x Ds)
main_feat = seq_feat # Tensor(B x Ds) main_feat = torch.cat([seq_feat, global_scanned_feat], dim=-1) # Tensor(B x (Ds+Dg))
if torch.isnan(main_feat).any(): if torch.isnan(main_feat).any():
Log.error("nan in main_feat", True) Log.error("nan in main_feat", True)

View File

@@ -2,34 +2,45 @@ import numpy as np
from PytorchBoot.dataset import BaseDataset from PytorchBoot.dataset import BaseDataset
import PytorchBoot.namespace as namespace import PytorchBoot.namespace as namespace
import PytorchBoot.stereotype as stereotype import PytorchBoot.stereotype as stereotype
from PytorchBoot.config import ConfigManager
from PytorchBoot.utils.log_util import Log from PytorchBoot.utils.log_util import Log
import torch import torch
import os import os
import sys import sys
sys.path.append(r"/home/data/hofee/project/nbv_rec/nbv_reconstruction")
sys.path.append(r"/data/hofee/project/nbv_rec/nbv_reconstruction")
from utils.data_load import DataLoadUtil from utils.data_load import DataLoadUtil
from utils.pose import PoseUtil from utils.pose import PoseUtil
from utils.pts import PtsUtil from utils.pts import PtsUtil
@stereotype.dataset("seq_nbv_reconstruction_dataset")
class SeqNBVReconstructionDataset(BaseDataset): @stereotype.dataset("seq_reconstruction_dataset")
class SeqReconstructionDataset(BaseDataset):
def __init__(self, config): def __init__(self, config):
super(SeqNBVReconstructionDataset, self).__init__(config) super(SeqReconstructionDataset, self).__init__(config)
self.type = config["type"]
if self.type != namespace.Mode.TEST:
Log.error("Dataset <seq_nbv_reconstruction_dataset> Only support test mode", terminate=True)
self.config = config self.config = config
self.root_dir = config["root_dir"] self.root_dir = config["root_dir"]
self.split_file_path = config["split_file"] self.split_file_path = config["split_file"]
self.scene_name_list = self.load_scene_name_list() self.scene_name_list = self.load_scene_name_list()
self.datalist = self.get_datalist() self.datalist = self.get_datalist()
self.pts_num = config["pts_num"]
self.model_dir = config["model_dir"] self.pts_num = config["pts_num"]
self.filter_degree = config["filter_degree"] self.type = config["type"]
self.cache = config.get("cache")
self.load_from_preprocess = config.get("load_from_preprocess", False) self.load_from_preprocess = config.get("load_from_preprocess", False)
if self.type == namespace.Mode.TEST:
#self.model_dir = config["model_dir"]
self.filter_degree = config["filter_degree"]
if self.type == namespace.Mode.TRAIN:
scale_ratio = 1
self.datalist = self.datalist*scale_ratio
if self.cache:
expr_root = ConfigManager.get("runner", "experiment", "root_dir")
expr_name = ConfigManager.get("runner", "experiment", "name")
self.cache_dir = os.path.join(expr_root, expr_name, "cache")
# self.preprocess_cache()
def load_scene_name_list(self): def load_scene_name_list(self):
scene_name_list = [] scene_name_list = []
@@ -44,111 +55,141 @@ class SeqNBVReconstructionDataset(BaseDataset):
for scene_name in self.scene_name_list: for scene_name in self.scene_name_list:
seq_num = DataLoadUtil.get_label_num(self.root_dir, scene_name) seq_num = DataLoadUtil.get_label_num(self.root_dir, scene_name)
scene_max_coverage_rate = 0 scene_max_coverage_rate = 0
max_coverage_rate_list = []
scene_max_cr_idx = 0 scene_max_cr_idx = 0
for seq_idx in range(seq_num): for seq_idx in range(seq_num):
label_path = DataLoadUtil.get_label_path(self.root_dir, scene_name, seq_idx) label_path = DataLoadUtil.get_label_path(
self.root_dir, scene_name, seq_idx
)
label_data = DataLoadUtil.load_label(label_path) label_data = DataLoadUtil.load_label(label_path)
max_coverage_rate = label_data["max_coverage_rate"] max_coverage_rate = label_data["max_coverage_rate"]
if max_coverage_rate > scene_max_coverage_rate: if max_coverage_rate > scene_max_coverage_rate:
scene_max_coverage_rate = max_coverage_rate scene_max_coverage_rate = max_coverage_rate
scene_max_cr_idx = seq_idx scene_max_cr_idx = seq_idx
max_coverage_rate_list.append(max_coverage_rate)
label_path = DataLoadUtil.get_label_path(self.root_dir, scene_name, scene_max_cr_idx) best_label_path = DataLoadUtil.get_label_path(self.root_dir, scene_name, scene_max_cr_idx)
label_data = DataLoadUtil.load_label(label_path) best_label_data = DataLoadUtil.load_label(best_label_path)
first_frame = label_data["best_sequence"][0] first_frame = best_label_data["best_sequence"][0]
best_seq_len = len(label_data["best_sequence"]) best_seq_len = len(best_label_data["best_sequence"])
datalist.append({ datalist.append({
"scene_name": scene_name, "scene_name": scene_name,
"first_frame": first_frame, "first_frame": first_frame,
"max_coverage_rate": scene_max_coverage_rate, "best_seq_len": best_seq_len,
"best_seq_len": best_seq_len, "max_coverage_rate": scene_max_coverage_rate,
"label_idx": scene_max_cr_idx, "label_idx": scene_max_cr_idx,
}) })
return datalist return datalist
def preprocess_cache(self):
Log.info("preprocessing cache...")
for item_idx in range(len(self.datalist)):
self.__getitem__(item_idx)
Log.success("finish preprocessing cache.")
def load_from_cache(self, scene_name, curr_frame_idx):
cache_name = f"{scene_name}_{curr_frame_idx}.txt"
cache_path = os.path.join(self.cache_dir, cache_name)
if os.path.exists(cache_path):
data = np.loadtxt(cache_path)
return data
else:
return None
def save_to_cache(self, scene_name, curr_frame_idx, data):
cache_name = f"{scene_name}_{curr_frame_idx}.txt"
cache_path = os.path.join(self.cache_dir, cache_name)
try:
np.savetxt(cache_path, data)
except Exception as e:
Log.error(f"Save cache failed: {e}")
def seq_combined_pts(self, scene, frame_idx_list):
all_combined_pts = []
for i in frame_idx_list:
path = DataLoadUtil.get_path(self.root_dir, scene, i)
pts = DataLoadUtil.load_from_preprocessed_pts(path,"npy")
if pts.shape[0] == 0:
continue
all_combined_pts.append(pts)
all_combined_pts = np.vstack(all_combined_pts)
downsampled_all_pts = PtsUtil.voxel_downsample_point_cloud(all_combined_pts, 0.003)
return downsampled_all_pts
def __getitem__(self, index): def __getitem__(self, index):
data_item_info = self.datalist[index] data_item_info = self.datalist[index]
first_frame_idx = data_item_info["first_frame"][0]
first_frame_coverage = data_item_info["first_frame"][1]
max_coverage_rate = data_item_info["max_coverage_rate"] max_coverage_rate = data_item_info["max_coverage_rate"]
scene_name = data_item_info["scene_name"] scene_name = data_item_info["scene_name"]
first_cam_info = DataLoadUtil.load_cam_info(DataLoadUtil.get_path(self.root_dir, scene_name, first_frame_idx), binocular=True) (
first_view_path = DataLoadUtil.get_path(self.root_dir, scene_name, first_frame_idx) scanned_views_pts,
first_left_cam_pose = first_cam_info["cam_to_world"] scanned_coverages_rate,
first_center_cam_pose = first_cam_info["cam_to_world_O"] scanned_n_to_world_pose,
first_target_point_cloud = DataLoadUtil.load_from_preprocessed_pts(first_view_path) ) = ([], [], [])
first_pts_num = first_target_point_cloud.shape[0] view = data_item_info["first_frame"]
first_downsampled_target_point_cloud = PtsUtil.random_downsample_point_cloud(first_target_point_cloud, self.pts_num) frame_idx = view[0]
first_to_world_rot_6d = PoseUtil.matrix_to_rotation_6d_numpy(np.asarray(first_left_cam_pose[:3,:3])) coverage_rate = view[1]
first_to_world_trans = first_left_cam_pose[:3,3] view_path = DataLoadUtil.get_path(self.root_dir, scene_name, frame_idx)
first_to_world_9d = np.concatenate([first_to_world_rot_6d, first_to_world_trans], axis=0) cam_info = DataLoadUtil.load_cam_info(view_path, binocular=True)
diag = DataLoadUtil.get_bbox_diag(self.model_dir, scene_name)
voxel_threshold = diag*0.02
first_O_to_first_L_pose = np.dot(np.linalg.inv(first_left_cam_pose), first_center_cam_pose)
scene_path = os.path.join(self.root_dir, scene_name)
model_points_normals = DataLoadUtil.load_points_normals(self.root_dir, scene_name)
n_to_world_pose = cam_info["cam_to_world"]
target_point_cloud = (
DataLoadUtil.load_from_preprocessed_pts(view_path)
)
downsampled_target_point_cloud = PtsUtil.random_downsample_point_cloud(
target_point_cloud, self.pts_num
)
scanned_views_pts.append(downsampled_target_point_cloud)
scanned_coverages_rate.append(coverage_rate)
n_to_world_6d = PoseUtil.matrix_to_rotation_6d_numpy(
np.asarray(n_to_world_pose[:3, :3])
)
first_left_cam_pose = cam_info["cam_to_world"]
first_center_cam_pose = cam_info["cam_to_world_O"]
first_O_to_first_L_pose = np.dot(np.linalg.inv(first_left_cam_pose), first_center_cam_pose)
n_to_world_trans = n_to_world_pose[:3, 3]
n_to_world_9d = np.concatenate([n_to_world_6d, n_to_world_trans], axis=0)
scanned_n_to_world_pose.append(n_to_world_9d)
frame_list = []
for i in range(DataLoadUtil.get_scene_seq_length(self.root_dir, scene_name)):
frame_list.append(i)
gt_pts = self.seq_combined_pts(scene_name, frame_list)
data_item = { data_item = {
"first_pts_num": np.asarray( "first_scanned_pts": np.asarray(scanned_views_pts, dtype=np.float32), # Ndarray(S x Nv x 3)
first_pts_num, dtype=np.int32 "first_scanned_coverage_rate": scanned_coverages_rate, # List(S): Float, range(0, 1)
), "first_scanned_n_to_world_pose_9d": np.asarray(scanned_n_to_world_pose, dtype=np.float32), # Ndarray(S x 9)
"first_pts": np.asarray([first_downsampled_target_point_cloud],dtype=np.float32), "seq_max_coverage_rate": max_coverage_rate, # Float, range(0, 1)
"combined_scanned_pts": np.asarray(first_downsampled_target_point_cloud,dtype=np.float32), "scene_name": scene_name, # String
"first_to_world_9d": np.asarray([first_to_world_9d],dtype=np.float32), "gt_pts": gt_pts, # Ndarray(N x 3)
"scene_name": scene_name, "scene_path": os.path.join(self.root_dir, scene_name), # String
"max_coverage_rate": max_coverage_rate,
"voxel_threshold": voxel_threshold,
"filter_degree": self.filter_degree,
"O_to_L_pose": first_O_to_first_L_pose, "O_to_L_pose": first_O_to_first_L_pose,
"first_frame_coverage": first_frame_coverage,
"scene_path": scene_path,
"model_points_normals": model_points_normals,
"best_seq_len": data_item_info["best_seq_len"],
"first_frame_id": first_frame_idx,
} }
return data_item return data_item
def __len__(self): def __len__(self):
return len(self.datalist) return len(self.datalist)
def get_collate_fn(self):
def collate_fn(batch):
collate_data = {}
collate_data["first_pts"] = [torch.tensor(item['first_pts']) for item in batch]
collate_data["first_to_world_9d"] = [torch.tensor(item['first_to_world_9d']) for item in batch]
collate_data["combined_scanned_pts"] = torch.stack([torch.tensor(item['combined_scanned_pts']) for item in batch])
for key in batch[0].keys():
if key not in ["first_pts", "first_to_world_9d", "combined_scanned_pts"]:
collate_data[key] = [item[key] for item in batch]
return collate_data
return collate_fn
# -------------- Debug ---------------- # # -------------- Debug ---------------- #
if __name__ == "__main__": if __name__ == "__main__":
import torch import torch
seed = 0 seed = 0
torch.manual_seed(seed) torch.manual_seed(seed)
np.random.seed(seed) np.random.seed(seed)
config = { config = {
"root_dir": "/home/data/hofee/project/nbv_rec/data/nbv_rec_data_512_preproc_npy", "root_dir": "/data/hofee/data/new_full_data",
"split_file": "/home/data/hofee/project/nbv_rec/data/OmniObject3d_train.txt", "source": "seq_reconstruction_dataset",
"model_dir": "/home/data/hofee/project/nbv_rec/data/scaled_object_meshes", "split_file": "/data/hofee/data/sample.txt",
"ratio": 0.005, "load_from_preprocess": True,
"ratio": 0.5,
"batch_size": 2, "batch_size": 2,
"filter_degree": 75, "filter_degree": 75,
"num_workers": 0, "num_workers": 0,
"pts_num": 32684, "pts_num": 4096,
"type": namespace.Mode.TEST, "type": namespace.Mode.TRAIN,
"load_from_preprocess": True
} }
ds = SeqNBVReconstructionDataset(config) ds = SeqReconstructionDataset(config)
print(len(ds)) print(len(ds))
#ds.__getitem__(10) print(ds.__getitem__(10))
dl = ds.get_loader(shuffle=True)
for idx, data in enumerate(dl):
data = ds.process_batch(data, "cuda:0")
print(data)
# ------ Debug Start ------
import ipdb;ipdb.set_trace()
# ------ Debug End ------+

View File

@@ -27,6 +27,7 @@ class Inferencer(Runner):
self.script_path = ConfigManager.get(namespace.Stereotype.RUNNER, "blender_script_path") self.script_path = ConfigManager.get(namespace.Stereotype.RUNNER, "blender_script_path")
self.output_dir = ConfigManager.get(namespace.Stereotype.RUNNER, "output_dir") self.output_dir = ConfigManager.get(namespace.Stereotype.RUNNER, "output_dir")
self.voxel_size = ConfigManager.get(namespace.Stereotype.RUNNER, "voxel_size")
''' Pipeline ''' ''' Pipeline '''
self.pipeline_name = self.config[namespace.Stereotype.PIPELINE] self.pipeline_name = self.config[namespace.Stereotype.PIPELINE]
self.pipeline:torch.nn.Module = ComponentFactory.create(namespace.Stereotype.PIPELINE, self.pipeline_name) self.pipeline:torch.nn.Module = ComponentFactory.create(namespace.Stereotype.PIPELINE, self.pipeline_name)
@@ -65,16 +66,11 @@ class Inferencer(Runner):
for dataset_idx, test_set in enumerate(self.test_set_list): for dataset_idx, test_set in enumerate(self.test_set_list):
status_manager.set_progress("inference", "inferencer", f"dataset", dataset_idx, len(self.test_set_list)) status_manager.set_progress("inference", "inferencer", f"dataset", dataset_idx, len(self.test_set_list))
test_set_name = test_set.get_name() test_set_name = test_set.get_name()
test_loader = test_set.get_loader()
if test_loader.batch_size > 1: total=int(len(test_set))
Log.error("Batch size should be 1 for inference, found {} in {}".format(test_loader.batch_size, test_set_name), terminate=True) for i in range(total):
data = test_set.__getitem__(i)
total=int(len(test_loader))
loop = tqdm(enumerate(test_loader), total=total)
for i, data in loop:
status_manager.set_progress("inference", "inferencer", f"Batch[{test_set_name}]", i+1, total) status_manager.set_progress("inference", "inferencer", f"Batch[{test_set_name}]", i+1, total)
test_set.process_batch(data, self.device)
output = self.predict_sequence(data) output = self.predict_sequence(data)
self.save_inference_result(test_set_name, data["scene_name"][0], output) self.save_inference_result(test_set_name, data["scene_name"][0], output)
@@ -88,26 +84,23 @@ class Inferencer(Runner):
''' data for rendering ''' ''' data for rendering '''
scene_path = data["scene_path"][0] scene_path = data["scene_path"][0]
O_to_L_pose = data["O_to_L_pose"][0] O_to_L_pose = data["O_to_L_pose"][0]
voxel_threshold = data["voxel_threshold"][0] voxel_threshold = self.voxel_size
filter_degree = data["filter_degree"][0] filter_degree = 75
model_points_normals = data["model_points_normals"][0] down_sampled_model_pts = data["gt_pts"]
model_pts = model_points_normals[:,:3] import ipdb; ipdb.set_trace()
down_sampled_model_pts = PtsUtil.voxel_downsample_point_cloud(model_pts, voxel_threshold) first_frame_to_world_9d = data["first_scanned_n_to_world_pose_9d"][0]
first_frame_to_world_9d = data["first_to_world_9d"][0] first_frame_to_world = np.eye(4)
first_frame_to_world = torch.eye(4, device=first_frame_to_world_9d.device) first_frame_to_world[:3,:3] = PoseUtil.rotation_6d_to_matrix_numpy(first_frame_to_world_9d[:6])
first_frame_to_world[:3,:3] = PoseUtil.rotation_6d_to_matrix_tensor_batch(first_frame_to_world_9d[:,:6])[0] first_frame_to_world[:3,3] = first_frame_to_world_9d[6:]
first_frame_to_world[:3,3] = first_frame_to_world_9d[0,6:]
first_frame_to_world = first_frame_to_world.to(self.device)
''' data for inference ''' ''' data for inference '''
input_data = {} input_data = {}
input_data["scanned_pts"] = [data["first_pts"][0].to(self.device)] input_data["combined_scanned_pts"] = torch.tensor(data["first_scanned_pts"][0], dtype=torch.float32).to(self.device)
input_data["scanned_n_to_world_pose_9d"] = [data["first_to_world_9d"][0].to(self.device)] input_data["scanned_n_to_world_pose_9d"] = [torch.tensor(data["first_scanned_n_to_world_pose_9d"], dtype=torch.float32).to(self.device)]
input_data["mode"] = namespace.Mode.TEST input_data["mode"] = namespace.Mode.TEST
input_data["combined_scanned_pts"] = data["combined_scanned_pts"] input_pts_N = input_data["combined_scanned_pts"].shape[1]
input_pts_N = input_data["scanned_pts"][0].shape[1]
first_frame_target_pts, _ = RenderUtil.render_pts(first_frame_to_world, scene_path, self.script_path, model_points_normals, voxel_threshold=voxel_threshold, filter_degree=filter_degree, nO_to_nL_pose=O_to_L_pose) first_frame_target_pts, _ = RenderUtil.render_pts(first_frame_to_world, scene_path, self.script_path, down_sampled_model_pts, voxel_threshold=voxel_threshold, filter_degree=filter_degree, nO_to_nL_pose=O_to_L_pose)
scanned_view_pts = [first_frame_target_pts] scanned_view_pts = [first_frame_target_pts]
last_pred_cr = self.compute_coverage_rate(scanned_view_pts, None, down_sampled_model_pts, threshold=voxel_threshold) last_pred_cr = self.compute_coverage_rate(scanned_view_pts, None, down_sampled_model_pts, threshold=voxel_threshold)

View File

@@ -10,7 +10,7 @@ from utils.pts import PtsUtil
class RenderUtil: class RenderUtil:
@staticmethod @staticmethod
def render_pts(cam_pose, scene_path, script_path, model_points_normals, voxel_threshold=0.005, filter_degree=75, nO_to_nL_pose=None, require_full_scene=False): def render_pts(cam_pose, scene_path, script_path, voxel_threshold=0.005, filter_degree=75, nO_to_nL_pose=None, require_full_scene=False):
nO_to_world_pose = DataLoadUtil.get_real_cam_O_from_cam_L(cam_pose, nO_to_nL_pose, scene_path=scene_path) nO_to_world_pose = DataLoadUtil.get_real_cam_O_from_cam_L(cam_pose, nO_to_nL_pose, scene_path=scene_path)
@@ -34,10 +34,10 @@ class RenderUtil:
return None return None
path = os.path.join(temp_dir, "tmp") path = os.path.join(temp_dir, "tmp")
point_cloud = DataLoadUtil.get_target_point_cloud_world_from_path(path, binocular=True) point_cloud = DataLoadUtil.get_target_point_cloud_world_from_path(path, binocular=True)
normals = DataLoadUtil.get_target_normals_world_from_path(path, binocular=True)
cam_params = DataLoadUtil.load_cam_info(path, binocular=True) cam_params = DataLoadUtil.load_cam_info(path, binocular=True)
''' TODO: old code: filter_points api is changed, need to update the code ''' filtered_point_cloud = PtsUtil.filter_points(point_cloud, normals, cam_pose=cam_params["cam_to_world"], voxel_size=voxel_threshold, theta=filter_degree)
filtered_point_cloud = PtsUtil.filter_points(point_cloud, model_points_normals, cam_pose=cam_params["cam_to_world"], voxel_size=voxel_threshold, theta=filter_degree)
full_scene_point_cloud = None full_scene_point_cloud = None
if require_full_scene: if require_full_scene:
depth_L, depth_R = DataLoadUtil.load_depth(path, cam_params['near_plane'], cam_params['far_plane'], binocular=True) depth_L, depth_R = DataLoadUtil.load_depth(path, cam_params['near_plane'], cam_params['far_plane'], binocular=True)