3 Commits

Author SHA1 Message Date
b30e9d535a global_and_local: config 2024-10-29 12:34:37 +00:00
d8c95b6f0c global_and_local: pipeline 2024-10-29 12:32:42 +00:00
ab31ba46a9 global_and_local: config 2024-10-29 12:29:04 +00:00
2 changed files with 12 additions and 27 deletions

View File

@@ -28,7 +28,7 @@ runner:
#- OmniObject3d_test
- OmniObject3d_val
pipeline: nbv_reconstruction_global_pts_n_num_pipeline
pipeline: nbv_reconstruction_pipeline
dataset:
OmniObject3d_train:
@@ -78,7 +78,7 @@ dataset:
pipeline:
nbv_reconstruction_local_pts_pipeline:
nbv_reconstruction_pipeline:
modules:
pts_encoder: pointnet_encoder
seq_encoder: transformer_seq_encoder
@@ -87,25 +87,6 @@ pipeline:
eps: 1e-5
global_scanned_feat: True
nbv_reconstruction_global_pts_pipeline:
modules:
pts_encoder: pointnet_encoder
pose_seq_encoder: transformer_seq_encoder
pose_encoder: pose_encoder
view_finder: gf_view_finder
eps: 1e-5
global_scanned_feat: True
nbv_reconstruction_global_pts_n_num_pipeline:
modules:
pts_encoder: pointnet_encoder
transformer_seq_encoder: transformer_seq_encoder
pose_encoder: pose_encoder
view_finder: gf_view_finder
pts_num_encoder: pts_num_encoder
eps: 1e-5
global_scanned_feat: True
module:
@@ -120,12 +101,12 @@ module:
num_heads: 4
ffn_dim: 256
num_layers: 3
output_dim: 1024
output_dim: 2048
gf_view_finder:
t_feat_dim: 128
pose_feat_dim: 256
main_feat_dim: 2048
main_feat_dim: 3072
regression_head: Rx_Ry_and_T
pose_mode: rot_matrix
per_point_feature: False

View File

@@ -92,7 +92,9 @@ class NBVReconstructionPipeline(nn.Module):
scanned_n_to_world_pose_9d_batch = data[
"scanned_n_to_world_pose_9d"
] # List(B): Tensor(S x 9)
scanned_pts_batch = data[
"scanned_pts"
]
device = next(self.parameters()).device
embedding_list_batch = []
@@ -102,11 +104,13 @@ class NBVReconstructionPipeline(nn.Module):
combined_scanned_pts_batch, require_per_point_feat=False
) # global_scanned_feat: Tensor(B x Dg)
for scanned_n_to_world_pose_9d in scanned_n_to_world_pose_9d_batch:
for scanned_n_to_world_pose_9d, scanned_pts in zip(scanned_n_to_world_pose_9d_batch, scanned_pts_batch):
scanned_n_to_world_pose_9d = scanned_n_to_world_pose_9d.to(device) # Tensor(S x 9)
scanned_pts = scanned_pts.to(device) # Tensor(S x N x 3)
pose_feat_seq = self.pose_encoder.encode_pose(scanned_n_to_world_pose_9d) # Tensor(S x Dp)
seq_embedding = pose_feat_seq
embedding_list_batch.append(seq_embedding) # List(B): Tensor(S x (Dp))
pts_feat_seq = self.pts_encoder.encode_points(scanned_pts, require_per_point_feat=False) # Tensor(S x Dl)
seq_embedding = torch.cat([pose_feat_seq, pts_feat_seq], dim=-1) # Tensor(S x (Dp+Dl))
embedding_list_batch.append(seq_embedding) # List(B): Tensor(S x (Dp+Dl))
seq_feat = self.transformer_seq_encoder.encode_sequence(embedding_list_batch) # Tensor(B x Ds)
main_feat = torch.cat([seq_feat, global_scanned_feat], dim=-1) # Tensor(B x (Ds+Dg))