Compare commits
2 Commits
ab_global_
...
e23697eb87
Author | SHA1 | Date | |
---|---|---|---|
e23697eb87 | |||
2487039445 |
@@ -7,7 +7,7 @@ runner:
|
||||
parallel: False
|
||||
|
||||
experiment:
|
||||
name: overfit_ab_global_and_local
|
||||
name: overfit_ab_global_only
|
||||
root_dir: "experiments"
|
||||
use_checkpoint: False
|
||||
epoch: -1 # -1 stands for last epoch
|
||||
@@ -39,7 +39,7 @@ dataset:
|
||||
type: train
|
||||
cache: True
|
||||
ratio: 1
|
||||
batch_size: 32
|
||||
batch_size: 80
|
||||
num_workers: 16
|
||||
pts_num: 8192
|
||||
load_from_preprocess: True
|
||||
@@ -55,7 +55,7 @@ dataset:
|
||||
eval_list:
|
||||
- pose_diff
|
||||
ratio: 1
|
||||
batch_size: 32
|
||||
batch_size: 80
|
||||
num_workers: 12
|
||||
pts_num: 8192
|
||||
load_from_preprocess: True
|
||||
@@ -71,7 +71,7 @@ dataset:
|
||||
eval_list:
|
||||
- pose_diff
|
||||
ratio: 1
|
||||
batch_size: 32
|
||||
batch_size: 80
|
||||
num_workers: 12
|
||||
pts_num: 8192
|
||||
load_from_preprocess: True
|
||||
@@ -92,21 +92,21 @@ module:
|
||||
|
||||
pointnet_encoder:
|
||||
in_dim: 3
|
||||
out_dim: 512
|
||||
out_dim: 1024
|
||||
global_feat: True
|
||||
feature_transform: False
|
||||
|
||||
transformer_seq_encoder:
|
||||
embed_dim: 768
|
||||
embed_dim: 256
|
||||
num_heads: 4
|
||||
ffn_dim: 256
|
||||
num_layers: 3
|
||||
output_dim: 2048
|
||||
output_dim: 1024
|
||||
|
||||
gf_view_finder:
|
||||
t_feat_dim: 128
|
||||
pose_feat_dim: 256
|
||||
main_feat_dim: 2560
|
||||
main_feat_dim: 2048
|
||||
regression_head: Rx_Ry_and_T
|
||||
pose_mode: rot_matrix
|
||||
per_point_feature: False
|
||||
|
@@ -206,11 +206,9 @@ class NBVReconstructionDataset(BaseDataset):
|
||||
collate_data["combined_scanned_pts"] = torch.stack(
|
||||
[torch.tensor(item["combined_scanned_pts"]) for item in batch]
|
||||
)
|
||||
|
||||
for key in batch[0].keys():
|
||||
if key not in [
|
||||
"scanned_pts",
|
||||
"scanned_pts_mask",
|
||||
"scanned_n_to_world_pose_9d",
|
||||
"best_to_world_pose_9d",
|
||||
"combined_scanned_pts",
|
||||
|
@@ -29,7 +29,6 @@ class NBVReconstructionPipeline(nn.Module):
|
||||
|
||||
|
||||
self.eps = float(self.config["eps"])
|
||||
self.enable_global_scanned_feat = self.config["global_scanned_feat"]
|
||||
|
||||
def forward(self, data):
|
||||
mode = data["mode"]
|
||||
@@ -92,9 +91,7 @@ class NBVReconstructionPipeline(nn.Module):
|
||||
scanned_n_to_world_pose_9d_batch = data[
|
||||
"scanned_n_to_world_pose_9d"
|
||||
] # List(B): Tensor(S x 9)
|
||||
scanned_pts_batch = data[
|
||||
"scanned_pts"
|
||||
]
|
||||
|
||||
device = next(self.parameters()).device
|
||||
|
||||
embedding_list_batch = []
|
||||
@@ -104,13 +101,11 @@ class NBVReconstructionPipeline(nn.Module):
|
||||
combined_scanned_pts_batch, require_per_point_feat=False
|
||||
) # global_scanned_feat: Tensor(B x Dg)
|
||||
|
||||
for scanned_n_to_world_pose_9d, scanned_pts in zip(scanned_n_to_world_pose_9d_batch, scanned_pts_batch):
|
||||
for scanned_n_to_world_pose_9d in scanned_n_to_world_pose_9d_batch:
|
||||
scanned_n_to_world_pose_9d = scanned_n_to_world_pose_9d.to(device) # Tensor(S x 9)
|
||||
scanned_pts = scanned_pts.to(device) # Tensor(S x N x 3)
|
||||
pose_feat_seq = self.pose_encoder.encode_pose(scanned_n_to_world_pose_9d) # Tensor(S x Dp)
|
||||
pts_feat_seq = self.pts_encoder.encode_points(scanned_pts, require_per_point_feat=False) # Tensor(S x Dl)
|
||||
seq_embedding = torch.cat([pose_feat_seq, pts_feat_seq], dim=-1) # Tensor(S x (Dp+Dl))
|
||||
embedding_list_batch.append(seq_embedding) # List(B): Tensor(S x (Dp+Dl))
|
||||
seq_embedding = pose_feat_seq
|
||||
embedding_list_batch.append(seq_embedding) # List(B): Tensor(S x (Dp))
|
||||
|
||||
seq_feat = self.seq_encoder.encode_sequence(embedding_list_batch) # Tensor(B x Ds)
|
||||
main_feat = torch.cat([seq_feat, global_scanned_feat], dim=-1) # Tensor(B x (Ds+Dg))
|
||||
|
Reference in New Issue
Block a user