2 Commits

Author SHA1 Message Date
e23697eb87 global_only: debug 2024-10-29 16:21:30 +00:00
2487039445 global_only: config 2024-10-29 12:18:51 +00:00
3 changed files with 12 additions and 19 deletions

View File

@@ -7,7 +7,7 @@ runner:
parallel: False
experiment:
name: overfit_ab_global_and_local
name: overfit_ab_global_only
root_dir: "experiments"
use_checkpoint: False
epoch: -1 # -1 stands for last epoch
@@ -39,7 +39,7 @@ dataset:
type: train
cache: True
ratio: 1
batch_size: 32
batch_size: 80
num_workers: 16
pts_num: 8192
load_from_preprocess: True
@@ -55,7 +55,7 @@ dataset:
eval_list:
- pose_diff
ratio: 1
batch_size: 32
batch_size: 80
num_workers: 12
pts_num: 8192
load_from_preprocess: True
@@ -71,7 +71,7 @@ dataset:
eval_list:
- pose_diff
ratio: 1
batch_size: 32
batch_size: 80
num_workers: 12
pts_num: 8192
load_from_preprocess: True
@@ -92,21 +92,21 @@ module:
pointnet_encoder:
in_dim: 3
out_dim: 512
out_dim: 1024
global_feat: True
feature_transform: False
transformer_seq_encoder:
embed_dim: 768
embed_dim: 256
num_heads: 4
ffn_dim: 256
num_layers: 3
output_dim: 2048
output_dim: 1024
gf_view_finder:
t_feat_dim: 128
pose_feat_dim: 256
main_feat_dim: 2560
main_feat_dim: 2048
regression_head: Rx_Ry_and_T
pose_mode: rot_matrix
per_point_feature: False

View File

@@ -206,11 +206,9 @@ class NBVReconstructionDataset(BaseDataset):
collate_data["combined_scanned_pts"] = torch.stack(
[torch.tensor(item["combined_scanned_pts"]) for item in batch]
)
for key in batch[0].keys():
if key not in [
"scanned_pts",
"scanned_pts_mask",
"scanned_n_to_world_pose_9d",
"best_to_world_pose_9d",
"combined_scanned_pts",

View File

@@ -29,7 +29,6 @@ class NBVReconstructionPipeline(nn.Module):
self.eps = float(self.config["eps"])
self.enable_global_scanned_feat = self.config["global_scanned_feat"]
def forward(self, data):
mode = data["mode"]
@@ -92,9 +91,7 @@ class NBVReconstructionPipeline(nn.Module):
scanned_n_to_world_pose_9d_batch = data[
"scanned_n_to_world_pose_9d"
] # List(B): Tensor(S x 9)
scanned_pts_batch = data[
"scanned_pts"
]
device = next(self.parameters()).device
embedding_list_batch = []
@@ -104,13 +101,11 @@ class NBVReconstructionPipeline(nn.Module):
combined_scanned_pts_batch, require_per_point_feat=False
) # global_scanned_feat: Tensor(B x Dg)
for scanned_n_to_world_pose_9d, scanned_pts in zip(scanned_n_to_world_pose_9d_batch, scanned_pts_batch):
for scanned_n_to_world_pose_9d in scanned_n_to_world_pose_9d_batch:
scanned_n_to_world_pose_9d = scanned_n_to_world_pose_9d.to(device) # Tensor(S x 9)
scanned_pts = scanned_pts.to(device) # Tensor(S x N x 3)
pose_feat_seq = self.pose_encoder.encode_pose(scanned_n_to_world_pose_9d) # Tensor(S x Dp)
pts_feat_seq = self.pts_encoder.encode_points(scanned_pts, require_per_point_feat=False) # Tensor(S x Dl)
seq_embedding = torch.cat([pose_feat_seq, pts_feat_seq], dim=-1) # Tensor(S x (Dp+Dl))
embedding_list_batch.append(seq_embedding) # List(B): Tensor(S x (Dp+Dl))
seq_embedding = pose_feat_seq
embedding_list_batch.append(seq_embedding) # List(B): Tensor(S x (Dp))
seq_feat = self.seq_encoder.encode_sequence(embedding_list_batch) # Tensor(B x Ds)
main_feat = torch.cat([seq_feat, global_scanned_feat], dim=-1) # Tensor(B x (Ds+Dg))