5 Commits

Author SHA1 Message Date
1862dce077 upd 2024-10-29 17:09:36 +00:00
420e9c97bd update 2024-10-29 16:59:03 +00:00
b3a7650d3e local_only: debug 2024-10-29 16:54:42 +00:00
8d7299b482 local_only: dataset 2024-10-29 12:40:06 +00:00
234c8bccc3 local_only: pipeline 2024-10-29 12:39:06 +00:00
3 changed files with 4 additions and 18 deletions

View File

@@ -3,11 +3,11 @@ runner:
general:
seed: 0
device: cuda
cuda_visible_devices: "0"
cuda_visible_devices: "1"
parallel: False
experiment:
name: overfit_ab_global_and_local
name: overfit_ab_local_only
root_dir: "experiments"
use_checkpoint: False
epoch: -1 # -1 stands for last epoch
@@ -106,7 +106,7 @@ module:
gf_view_finder:
t_feat_dim: 128
pose_feat_dim: 256
main_feat_dim: 2560
main_feat_dim: 2048
regression_head: Rx_Ry_and_T
pose_mode: rot_matrix
per_point_feature: False

View File

@@ -165,13 +165,8 @@ class NBVReconstructionDataset(BaseDataset):
[best_to_world_6d, best_to_world_trans], axis=0
)
combined_scanned_views_pts = np.concatenate(scanned_views_pts, axis=0)
voxel_downsampled_combined_scanned_pts_np = PtsUtil.voxel_downsample_point_cloud(combined_scanned_views_pts, 0.002)
random_downsampled_combined_scanned_pts_np = PtsUtil.random_downsample_point_cloud(voxel_downsampled_combined_scanned_pts_np, self.pts_num)
data_item = {
"scanned_pts": np.asarray(scanned_views_pts, dtype=np.float32), # Ndarray(S x Nv x 3)
"combined_scanned_pts": np.asarray(random_downsampled_combined_scanned_pts_np, dtype=np.float32), # Ndarray(N x 3)
"scanned_coverage_rate": scanned_coverages_rate, # List(S): Float, range(0, 1)
"scanned_n_to_world_pose_9d": np.asarray(scanned_n_to_world_pose, dtype=np.float32), # Ndarray(S x 9)
"best_coverage_rate": nbv_coverage_rate, # Float, range(0, 1)
@@ -203,9 +198,6 @@ class NBVReconstructionDataset(BaseDataset):
collate_data["best_to_world_pose_9d"] = torch.stack(
[torch.tensor(item["best_to_world_pose_9d"]) for item in batch]
)
collate_data["combined_scanned_pts"] = torch.stack(
[torch.tensor(item["combined_scanned_pts"]) for item in batch]
)
for key in batch[0].keys():
if key not in [
@@ -213,7 +205,6 @@ class NBVReconstructionDataset(BaseDataset):
"scanned_pts_mask",
"scanned_n_to_world_pose_9d",
"best_to_world_pose_9d",
"combined_scanned_pts",
]:
collate_data[key] = [item[key] for item in batch]
return collate_data

View File

@@ -99,11 +99,6 @@ class NBVReconstructionPipeline(nn.Module):
embedding_list_batch = []
combined_scanned_pts_batch = data["combined_scanned_pts"] # Tensor(B x N x 3)
global_scanned_feat = self.pts_encoder.encode_points(
combined_scanned_pts_batch, require_per_point_feat=False
) # global_scanned_feat: Tensor(B x Dg)
for scanned_n_to_world_pose_9d, scanned_pts in zip(scanned_n_to_world_pose_9d_batch, scanned_pts_batch):
scanned_n_to_world_pose_9d = scanned_n_to_world_pose_9d.to(device) # Tensor(S x 9)
scanned_pts = scanned_pts.to(device) # Tensor(S x N x 3)
@@ -113,7 +108,7 @@ class NBVReconstructionPipeline(nn.Module):
embedding_list_batch.append(seq_embedding) # List(B): Tensor(S x (Dp+Dl))
seq_feat = self.seq_encoder.encode_sequence(embedding_list_batch) # Tensor(B x Ds)
main_feat = torch.cat([seq_feat, global_scanned_feat], dim=-1) # Tensor(B x (Ds+Dg))
main_feat = seq_feat # Tensor(B x Ds)
if torch.isnan(main_feat).any():
Log.error("nan in main_feat", True)