15 Commits

Author SHA1 Message Date
1123e69bff fix nan 2024-10-31 12:02:48 +00:00
5e8684d149 debug 2024-10-31 11:13:37 +00:00
96fa40cc35 global_and_partial_global: upd 2024-10-30 15:34:15 +00:00
b82b92eebb global_and_partial_global: all 2024-10-30 11:49:45 +00:00
2487039445 global_only: config 2024-10-29 12:18:51 +00:00
f533104e4a global_only: pipeline 2024-10-29 12:04:54 +00:00
a21538c90a global_only: dataset 2024-10-29 11:41:44 +00:00
872405e239 remove fps 2024-10-29 11:23:28 +00:00
b13e45bafc solve merge 2024-10-29 08:14:43 +00:00
63a246c0c8 debug new training 2024-10-28 19:15:48 +00:00
9e39c6c6c9 solve merge 2024-10-28 18:27:16 +00:00
3c9e2c8d12 solve merge 2024-10-28 18:25:53 +00:00
bd27226f0f solve merge 2024-10-25 14:40:26 +00:00
0f61e1d64d Merge branch 'master' of https://git.hofee.top/hofee/nbv_reconstruction 2024-10-21 07:33:40 +00:00
9ca0851bf7 debug pipeline 2024-10-21 07:33:32 +00:00
11 changed files with 170 additions and 121 deletions

View File

@@ -5,5 +5,5 @@ from runners.data_spliter import DataSpliter
class DataSplitApp:
@staticmethod
def start():
DataSpliter("configs/server/split_dataset_config.yaml").run()
DataSpliter("configs/server/server_split_dataset_config.yaml").run()

View File

@@ -22,8 +22,6 @@ runner:
datasets:
OmniObject3d:
root_dir: /home/data/hofee/project/nbv_rec_part2_preprocessed
from: 960
to: 1000 # -1 means end
root_dir: /data/hofee/nbv_rec_part2_preprocessed
from: 155
to: 165 # ..-1 means end

View File

@@ -84,7 +84,7 @@ module:
gf_view_finder:
t_feat_dim: 128
pose_feat_dim: 256
main_feat_dim: 2048
main_feat_dim: 3072
regression_head: Rx_Ry_and_T
pose_mode: rot_matrix
per_point_feature: False

View File

@@ -0,0 +1,22 @@
runner:
general:
seed: 0
device: cpu
cuda_visible_devices: "0,1,2,3,4,5,6,7"
experiment:
name: server_split_dataset
root_dir: "experiments"
split: #
root_dir: "/data/hofee/data/new_full_data"
type: "unseen_instance" # "unseen_category"
datasets:
OmniObject3d_train:
path: "/data/hofee/data/new_full_data_list/OmniObject3d_train.txt"
ratio: 0.9
OmniObject3d_test:
path: "/data/hofee/data/new_full_data_list/OmniObject3d_test.txt"
ratio: 0.1

View File

@@ -7,13 +7,13 @@ runner:
parallel: False
experiment:
name: full_w_global_feat_wo_local_pts_feat
name: train_ab_global_and_partial_global
root_dir: "experiments"
use_checkpoint: False
epoch: -1 # -1 stands for last epoch
max_epochs: 5000
save_checkpoint_interval: 1
test_first: True
test_first: False
train:
optimizer:
@@ -25,60 +25,60 @@ runner:
test:
frequency: 3 # test frequency
dataset_list:
- OmniObject3d_test
#- OmniObject3d_test
- OmniObject3d_val
pipeline: nbv_reconstruction_global_pts_pipeline
pipeline: nbv_reconstruction_pipeline
dataset:
OmniObject3d_train:
root_dir: "/home/data/hofee/project/nbv_rec/data/nbv_rec_data_512_preproc_npy"
root_dir: "/data/hofee/data/new_full_data"
model_dir: "../data/scaled_object_meshes"
source: nbv_reconstruction_dataset
split_file: "/home/data/hofee/project/nbv_rec/data/OmniObject3d_train.txt"
split_file: "/data/hofee/data/new_full_data_list/OmniObject3d_train.txt"
type: train
cache: True
ratio: 1
batch_size: 160
num_workers: 16
pts_num: 4096
batch_size: 80
num_workers: 128
pts_num: 8192
load_from_preprocess: True
OmniObject3d_test:
root_dir: "/home/data/hofee/project/nbv_rec/data/nbv_rec_data_512_preproc_npy"
root_dir: "/data/hofee/data/new_full_data"
model_dir: "../data/scaled_object_meshes"
source: nbv_reconstruction_dataset
split_file: "/home/data/hofee/project/nbv_rec/data/OmniObject3d_test.txt"
split_file: "/data/hofee/data/new_full_data_list/OmniObject3d_test.txt"
type: test
cache: True
filter_degree: 75
eval_list:
- pose_diff
ratio: 0.05
batch_size: 160
ratio: 1
batch_size: 80
num_workers: 12
pts_num: 4096
pts_num: 8192
load_from_preprocess: True
OmniObject3d_val:
root_dir: "/home/data/hofee/project/nbv_rec/data/nbv_rec_data_512_preproc_npy"
root_dir: "/data/hofee/data/new_full_data"
model_dir: "../data/scaled_object_meshes"
source: nbv_reconstruction_dataset
split_file: "/home/data/hofee/project/nbv_rec/data/OmniObject3d_train.txt"
split_file: "/data/hofee/data/new_full_data_list/OmniObject3d_train.txt"
type: test
cache: True
filter_degree: 75
eval_list:
- pose_diff
ratio: 0.005
batch_size: 160
ratio: 0.1
batch_size: 80
num_workers: 12
pts_num: 4096
pts_num: 8192
load_from_preprocess: True
pipeline:
nbv_reconstruction_local_pts_pipeline:
nbv_reconstruction_pipeline:
modules:
pts_encoder: pointnet_encoder
seq_encoder: transformer_seq_encoder
@@ -87,16 +87,6 @@ pipeline:
eps: 1e-5
global_scanned_feat: True
nbv_reconstruction_global_pts_pipeline:
modules:
pts_encoder: pointnet_encoder
pose_seq_encoder: transformer_seq_encoder
pose_encoder: pose_encoder
view_finder: gf_view_finder
eps: 1e-5
global_scanned_feat: True
module:
@@ -107,11 +97,11 @@ module:
feature_transform: False
transformer_seq_encoder:
embed_dim: 1344
embed_dim: 320
num_heads: 4
ffn_dim: 256
num_layers: 3
output_dim: 2048
output_dim: 1024
gf_view_finder:
t_feat_dim: 128
@@ -128,6 +118,9 @@ module:
pose_dim: 9
out_dim: 256
pts_num_encoder:
out_dim: 64
loss_function:
gf_loss:

View File

@@ -7,8 +7,9 @@ from PytorchBoot.utils.log_util import Log
import torch
import os
import sys
import time
sys.path.append(r"/home/data/hofee/project/nbv_rec/nbv_reconstruction")
sys.path.append(r"/data/hofee/project/nbv_rec/nbv_reconstruction")
from utils.data_load import DataLoadUtil
from utils.pose import PoseUtil
@@ -31,7 +32,7 @@ class NBVReconstructionDataset(BaseDataset):
self.load_from_preprocess = config.get("load_from_preprocess", False)
if self.type == namespace.Mode.TEST:
self.model_dir = config["model_dir"]
#self.model_dir = config["model_dir"]
self.filter_degree = config["filter_degree"]
if self.type == namespace.Mode.TRAIN:
scale_ratio = 1
@@ -66,7 +67,9 @@ class NBVReconstructionDataset(BaseDataset):
if max_coverage_rate > scene_max_coverage_rate:
scene_max_coverage_rate = max_coverage_rate
max_coverage_rate_list.append(max_coverage_rate)
mean_coverage_rate = np.mean(max_coverage_rate_list)
if max_coverage_rate_list:
mean_coverage_rate = np.mean(max_coverage_rate_list)
for seq_idx in range(seq_num):
label_path = DataLoadUtil.get_label_path(
@@ -112,6 +115,15 @@ class NBVReconstructionDataset(BaseDataset):
except Exception as e:
Log.error(f"Save cache failed: {e}")
def voxel_downsample_with_mapping(self, point_cloud, voxel_size=0.003):
voxel_indices = np.floor(point_cloud / voxel_size).astype(np.int32)
unique_voxels, inverse, counts = np.unique(voxel_indices, axis=0, return_inverse=True, return_counts=True)
idx_sort = np.argsort(inverse)
idx_unique = idx_sort[np.cumsum(counts)-counts]
downsampled_points = point_cloud[idx_unique]
return downsampled_points, inverse
def __getitem__(self, index):
data_item_info = self.datalist[index]
scanned_views = data_item_info["scanned_views"]
@@ -122,7 +134,10 @@ class NBVReconstructionDataset(BaseDataset):
scanned_views_pts,
scanned_coverages_rate,
scanned_n_to_world_pose,
) = ([], [], [], [])
) = ([], [], [])
start_time = time.time()
start_indices = [0]
total_points = 0
for view in scanned_views:
frame_idx = view[0]
coverage_rate = view[1]
@@ -144,8 +159,12 @@ class NBVReconstructionDataset(BaseDataset):
n_to_world_trans = n_to_world_pose[:3, 3]
n_to_world_9d = np.concatenate([n_to_world_6d, n_to_world_trans], axis=0)
scanned_n_to_world_pose.append(n_to_world_9d)
total_points += len(downsampled_target_point_cloud)
start_indices.append(total_points)
end_time = time.time()
#Log.info(f"load data time: {end_time - start_time}")
nbv_idx, nbv_coverage_rate = nbv[0], nbv[1]
nbv_path = DataLoadUtil.get_path(self.root_dir, scene_name, nbv_idx)
cam_info = DataLoadUtil.load_cam_info(nbv_path)
@@ -158,29 +177,27 @@ class NBVReconstructionDataset(BaseDataset):
best_to_world_9d = np.concatenate(
[best_to_world_6d, best_to_world_trans], axis=0
)
combined_scanned_views_pts = np.concatenate(scanned_views_pts, axis=0)
fps_downsampled_combined_scanned_pts, fps_idx = PtsUtil.fps_downsample_point_cloud(
combined_scanned_views_pts, self.pts_num, require_idx=True
)
combined_scanned_views_pts_mask = np.zeros(len(scanned_views_pts), dtype=np.uint8)
start_idx = 0
for i in range(len(scanned_views_pts)):
end_idx = start_idx + len(scanned_views_pts[i])
combined_scanned_views_pts_mask[start_idx:end_idx] = i
start_idx = end_idx
fps_downsampled_combined_scanned_pts_mask = combined_scanned_views_pts_mask[fps_idx]
voxel_downsampled_combined_scanned_pts_np, inverse = self.voxel_downsample_with_mapping(combined_scanned_views_pts, 0.003)
random_downsampled_combined_scanned_pts_np, random_downsample_idx = PtsUtil.random_downsample_point_cloud(voxel_downsampled_combined_scanned_pts_np, self.pts_num, require_idx=True)
all_idx_unique = np.arange(len(voxel_downsampled_combined_scanned_pts_np))
all_random_downsample_idx = all_idx_unique[random_downsample_idx]
scanned_pts_mask = []
for idx, start_idx in enumerate(start_indices):
if idx == len(start_indices) - 1:
break
end_idx = start_indices[idx+1]
view_inverse = inverse[start_idx:end_idx]
view_unique_downsampled_idx = np.unique(view_inverse)
view_unique_downsampled_idx_set = set(view_unique_downsampled_idx)
mask = np.array([idx in view_unique_downsampled_idx_set for idx in all_random_downsample_idx])
scanned_pts_mask.append(mask)
data_item = {
"scanned_pts": np.asarray(scanned_views_pts, dtype=np.float32), # Ndarray(S x Nv x 3)
"scanned_pts_mask": np.asarray(fps_downsampled_combined_scanned_pts_mask,dtype=np.uint8), # Ndarray(N), range(0, S)
"combined_scanned_pts": np.asarray(fps_downsampled_combined_scanned_pts, dtype=np.float32), # Ndarray(N x 3)
"combined_scanned_pts": np.asarray(random_downsampled_combined_scanned_pts_np, dtype=np.float32), # Ndarray(N x 3)
"scanned_pts_mask": np.asarray(scanned_pts_mask, dtype=np.bool), # Ndarray(N)
"scanned_coverage_rate": scanned_coverages_rate, # List(S): Float, range(0, 1)
"scanned_n_to_world_pose_9d": np.asarray(scanned_n_to_world_pose, dtype=np.float32), # Ndarray(S x 9)
"best_coverage_rate": nbv_coverage_rate, # Float, range(0, 1)
@@ -206,7 +223,9 @@ class NBVReconstructionDataset(BaseDataset):
collate_data["scanned_n_to_world_pose_9d"] = [
torch.tensor(item["scanned_n_to_world_pose_9d"]) for item in batch
]
collate_data["scanned_pts_mask"] = [
torch.tensor(item["scanned_pts_mask"]) for item in batch
]
''' ------ Fixed Length ------ '''
collate_data["best_to_world_pose_9d"] = torch.stack(
@@ -215,17 +234,14 @@ class NBVReconstructionDataset(BaseDataset):
collate_data["combined_scanned_pts"] = torch.stack(
[torch.tensor(item["combined_scanned_pts"]) for item in batch]
)
collate_data["scanned_pts_mask"] = torch.stack(
[torch.tensor(item["scanned_pts_mask"]) for item in batch]
)
for key in batch[0].keys():
if key not in [
"scanned_pts",
"scanned_pts_mask",
"scanned_n_to_world_pose_9d",
"best_to_world_pose_9d",
"combined_scanned_pts",
"scanned_pts_mask",
]:
collate_data[key] = [item[key] for item in batch]
return collate_data
@@ -241,10 +257,9 @@ if __name__ == "__main__":
torch.manual_seed(seed)
np.random.seed(seed)
config = {
"root_dir": "/home/data/hofee/project/nbv_rec/data/nbv_rec_data_512_preproc_npy",
"model_dir": "/home/data/hofee/project/nbv_rec/data/scaled_object_meshes",
"root_dir": "/data/hofee/nbv_rec_part2_preprocessed",
"source": "nbv_reconstruction_dataset",
"split_file": "/home/data/hofee/project/nbv_rec/data/OmniObject3d_test.txt",
"split_file": "/data/hofee/data/sample.txt",
"load_from_preprocess": True,
"ratio": 0.5,
"batch_size": 2,

View File

@@ -1,4 +1,5 @@
import torch
import time
from torch import nn
import PytorchBoot.namespace as namespace
import PytorchBoot.stereotype as stereotype
@@ -6,10 +7,10 @@ from PytorchBoot.factory.component_factory import ComponentFactory
from PytorchBoot.utils import Log
@stereotype.pipeline("nbv_reconstruction_global_pts_n_num_pipeline")
class NBVReconstructionGlobalPointsPipeline(nn.Module):
@stereotype.pipeline("nbv_reconstruction_pipeline")
class NBVReconstructionPipeline(nn.Module):
def __init__(self, config):
super(NBVReconstructionGlobalPointsPipeline, self).__init__()
super(NBVReconstructionPipeline, self).__init__()
self.config = config
self.module_config = config["modules"]
@@ -19,12 +20,8 @@ class NBVReconstructionGlobalPointsPipeline(nn.Module):
self.pose_encoder = ComponentFactory.create(
namespace.Stereotype.MODULE, self.module_config["pose_encoder"]
)
self.pts_num_encoder = ComponentFactory.create(
namespace.Stereotype.MODULE, self.module_config["pts_num_encoder"]
)
self.transformer_seq_encoder = ComponentFactory.create(
namespace.Stereotype.MODULE, self.module_config["transformer_seq_encoder"]
self.seq_encoder = ComponentFactory.create(
namespace.Stereotype.MODULE, self.module_config["seq_encoder"]
)
self.view_finder = ComponentFactory.create(
namespace.Stereotype.MODULE, self.module_config["view_finder"]
@@ -32,7 +29,6 @@ class NBVReconstructionGlobalPointsPipeline(nn.Module):
self.eps = float(self.config["eps"])
self.enable_global_scanned_feat = self.config["global_scanned_feat"]
def forward(self, data):
mode = data["mode"]
@@ -92,50 +88,50 @@ class NBVReconstructionGlobalPointsPipeline(nn.Module):
scanned_n_to_world_pose_9d_batch = data[
"scanned_n_to_world_pose_9d"
] # List(B): Tensor(S x 9)
scanned_pts_mask_batch = data[
"scanned_pts_mask"
] # Tensor(B x N)
scanned_pts_mask_batch = data["scanned_pts_mask"] # List(B): Tensor(N)
device = next(self.parameters()).device
embedding_list_batch = []
combined_scanned_pts_batch = data["combined_scanned_pts"] # Tensor(B x N x 3)
global_scanned_feat, perpoint_scanned_feat_batch = self.pts_encoder.encode_points(
global_scanned_feat, per_point_feat_batch = self.pts_encoder.encode_points(
combined_scanned_pts_batch, require_per_point_feat=True
) # global_scanned_feat: Tensor(B x Dg), perpoint_scanned_feat: Tensor(B x N x Dl)
for scanned_n_to_world_pose_9d, scanned_mask, perpoint_scanned_feat in zip(
scanned_n_to_world_pose_9d_batch,
scanned_pts_mask_batch,
perpoint_scanned_feat_batch,
):
scanned_target_pts_num = [] # List(S): Int
partial_feat_seq = []
) # global_scanned_feat: Tensor(B x Dg)
batch_size = len(scanned_n_to_world_pose_9d_batch)
for i in range(batch_size):
seq_len = len(scanned_n_to_world_pose_9d_batch[i])
scanned_n_to_world_pose_9d = scanned_n_to_world_pose_9d_batch[i].to(device) # Tensor(S x 9)
scanned_pts_mask = scanned_pts_mask_batch[i] # Tensor(S x N)
per_point_feat = per_point_feat_batch[i] # Tensor(N x Dp)
partial_point_feat_seq = []
for j in range(seq_len):
partial_per_point_feat = per_point_feat[scanned_pts_mask[j]]
if partial_per_point_feat.shape[0] == 0:
partial_point_feat = torch.zeros(per_point_feat.shape[1], device=device)
else:
partial_point_feat = torch.mean(partial_per_point_feat, dim=0) # Tensor(Dp)
partial_point_feat_seq.append(partial_point_feat)
partial_point_feat_seq = torch.stack(partial_point_feat_seq, dim=0) # Tensor(S x Dp)
seq_len = len(scanned_n_to_world_pose_9d)
for seq_idx in range(seq_len):
partial_idx_in_combined_pts = scanned_mask == seq_idx # Ndarray(V), N->V idx mask
partial_perpoint_feat = perpoint_scanned_feat[partial_idx_in_combined_pts] # Ndarray(V x Dl)
partial_feat = torch.mean(partial_perpoint_feat, dim=0)[0] # Tensor(Dl)
partial_feat_seq.append(partial_feat)
scanned_target_pts_num.append(partial_perpoint_feat.shape[0])
scanned_target_pts_num = torch.tensor(scanned_target_pts_num, dtype=torch.int32).to(device) # Tensor(S)
scanned_n_to_world_pose_9d = scanned_n_to_world_pose_9d.to(device) # Tensor(S x 9)
pose_feat_seq = self.pose_encoder.encode_pose(scanned_n_to_world_pose_9d) # Tensor(S x Dp)
pts_num_feat_seq = self.pts_num_encoder.encode_pts_num(scanned_target_pts_num) # Tensor(S x Dn)
partial_feat_seq = torch.stack(partial_feat_seq) # Tensor(S x Dl)
seq_embedding = torch.cat([pose_feat_seq, pts_num_feat_seq, partial_feat_seq], dim=-1) # Tensor(S x (Dp+Dn+Dl))
embedding_list_batch.append(seq_embedding) # List(B): Tensor(S x (Dp+Dn+Dl))
seq_feat = self.transformer_seq_encoder.encode_sequence(embedding_list_batch) # Tensor(B x Ds)
pose_feat_seq = self.pose_encoder.encode_pose(scanned_n_to_world_pose_9d) # Tensor(S x Dp)
seq_embedding = torch.cat([partial_point_feat_seq, pose_feat_seq], dim=-1)
embedding_list_batch.append(seq_embedding) # List(B): Tensor(S x (Dp))
seq_feat = self.seq_encoder.encode_sequence(embedding_list_batch) # Tensor(B x Ds)
main_feat = torch.cat([seq_feat, global_scanned_feat], dim=-1) # Tensor(B x (Ds+Dg))
if torch.isnan(main_feat).any():
for i in range(len(main_feat)):
if torch.isnan(main_feat[i]).any():
scanned_pts_mask = scanned_pts_mask_batch[i]
Log.info(f"scanned_pts_mask shape: {scanned_pts_mask.shape}")
Log.info(f"scanned_pts_mask sum: {scanned_pts_mask.sum()}")
import ipdb
ipdb.set_trace()
Log.error("nan in main_feat", True)
return main_feat

View File

@@ -93,10 +93,8 @@ class StrategyGenerator(Runner):
else:
nrm = np.load(nrm_path)
nrm_list.append(nrm)
indices = np.load(idx_path)
pts_list.append(pts)
indices = np.load(idx_path)
scan_points_indices_list.append(indices)
if pts.shape[0] > 0:
non_zero_cnt += 1

View File

@@ -53,6 +53,8 @@ class DataLoadUtil:
@staticmethod
def get_label_num(root, scene_name):
label_dir = os.path.join(root, scene_name, "label")
if not os.path.exists(label_dir):
return 0
return len(os.listdir(label_dir))
@staticmethod

View File

@@ -14,16 +14,38 @@ class PtsUtil:
downsampled_points = point_cloud[idx_unique]
return downsampled_points, idx_unique
else:
unique_voxels = np.unique(voxel_indices, axis=0, return_inverse=True)
return unique_voxels[0]*voxel_size
import ipdb; ipdb.set_trace()
unique_voxels = np.unique(voxel_indices, axis=0, return_inverse=False)
return unique_voxels*voxel_size
@staticmethod
def voxel_downsample_point_cloud_o3d(point_cloud, voxel_size=0.005):
pcd = o3d.geometry.PointCloud()
pcd.points = o3d.utility.Vector3dVector(point_cloud)
pcd = pcd.voxel_down_sample(voxel_size)
return np.asarray(pcd.points)
@staticmethod
def random_downsample_point_cloud(point_cloud, num_points, require_idx=False):
def voxel_downsample_point_cloud_and_trace_o3d(point_cloud, voxel_size=0.005):
pcd = o3d.geometry.PointCloud()
pcd.points = o3d.utility.Vector3dVector(point_cloud)
max_bound = pcd.get_max_bound()
min_bound = pcd.get_min_bound()
pcd = pcd.voxel_down_sample_and_trace(voxel_size, max_bound, min_bound, True)
return np.asarray(pcd.points)
@staticmethod
def random_downsample_point_cloud(point_cloud, num_points, require_idx=False, replace=True):
if point_cloud.shape[0] == 0:
if require_idx:
return point_cloud, np.array([])
return point_cloud
idx = np.random.choice(len(point_cloud), num_points, replace=True)
if not replace and num_points > len(point_cloud):
if require_idx:
return point_cloud, np.arange(len(point_cloud))
return point_cloud
idx = np.random.choice(len(point_cloud), num_points, replace=replace)
if require_idx:
return point_cloud[idx], idx
return point_cloud[idx]

View File

@@ -75,6 +75,7 @@ class ReconstructionUtil:
cnt_processed_view = 0
remaining_views.remove(init_view)
curr_rec_pts_num = combined_point_cloud.shape[0]
drop_output_ratio = 0.4
import time
while remaining_views:
@@ -84,6 +85,8 @@ class ReconstructionUtil:
best_covered_num = 0
for view_index in remaining_views:
if np.random.rand() < drop_output_ratio:
continue
if point_cloud_list[view_index].shape[0] == 0:
continue
if selected_views: