Compare commits
15 Commits
a883a31968
...
ab_global_
Author | SHA1 | Date | |
---|---|---|---|
1123e69bff | |||
5e8684d149 | |||
96fa40cc35 | |||
b82b92eebb | |||
2487039445 | |||
f533104e4a | |||
a21538c90a | |||
872405e239 | |||
b13e45bafc | |||
63a246c0c8 | |||
9e39c6c6c9 | |||
3c9e2c8d12 | |||
bd27226f0f | |||
0f61e1d64d | |||
9ca0851bf7 |
@@ -5,5 +5,5 @@ from runners.data_spliter import DataSpliter
|
||||
class DataSplitApp:
|
||||
@staticmethod
|
||||
def start():
|
||||
DataSpliter("configs/server/split_dataset_config.yaml").run()
|
||||
DataSpliter("configs/server/server_split_dataset_config.yaml").run()
|
||||
|
@@ -22,8 +22,6 @@ runner:
|
||||
|
||||
datasets:
|
||||
OmniObject3d:
|
||||
root_dir: /home/data/hofee/project/nbv_rec_part2_preprocessed
|
||||
from: 960
|
||||
to: 1000 # -1 means end
|
||||
|
||||
|
||||
root_dir: /data/hofee/nbv_rec_part2_preprocessed
|
||||
from: 155
|
||||
to: 165 # ..-1 means end
|
||||
|
@@ -84,7 +84,7 @@ module:
|
||||
gf_view_finder:
|
||||
t_feat_dim: 128
|
||||
pose_feat_dim: 256
|
||||
main_feat_dim: 2048
|
||||
main_feat_dim: 3072
|
||||
regression_head: Rx_Ry_and_T
|
||||
pose_mode: rot_matrix
|
||||
per_point_feature: False
|
||||
|
22
configs/server/server_split_dataset_config.yaml
Normal file
22
configs/server/server_split_dataset_config.yaml
Normal file
@@ -0,0 +1,22 @@
|
||||
|
||||
runner:
|
||||
general:
|
||||
seed: 0
|
||||
device: cpu
|
||||
cuda_visible_devices: "0,1,2,3,4,5,6,7"
|
||||
|
||||
experiment:
|
||||
name: server_split_dataset
|
||||
root_dir: "experiments"
|
||||
|
||||
split: #
|
||||
root_dir: "/data/hofee/data/new_full_data"
|
||||
type: "unseen_instance" # "unseen_category"
|
||||
datasets:
|
||||
OmniObject3d_train:
|
||||
path: "/data/hofee/data/new_full_data_list/OmniObject3d_train.txt"
|
||||
ratio: 0.9
|
||||
|
||||
OmniObject3d_test:
|
||||
path: "/data/hofee/data/new_full_data_list/OmniObject3d_test.txt"
|
||||
ratio: 0.1
|
@@ -7,13 +7,13 @@ runner:
|
||||
parallel: False
|
||||
|
||||
experiment:
|
||||
name: full_w_global_feat_wo_local_pts_feat
|
||||
name: train_ab_global_and_partial_global
|
||||
root_dir: "experiments"
|
||||
use_checkpoint: False
|
||||
epoch: -1 # -1 stands for last epoch
|
||||
max_epochs: 5000
|
||||
save_checkpoint_interval: 1
|
||||
test_first: True
|
||||
test_first: False
|
||||
|
||||
train:
|
||||
optimizer:
|
||||
@@ -25,60 +25,60 @@ runner:
|
||||
test:
|
||||
frequency: 3 # test frequency
|
||||
dataset_list:
|
||||
- OmniObject3d_test
|
||||
#- OmniObject3d_test
|
||||
- OmniObject3d_val
|
||||
|
||||
pipeline: nbv_reconstruction_global_pts_pipeline
|
||||
pipeline: nbv_reconstruction_pipeline
|
||||
|
||||
dataset:
|
||||
OmniObject3d_train:
|
||||
root_dir: "/home/data/hofee/project/nbv_rec/data/nbv_rec_data_512_preproc_npy"
|
||||
root_dir: "/data/hofee/data/new_full_data"
|
||||
model_dir: "../data/scaled_object_meshes"
|
||||
source: nbv_reconstruction_dataset
|
||||
split_file: "/home/data/hofee/project/nbv_rec/data/OmniObject3d_train.txt"
|
||||
split_file: "/data/hofee/data/new_full_data_list/OmniObject3d_train.txt"
|
||||
type: train
|
||||
cache: True
|
||||
ratio: 1
|
||||
batch_size: 160
|
||||
num_workers: 16
|
||||
pts_num: 4096
|
||||
batch_size: 80
|
||||
num_workers: 128
|
||||
pts_num: 8192
|
||||
load_from_preprocess: True
|
||||
|
||||
OmniObject3d_test:
|
||||
root_dir: "/home/data/hofee/project/nbv_rec/data/nbv_rec_data_512_preproc_npy"
|
||||
root_dir: "/data/hofee/data/new_full_data"
|
||||
model_dir: "../data/scaled_object_meshes"
|
||||
source: nbv_reconstruction_dataset
|
||||
split_file: "/home/data/hofee/project/nbv_rec/data/OmniObject3d_test.txt"
|
||||
split_file: "/data/hofee/data/new_full_data_list/OmniObject3d_test.txt"
|
||||
type: test
|
||||
cache: True
|
||||
filter_degree: 75
|
||||
eval_list:
|
||||
- pose_diff
|
||||
ratio: 0.05
|
||||
batch_size: 160
|
||||
ratio: 1
|
||||
batch_size: 80
|
||||
num_workers: 12
|
||||
pts_num: 4096
|
||||
pts_num: 8192
|
||||
load_from_preprocess: True
|
||||
|
||||
OmniObject3d_val:
|
||||
root_dir: "/home/data/hofee/project/nbv_rec/data/nbv_rec_data_512_preproc_npy"
|
||||
root_dir: "/data/hofee/data/new_full_data"
|
||||
model_dir: "../data/scaled_object_meshes"
|
||||
source: nbv_reconstruction_dataset
|
||||
split_file: "/home/data/hofee/project/nbv_rec/data/OmniObject3d_train.txt"
|
||||
split_file: "/data/hofee/data/new_full_data_list/OmniObject3d_train.txt"
|
||||
type: test
|
||||
cache: True
|
||||
filter_degree: 75
|
||||
eval_list:
|
||||
- pose_diff
|
||||
ratio: 0.005
|
||||
batch_size: 160
|
||||
ratio: 0.1
|
||||
batch_size: 80
|
||||
num_workers: 12
|
||||
pts_num: 4096
|
||||
pts_num: 8192
|
||||
load_from_preprocess: True
|
||||
|
||||
|
||||
pipeline:
|
||||
nbv_reconstruction_local_pts_pipeline:
|
||||
nbv_reconstruction_pipeline:
|
||||
modules:
|
||||
pts_encoder: pointnet_encoder
|
||||
seq_encoder: transformer_seq_encoder
|
||||
@@ -87,16 +87,6 @@ pipeline:
|
||||
eps: 1e-5
|
||||
global_scanned_feat: True
|
||||
|
||||
nbv_reconstruction_global_pts_pipeline:
|
||||
modules:
|
||||
pts_encoder: pointnet_encoder
|
||||
pose_seq_encoder: transformer_seq_encoder
|
||||
pose_encoder: pose_encoder
|
||||
view_finder: gf_view_finder
|
||||
eps: 1e-5
|
||||
global_scanned_feat: True
|
||||
|
||||
|
||||
|
||||
module:
|
||||
|
||||
@@ -107,11 +97,11 @@ module:
|
||||
feature_transform: False
|
||||
|
||||
transformer_seq_encoder:
|
||||
embed_dim: 1344
|
||||
embed_dim: 320
|
||||
num_heads: 4
|
||||
ffn_dim: 256
|
||||
num_layers: 3
|
||||
output_dim: 2048
|
||||
output_dim: 1024
|
||||
|
||||
gf_view_finder:
|
||||
t_feat_dim: 128
|
||||
@@ -128,6 +118,9 @@ module:
|
||||
pose_dim: 9
|
||||
out_dim: 256
|
||||
|
||||
pts_num_encoder:
|
||||
out_dim: 64
|
||||
|
||||
loss_function:
|
||||
gf_loss:
|
||||
|
||||
|
@@ -7,8 +7,9 @@ from PytorchBoot.utils.log_util import Log
|
||||
import torch
|
||||
import os
|
||||
import sys
|
||||
import time
|
||||
|
||||
sys.path.append(r"/home/data/hofee/project/nbv_rec/nbv_reconstruction")
|
||||
sys.path.append(r"/data/hofee/project/nbv_rec/nbv_reconstruction")
|
||||
|
||||
from utils.data_load import DataLoadUtil
|
||||
from utils.pose import PoseUtil
|
||||
@@ -31,7 +32,7 @@ class NBVReconstructionDataset(BaseDataset):
|
||||
self.load_from_preprocess = config.get("load_from_preprocess", False)
|
||||
|
||||
if self.type == namespace.Mode.TEST:
|
||||
self.model_dir = config["model_dir"]
|
||||
#self.model_dir = config["model_dir"]
|
||||
self.filter_degree = config["filter_degree"]
|
||||
if self.type == namespace.Mode.TRAIN:
|
||||
scale_ratio = 1
|
||||
@@ -66,7 +67,9 @@ class NBVReconstructionDataset(BaseDataset):
|
||||
if max_coverage_rate > scene_max_coverage_rate:
|
||||
scene_max_coverage_rate = max_coverage_rate
|
||||
max_coverage_rate_list.append(max_coverage_rate)
|
||||
mean_coverage_rate = np.mean(max_coverage_rate_list)
|
||||
|
||||
if max_coverage_rate_list:
|
||||
mean_coverage_rate = np.mean(max_coverage_rate_list)
|
||||
|
||||
for seq_idx in range(seq_num):
|
||||
label_path = DataLoadUtil.get_label_path(
|
||||
@@ -112,6 +115,15 @@ class NBVReconstructionDataset(BaseDataset):
|
||||
except Exception as e:
|
||||
Log.error(f"Save cache failed: {e}")
|
||||
|
||||
def voxel_downsample_with_mapping(self, point_cloud, voxel_size=0.003):
|
||||
voxel_indices = np.floor(point_cloud / voxel_size).astype(np.int32)
|
||||
unique_voxels, inverse, counts = np.unique(voxel_indices, axis=0, return_inverse=True, return_counts=True)
|
||||
idx_sort = np.argsort(inverse)
|
||||
idx_unique = idx_sort[np.cumsum(counts)-counts]
|
||||
downsampled_points = point_cloud[idx_unique]
|
||||
return downsampled_points, inverse
|
||||
|
||||
|
||||
def __getitem__(self, index):
|
||||
data_item_info = self.datalist[index]
|
||||
scanned_views = data_item_info["scanned_views"]
|
||||
@@ -122,7 +134,10 @@ class NBVReconstructionDataset(BaseDataset):
|
||||
scanned_views_pts,
|
||||
scanned_coverages_rate,
|
||||
scanned_n_to_world_pose,
|
||||
) = ([], [], [], [])
|
||||
) = ([], [], [])
|
||||
start_time = time.time()
|
||||
start_indices = [0]
|
||||
total_points = 0
|
||||
for view in scanned_views:
|
||||
frame_idx = view[0]
|
||||
coverage_rate = view[1]
|
||||
@@ -144,8 +159,12 @@ class NBVReconstructionDataset(BaseDataset):
|
||||
n_to_world_trans = n_to_world_pose[:3, 3]
|
||||
n_to_world_9d = np.concatenate([n_to_world_6d, n_to_world_trans], axis=0)
|
||||
scanned_n_to_world_pose.append(n_to_world_9d)
|
||||
total_points += len(downsampled_target_point_cloud)
|
||||
start_indices.append(total_points)
|
||||
|
||||
|
||||
end_time = time.time()
|
||||
#Log.info(f"load data time: {end_time - start_time}")
|
||||
nbv_idx, nbv_coverage_rate = nbv[0], nbv[1]
|
||||
nbv_path = DataLoadUtil.get_path(self.root_dir, scene_name, nbv_idx)
|
||||
cam_info = DataLoadUtil.load_cam_info(nbv_path)
|
||||
@@ -158,29 +177,27 @@ class NBVReconstructionDataset(BaseDataset):
|
||||
best_to_world_9d = np.concatenate(
|
||||
[best_to_world_6d, best_to_world_trans], axis=0
|
||||
)
|
||||
|
||||
|
||||
combined_scanned_views_pts = np.concatenate(scanned_views_pts, axis=0)
|
||||
fps_downsampled_combined_scanned_pts, fps_idx = PtsUtil.fps_downsample_point_cloud(
|
||||
combined_scanned_views_pts, self.pts_num, require_idx=True
|
||||
)
|
||||
|
||||
combined_scanned_views_pts_mask = np.zeros(len(scanned_views_pts), dtype=np.uint8)
|
||||
|
||||
start_idx = 0
|
||||
for i in range(len(scanned_views_pts)):
|
||||
end_idx = start_idx + len(scanned_views_pts[i])
|
||||
combined_scanned_views_pts_mask[start_idx:end_idx] = i
|
||||
start_idx = end_idx
|
||||
|
||||
fps_downsampled_combined_scanned_pts_mask = combined_scanned_views_pts_mask[fps_idx]
|
||||
|
||||
|
||||
|
||||
|
||||
voxel_downsampled_combined_scanned_pts_np, inverse = self.voxel_downsample_with_mapping(combined_scanned_views_pts, 0.003)
|
||||
random_downsampled_combined_scanned_pts_np, random_downsample_idx = PtsUtil.random_downsample_point_cloud(voxel_downsampled_combined_scanned_pts_np, self.pts_num, require_idx=True)
|
||||
|
||||
all_idx_unique = np.arange(len(voxel_downsampled_combined_scanned_pts_np))
|
||||
all_random_downsample_idx = all_idx_unique[random_downsample_idx]
|
||||
scanned_pts_mask = []
|
||||
for idx, start_idx in enumerate(start_indices):
|
||||
if idx == len(start_indices) - 1:
|
||||
break
|
||||
end_idx = start_indices[idx+1]
|
||||
view_inverse = inverse[start_idx:end_idx]
|
||||
view_unique_downsampled_idx = np.unique(view_inverse)
|
||||
view_unique_downsampled_idx_set = set(view_unique_downsampled_idx)
|
||||
mask = np.array([idx in view_unique_downsampled_idx_set for idx in all_random_downsample_idx])
|
||||
scanned_pts_mask.append(mask)
|
||||
data_item = {
|
||||
"scanned_pts": np.asarray(scanned_views_pts, dtype=np.float32), # Ndarray(S x Nv x 3)
|
||||
"scanned_pts_mask": np.asarray(fps_downsampled_combined_scanned_pts_mask,dtype=np.uint8), # Ndarray(N), range(0, S)
|
||||
"combined_scanned_pts": np.asarray(fps_downsampled_combined_scanned_pts, dtype=np.float32), # Ndarray(N x 3)
|
||||
"combined_scanned_pts": np.asarray(random_downsampled_combined_scanned_pts_np, dtype=np.float32), # Ndarray(N x 3)
|
||||
"scanned_pts_mask": np.asarray(scanned_pts_mask, dtype=np.bool), # Ndarray(N)
|
||||
"scanned_coverage_rate": scanned_coverages_rate, # List(S): Float, range(0, 1)
|
||||
"scanned_n_to_world_pose_9d": np.asarray(scanned_n_to_world_pose, dtype=np.float32), # Ndarray(S x 9)
|
||||
"best_coverage_rate": nbv_coverage_rate, # Float, range(0, 1)
|
||||
@@ -206,7 +223,9 @@ class NBVReconstructionDataset(BaseDataset):
|
||||
collate_data["scanned_n_to_world_pose_9d"] = [
|
||||
torch.tensor(item["scanned_n_to_world_pose_9d"]) for item in batch
|
||||
]
|
||||
|
||||
collate_data["scanned_pts_mask"] = [
|
||||
torch.tensor(item["scanned_pts_mask"]) for item in batch
|
||||
]
|
||||
''' ------ Fixed Length ------ '''
|
||||
|
||||
collate_data["best_to_world_pose_9d"] = torch.stack(
|
||||
@@ -215,17 +234,14 @@ class NBVReconstructionDataset(BaseDataset):
|
||||
collate_data["combined_scanned_pts"] = torch.stack(
|
||||
[torch.tensor(item["combined_scanned_pts"]) for item in batch]
|
||||
)
|
||||
collate_data["scanned_pts_mask"] = torch.stack(
|
||||
[torch.tensor(item["scanned_pts_mask"]) for item in batch]
|
||||
)
|
||||
|
||||
|
||||
for key in batch[0].keys():
|
||||
if key not in [
|
||||
"scanned_pts",
|
||||
"scanned_pts_mask",
|
||||
"scanned_n_to_world_pose_9d",
|
||||
"best_to_world_pose_9d",
|
||||
"combined_scanned_pts",
|
||||
"scanned_pts_mask",
|
||||
]:
|
||||
collate_data[key] = [item[key] for item in batch]
|
||||
return collate_data
|
||||
@@ -241,10 +257,9 @@ if __name__ == "__main__":
|
||||
torch.manual_seed(seed)
|
||||
np.random.seed(seed)
|
||||
config = {
|
||||
"root_dir": "/home/data/hofee/project/nbv_rec/data/nbv_rec_data_512_preproc_npy",
|
||||
"model_dir": "/home/data/hofee/project/nbv_rec/data/scaled_object_meshes",
|
||||
"root_dir": "/data/hofee/nbv_rec_part2_preprocessed",
|
||||
"source": "nbv_reconstruction_dataset",
|
||||
"split_file": "/home/data/hofee/project/nbv_rec/data/OmniObject3d_test.txt",
|
||||
"split_file": "/data/hofee/data/sample.txt",
|
||||
"load_from_preprocess": True,
|
||||
"ratio": 0.5,
|
||||
"batch_size": 2,
|
||||
|
@@ -1,4 +1,5 @@
|
||||
import torch
|
||||
import time
|
||||
from torch import nn
|
||||
import PytorchBoot.namespace as namespace
|
||||
import PytorchBoot.stereotype as stereotype
|
||||
@@ -6,10 +7,10 @@ from PytorchBoot.factory.component_factory import ComponentFactory
|
||||
from PytorchBoot.utils import Log
|
||||
|
||||
|
||||
@stereotype.pipeline("nbv_reconstruction_global_pts_n_num_pipeline")
|
||||
class NBVReconstructionGlobalPointsPipeline(nn.Module):
|
||||
@stereotype.pipeline("nbv_reconstruction_pipeline")
|
||||
class NBVReconstructionPipeline(nn.Module):
|
||||
def __init__(self, config):
|
||||
super(NBVReconstructionGlobalPointsPipeline, self).__init__()
|
||||
super(NBVReconstructionPipeline, self).__init__()
|
||||
self.config = config
|
||||
self.module_config = config["modules"]
|
||||
|
||||
@@ -19,12 +20,8 @@ class NBVReconstructionGlobalPointsPipeline(nn.Module):
|
||||
self.pose_encoder = ComponentFactory.create(
|
||||
namespace.Stereotype.MODULE, self.module_config["pose_encoder"]
|
||||
)
|
||||
self.pts_num_encoder = ComponentFactory.create(
|
||||
namespace.Stereotype.MODULE, self.module_config["pts_num_encoder"]
|
||||
)
|
||||
|
||||
self.transformer_seq_encoder = ComponentFactory.create(
|
||||
namespace.Stereotype.MODULE, self.module_config["transformer_seq_encoder"]
|
||||
self.seq_encoder = ComponentFactory.create(
|
||||
namespace.Stereotype.MODULE, self.module_config["seq_encoder"]
|
||||
)
|
||||
self.view_finder = ComponentFactory.create(
|
||||
namespace.Stereotype.MODULE, self.module_config["view_finder"]
|
||||
@@ -32,7 +29,6 @@ class NBVReconstructionGlobalPointsPipeline(nn.Module):
|
||||
|
||||
|
||||
self.eps = float(self.config["eps"])
|
||||
self.enable_global_scanned_feat = self.config["global_scanned_feat"]
|
||||
|
||||
def forward(self, data):
|
||||
mode = data["mode"]
|
||||
@@ -92,50 +88,50 @@ class NBVReconstructionGlobalPointsPipeline(nn.Module):
|
||||
scanned_n_to_world_pose_9d_batch = data[
|
||||
"scanned_n_to_world_pose_9d"
|
||||
] # List(B): Tensor(S x 9)
|
||||
scanned_pts_mask_batch = data[
|
||||
"scanned_pts_mask"
|
||||
] # Tensor(B x N)
|
||||
|
||||
scanned_pts_mask_batch = data["scanned_pts_mask"] # List(B): Tensor(N)
|
||||
|
||||
device = next(self.parameters()).device
|
||||
|
||||
embedding_list_batch = []
|
||||
|
||||
combined_scanned_pts_batch = data["combined_scanned_pts"] # Tensor(B x N x 3)
|
||||
global_scanned_feat, perpoint_scanned_feat_batch = self.pts_encoder.encode_points(
|
||||
global_scanned_feat, per_point_feat_batch = self.pts_encoder.encode_points(
|
||||
combined_scanned_pts_batch, require_per_point_feat=True
|
||||
) # global_scanned_feat: Tensor(B x Dg), perpoint_scanned_feat: Tensor(B x N x Dl)
|
||||
|
||||
for scanned_n_to_world_pose_9d, scanned_mask, perpoint_scanned_feat in zip(
|
||||
scanned_n_to_world_pose_9d_batch,
|
||||
scanned_pts_mask_batch,
|
||||
perpoint_scanned_feat_batch,
|
||||
):
|
||||
scanned_target_pts_num = [] # List(S): Int
|
||||
partial_feat_seq = []
|
||||
) # global_scanned_feat: Tensor(B x Dg)
|
||||
batch_size = len(scanned_n_to_world_pose_9d_batch)
|
||||
for i in range(batch_size):
|
||||
seq_len = len(scanned_n_to_world_pose_9d_batch[i])
|
||||
scanned_n_to_world_pose_9d = scanned_n_to_world_pose_9d_batch[i].to(device) # Tensor(S x 9)
|
||||
scanned_pts_mask = scanned_pts_mask_batch[i] # Tensor(S x N)
|
||||
per_point_feat = per_point_feat_batch[i] # Tensor(N x Dp)
|
||||
partial_point_feat_seq = []
|
||||
for j in range(seq_len):
|
||||
partial_per_point_feat = per_point_feat[scanned_pts_mask[j]]
|
||||
if partial_per_point_feat.shape[0] == 0:
|
||||
partial_point_feat = torch.zeros(per_point_feat.shape[1], device=device)
|
||||
else:
|
||||
partial_point_feat = torch.mean(partial_per_point_feat, dim=0) # Tensor(Dp)
|
||||
partial_point_feat_seq.append(partial_point_feat)
|
||||
partial_point_feat_seq = torch.stack(partial_point_feat_seq, dim=0) # Tensor(S x Dp)
|
||||
|
||||
seq_len = len(scanned_n_to_world_pose_9d)
|
||||
for seq_idx in range(seq_len):
|
||||
partial_idx_in_combined_pts = scanned_mask == seq_idx # Ndarray(V), N->V idx mask
|
||||
partial_perpoint_feat = perpoint_scanned_feat[partial_idx_in_combined_pts] # Ndarray(V x Dl)
|
||||
partial_feat = torch.mean(partial_perpoint_feat, dim=0)[0] # Tensor(Dl)
|
||||
partial_feat_seq.append(partial_feat)
|
||||
scanned_target_pts_num.append(partial_perpoint_feat.shape[0])
|
||||
|
||||
scanned_target_pts_num = torch.tensor(scanned_target_pts_num, dtype=torch.int32).to(device) # Tensor(S)
|
||||
scanned_n_to_world_pose_9d = scanned_n_to_world_pose_9d.to(device) # Tensor(S x 9)
|
||||
|
||||
pose_feat_seq = self.pose_encoder.encode_pose(scanned_n_to_world_pose_9d) # Tensor(S x Dp)
|
||||
pts_num_feat_seq = self.pts_num_encoder.encode_pts_num(scanned_target_pts_num) # Tensor(S x Dn)
|
||||
partial_feat_seq = torch.stack(partial_feat_seq) # Tensor(S x Dl)
|
||||
|
||||
seq_embedding = torch.cat([pose_feat_seq, pts_num_feat_seq, partial_feat_seq], dim=-1) # Tensor(S x (Dp+Dn+Dl))
|
||||
embedding_list_batch.append(seq_embedding) # List(B): Tensor(S x (Dp+Dn+Dl))
|
||||
|
||||
seq_feat = self.transformer_seq_encoder.encode_sequence(embedding_list_batch) # Tensor(B x Ds)
|
||||
pose_feat_seq = self.pose_encoder.encode_pose(scanned_n_to_world_pose_9d) # Tensor(S x Dp)
|
||||
|
||||
seq_embedding = torch.cat([partial_point_feat_seq, pose_feat_seq], dim=-1)
|
||||
|
||||
embedding_list_batch.append(seq_embedding) # List(B): Tensor(S x (Dp))
|
||||
|
||||
seq_feat = self.seq_encoder.encode_sequence(embedding_list_batch) # Tensor(B x Ds)
|
||||
main_feat = torch.cat([seq_feat, global_scanned_feat], dim=-1) # Tensor(B x (Ds+Dg))
|
||||
|
||||
if torch.isnan(main_feat).any():
|
||||
for i in range(len(main_feat)):
|
||||
if torch.isnan(main_feat[i]).any():
|
||||
scanned_pts_mask = scanned_pts_mask_batch[i]
|
||||
Log.info(f"scanned_pts_mask shape: {scanned_pts_mask.shape}")
|
||||
Log.info(f"scanned_pts_mask sum: {scanned_pts_mask.sum()}")
|
||||
import ipdb
|
||||
ipdb.set_trace()
|
||||
Log.error("nan in main_feat", True)
|
||||
|
||||
return main_feat
|
@@ -93,10 +93,8 @@ class StrategyGenerator(Runner):
|
||||
else:
|
||||
nrm = np.load(nrm_path)
|
||||
nrm_list.append(nrm)
|
||||
|
||||
indices = np.load(idx_path)
|
||||
pts_list.append(pts)
|
||||
|
||||
indices = np.load(idx_path)
|
||||
scan_points_indices_list.append(indices)
|
||||
if pts.shape[0] > 0:
|
||||
non_zero_cnt += 1
|
||||
|
@@ -53,6 +53,8 @@ class DataLoadUtil:
|
||||
@staticmethod
|
||||
def get_label_num(root, scene_name):
|
||||
label_dir = os.path.join(root, scene_name, "label")
|
||||
if not os.path.exists(label_dir):
|
||||
return 0
|
||||
return len(os.listdir(label_dir))
|
||||
|
||||
@staticmethod
|
||||
|
30
utils/pts.py
30
utils/pts.py
@@ -14,16 +14,38 @@ class PtsUtil:
|
||||
downsampled_points = point_cloud[idx_unique]
|
||||
return downsampled_points, idx_unique
|
||||
else:
|
||||
unique_voxels = np.unique(voxel_indices, axis=0, return_inverse=True)
|
||||
return unique_voxels[0]*voxel_size
|
||||
import ipdb; ipdb.set_trace()
|
||||
unique_voxels = np.unique(voxel_indices, axis=0, return_inverse=False)
|
||||
return unique_voxels*voxel_size
|
||||
|
||||
@staticmethod
|
||||
def voxel_downsample_point_cloud_o3d(point_cloud, voxel_size=0.005):
|
||||
pcd = o3d.geometry.PointCloud()
|
||||
pcd.points = o3d.utility.Vector3dVector(point_cloud)
|
||||
pcd = pcd.voxel_down_sample(voxel_size)
|
||||
return np.asarray(pcd.points)
|
||||
|
||||
@staticmethod
|
||||
def random_downsample_point_cloud(point_cloud, num_points, require_idx=False):
|
||||
def voxel_downsample_point_cloud_and_trace_o3d(point_cloud, voxel_size=0.005):
|
||||
pcd = o3d.geometry.PointCloud()
|
||||
pcd.points = o3d.utility.Vector3dVector(point_cloud)
|
||||
max_bound = pcd.get_max_bound()
|
||||
min_bound = pcd.get_min_bound()
|
||||
pcd = pcd.voxel_down_sample_and_trace(voxel_size, max_bound, min_bound, True)
|
||||
|
||||
return np.asarray(pcd.points)
|
||||
|
||||
@staticmethod
|
||||
def random_downsample_point_cloud(point_cloud, num_points, require_idx=False, replace=True):
|
||||
if point_cloud.shape[0] == 0:
|
||||
if require_idx:
|
||||
return point_cloud, np.array([])
|
||||
return point_cloud
|
||||
idx = np.random.choice(len(point_cloud), num_points, replace=True)
|
||||
if not replace and num_points > len(point_cloud):
|
||||
if require_idx:
|
||||
return point_cloud, np.arange(len(point_cloud))
|
||||
return point_cloud
|
||||
idx = np.random.choice(len(point_cloud), num_points, replace=replace)
|
||||
if require_idx:
|
||||
return point_cloud[idx], idx
|
||||
return point_cloud[idx]
|
||||
|
@@ -75,6 +75,7 @@ class ReconstructionUtil:
|
||||
cnt_processed_view = 0
|
||||
remaining_views.remove(init_view)
|
||||
curr_rec_pts_num = combined_point_cloud.shape[0]
|
||||
drop_output_ratio = 0.4
|
||||
|
||||
import time
|
||||
while remaining_views:
|
||||
@@ -84,6 +85,8 @@ class ReconstructionUtil:
|
||||
best_covered_num = 0
|
||||
|
||||
for view_index in remaining_views:
|
||||
if np.random.rand() < drop_output_ratio:
|
||||
continue
|
||||
if point_cloud_list[view_index].shape[0] == 0:
|
||||
continue
|
||||
if selected_views:
|
||||
|
Reference in New Issue
Block a user