Compare commits
No commits in common. "985a08d89cc65246c36da8b3256c16de7700bc76" and "8a05b7883d6f1568fa397e27e35d6ced87677dd6" have entirely different histories.
985a08d89c
...
8a05b7883d
@ -6,67 +6,71 @@ runner:
|
|||||||
cuda_visible_devices: "0,1,2,3,4,5,6,7"
|
cuda_visible_devices: "0,1,2,3,4,5,6,7"
|
||||||
|
|
||||||
experiment:
|
experiment:
|
||||||
name: overfit_ab_global_only
|
name: w_gf_wo_lf_full
|
||||||
root_dir: "experiments"
|
root_dir: "experiments"
|
||||||
epoch: -1 # -1 stands for last epoch
|
epoch: 1 # -1 stands for last epoch
|
||||||
|
|
||||||
test:
|
test:
|
||||||
dataset_list:
|
dataset_list:
|
||||||
- OmniObject3d_train
|
- OmniObject3d_train
|
||||||
|
|
||||||
blender_script_path: "/data/hofee/project/nbv_rec/blender/data_renderer.py"
|
blender_script_path: "/media/hofee/data/project/python/nbv_reconstruction/blender/data_renderer.py"
|
||||||
output_dir: "/data/hofee/data/inference_global_full_on_testset"
|
output_dir: "/media/hofee/data/project/python/nbv_reconstruction/nbv_reconstruction/test/inference_global_full_on_testset"
|
||||||
pipeline: nbv_reconstruction_pipeline
|
pipeline: nbv_reconstruction_global_pts_pipeline
|
||||||
voxel_size: 0.003
|
|
||||||
|
|
||||||
dataset:
|
dataset:
|
||||||
OmniObject3d_train:
|
OmniObject3d_train:
|
||||||
root_dir: "/data/hofee/data/new_full_data"
|
root_dir: "/media/hofee/repository/nbv_reconstruction_data_512"
|
||||||
model_dir: "/data/hofee/data/scaled_object_meshes"
|
model_dir: "/media/hofee/data/data/scaled_object_meshes"
|
||||||
source: seq_reconstruction_dataset
|
source: seq_nbv_reconstruction_dataset
|
||||||
split_file: "/data/hofee/data/sample.txt"
|
split_file: "/media/hofee/data/project/python/nbv_reconstruction/nbv_reconstruction/test/test_set_list.txt"
|
||||||
type: test
|
type: test
|
||||||
filter_degree: 75
|
filter_degree: 75
|
||||||
ratio: 1
|
ratio: 1
|
||||||
batch_size: 1
|
batch_size: 1
|
||||||
num_workers: 12
|
num_workers: 12
|
||||||
pts_num: 8192
|
pts_num: 4096
|
||||||
load_from_preprocess: True
|
load_from_preprocess: False
|
||||||
|
|
||||||
OmniObject3d_test:
|
|
||||||
root_dir: "/data/hofee/data/new_full_data"
|
|
||||||
model_dir: "/data/hofee/data/scaled_object_meshes"
|
|
||||||
source: seq_reconstruction_dataset
|
|
||||||
split_file: "/data/hofee/data/sample.txt"
|
|
||||||
type: test
|
|
||||||
filter_degree: 75
|
|
||||||
eval_list:
|
|
||||||
- pose_diff
|
|
||||||
- coverage_rate_increase
|
|
||||||
ratio: 0.1
|
|
||||||
batch_size: 1
|
|
||||||
num_workers: 12
|
|
||||||
pts_num: 8192
|
|
||||||
load_from_preprocess: True
|
|
||||||
|
|
||||||
pipeline:
|
pipeline:
|
||||||
nbv_reconstruction_pipeline:
|
nbv_reconstruction_local_pts_pipeline:
|
||||||
modules:
|
modules:
|
||||||
pts_encoder: pointnet_encoder
|
pts_encoder: pointnet_encoder
|
||||||
seq_encoder: transformer_seq_encoder
|
seq_encoder: transformer_seq_encoder
|
||||||
pose_encoder: pose_encoder
|
pose_encoder: pose_encoder
|
||||||
view_finder: gf_view_finder
|
view_finder: gf_view_finder
|
||||||
eps: 1e-5
|
eps: 1e-5
|
||||||
|
global_scanned_feat: False
|
||||||
|
|
||||||
|
nbv_reconstruction_global_pts_pipeline:
|
||||||
|
modules:
|
||||||
|
pts_encoder: pointnet_encoder
|
||||||
|
pose_seq_encoder: transformer_pose_seq_encoder
|
||||||
|
pose_encoder: pose_encoder
|
||||||
|
view_finder: gf_view_finder
|
||||||
|
eps: 1e-5
|
||||||
global_scanned_feat: True
|
global_scanned_feat: True
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
module:
|
module:
|
||||||
|
|
||||||
pointnet_encoder:
|
pointnet_encoder:
|
||||||
in_dim: 3
|
in_dim: 3
|
||||||
out_dim: 1024
|
out_dim: 1024
|
||||||
global_feat: True
|
global_feat: True
|
||||||
feature_transform: False
|
feature_transform: False
|
||||||
|
|
||||||
transformer_seq_encoder:
|
transformer_seq_encoder:
|
||||||
embed_dim: 256
|
pts_embed_dim: 1024
|
||||||
|
pose_embed_dim: 256
|
||||||
|
num_heads: 4
|
||||||
|
ffn_dim: 256
|
||||||
|
num_layers: 3
|
||||||
|
output_dim: 2048
|
||||||
|
|
||||||
|
transformer_pose_seq_encoder:
|
||||||
|
pose_embed_dim: 256
|
||||||
num_heads: 4
|
num_heads: 4
|
||||||
ffn_dim: 256
|
ffn_dim: 256
|
||||||
num_layers: 3
|
num_layers: 3
|
||||||
@ -82,8 +86,7 @@ module:
|
|||||||
sample_mode: ode
|
sample_mode: ode
|
||||||
sampling_steps: 500
|
sampling_steps: 500
|
||||||
sde_mode: ve
|
sde_mode: ve
|
||||||
|
|
||||||
pose_encoder:
|
pose_encoder:
|
||||||
pose_dim: 9
|
pose_dim: 9
|
||||||
out_dim: 256
|
out_dim: 256
|
||||||
pts_num_encoder:
|
|
||||||
out_dim: 64
|
|
@ -13,7 +13,7 @@ runner:
|
|||||||
epoch: -1 # -1 stands for last epoch
|
epoch: -1 # -1 stands for last epoch
|
||||||
max_epochs: 5000
|
max_epochs: 5000
|
||||||
save_checkpoint_interval: 1
|
save_checkpoint_interval: 1
|
||||||
test_first: True
|
test_first: False
|
||||||
|
|
||||||
train:
|
train:
|
||||||
optimizer:
|
optimizer:
|
||||||
@ -54,7 +54,7 @@ dataset:
|
|||||||
filter_degree: 75
|
filter_degree: 75
|
||||||
eval_list:
|
eval_list:
|
||||||
- pose_diff
|
- pose_diff
|
||||||
ratio: 1
|
ratio: 0.1
|
||||||
batch_size: 80
|
batch_size: 80
|
||||||
num_workers: 12
|
num_workers: 12
|
||||||
pts_num: 8192
|
pts_num: 8192
|
||||||
@ -70,7 +70,7 @@ dataset:
|
|||||||
filter_degree: 75
|
filter_degree: 75
|
||||||
eval_list:
|
eval_list:
|
||||||
- pose_diff
|
- pose_diff
|
||||||
ratio: 0.1
|
ratio: 0.01
|
||||||
batch_size: 80
|
batch_size: 80
|
||||||
num_workers: 12
|
num_workers: 12
|
||||||
pts_num: 8192
|
pts_num: 8192
|
||||||
|
@ -34,7 +34,7 @@ class NBVReconstructionDataset(BaseDataset):
|
|||||||
#self.model_dir = config["model_dir"]
|
#self.model_dir = config["model_dir"]
|
||||||
self.filter_degree = config["filter_degree"]
|
self.filter_degree = config["filter_degree"]
|
||||||
if self.type == namespace.Mode.TRAIN:
|
if self.type == namespace.Mode.TRAIN:
|
||||||
scale_ratio = 1
|
scale_ratio = 50
|
||||||
self.datalist = self.datalist*scale_ratio
|
self.datalist = self.datalist*scale_ratio
|
||||||
if self.cache:
|
if self.cache:
|
||||||
expr_root = ConfigManager.get("runner", "experiment", "root_dir")
|
expr_root = ConfigManager.get("runner", "experiment", "root_dir")
|
||||||
|
@ -1,154 +0,0 @@
|
|||||||
import numpy as np
|
|
||||||
from PytorchBoot.dataset import BaseDataset
|
|
||||||
import PytorchBoot.namespace as namespace
|
|
||||||
import PytorchBoot.stereotype as stereotype
|
|
||||||
from PytorchBoot.utils.log_util import Log
|
|
||||||
import torch
|
|
||||||
import os
|
|
||||||
import sys
|
|
||||||
sys.path.append(r"/home/data/hofee/project/nbv_rec/nbv_reconstruction")
|
|
||||||
|
|
||||||
from utils.data_load import DataLoadUtil
|
|
||||||
from utils.pose import PoseUtil
|
|
||||||
from utils.pts import PtsUtil
|
|
||||||
|
|
||||||
@stereotype.dataset("old_seq_nbv_reconstruction_dataset")
|
|
||||||
class SeqNBVReconstructionDataset(BaseDataset):
|
|
||||||
def __init__(self, config):
|
|
||||||
super(SeqNBVReconstructionDataset, self).__init__(config)
|
|
||||||
self.type = config["type"]
|
|
||||||
if self.type != namespace.Mode.TEST:
|
|
||||||
Log.error("Dataset <seq_nbv_reconstruction_dataset> Only support test mode", terminate=True)
|
|
||||||
self.config = config
|
|
||||||
self.root_dir = config["root_dir"]
|
|
||||||
self.split_file_path = config["split_file"]
|
|
||||||
self.scene_name_list = self.load_scene_name_list()
|
|
||||||
self.datalist = self.get_datalist()
|
|
||||||
self.pts_num = config["pts_num"]
|
|
||||||
|
|
||||||
self.model_dir = config["model_dir"]
|
|
||||||
self.filter_degree = config["filter_degree"]
|
|
||||||
self.load_from_preprocess = config.get("load_from_preprocess", False)
|
|
||||||
|
|
||||||
|
|
||||||
def load_scene_name_list(self):
|
|
||||||
scene_name_list = []
|
|
||||||
with open(self.split_file_path, "r") as f:
|
|
||||||
for line in f:
|
|
||||||
scene_name = line.strip()
|
|
||||||
scene_name_list.append(scene_name)
|
|
||||||
return scene_name_list
|
|
||||||
|
|
||||||
def get_datalist(self):
|
|
||||||
datalist = []
|
|
||||||
for scene_name in self.scene_name_list:
|
|
||||||
seq_num = DataLoadUtil.get_label_num(self.root_dir, scene_name)
|
|
||||||
scene_max_coverage_rate = 0
|
|
||||||
scene_max_cr_idx = 0
|
|
||||||
|
|
||||||
for seq_idx in range(seq_num):
|
|
||||||
label_path = DataLoadUtil.get_label_path(self.root_dir, scene_name, seq_idx)
|
|
||||||
label_data = DataLoadUtil.load_label(label_path)
|
|
||||||
max_coverage_rate = label_data["max_coverage_rate"]
|
|
||||||
if max_coverage_rate > scene_max_coverage_rate:
|
|
||||||
scene_max_coverage_rate = max_coverage_rate
|
|
||||||
scene_max_cr_idx = seq_idx
|
|
||||||
|
|
||||||
label_path = DataLoadUtil.get_label_path(self.root_dir, scene_name, scene_max_cr_idx)
|
|
||||||
label_data = DataLoadUtil.load_label(label_path)
|
|
||||||
first_frame = label_data["best_sequence"][0]
|
|
||||||
best_seq_len = len(label_data["best_sequence"])
|
|
||||||
datalist.append({
|
|
||||||
"scene_name": scene_name,
|
|
||||||
"first_frame": first_frame,
|
|
||||||
"max_coverage_rate": scene_max_coverage_rate,
|
|
||||||
"best_seq_len": best_seq_len,
|
|
||||||
"label_idx": scene_max_cr_idx,
|
|
||||||
})
|
|
||||||
return datalist
|
|
||||||
|
|
||||||
def __getitem__(self, index):
|
|
||||||
data_item_info = self.datalist[index]
|
|
||||||
first_frame_idx = data_item_info["first_frame"][0]
|
|
||||||
first_frame_coverage = data_item_info["first_frame"][1]
|
|
||||||
max_coverage_rate = data_item_info["max_coverage_rate"]
|
|
||||||
scene_name = data_item_info["scene_name"]
|
|
||||||
first_cam_info = DataLoadUtil.load_cam_info(DataLoadUtil.get_path(self.root_dir, scene_name, first_frame_idx), binocular=True)
|
|
||||||
first_view_path = DataLoadUtil.get_path(self.root_dir, scene_name, first_frame_idx)
|
|
||||||
first_left_cam_pose = first_cam_info["cam_to_world"]
|
|
||||||
first_center_cam_pose = first_cam_info["cam_to_world_O"]
|
|
||||||
first_target_point_cloud = DataLoadUtil.load_from_preprocessed_pts(first_view_path)
|
|
||||||
first_pts_num = first_target_point_cloud.shape[0]
|
|
||||||
first_downsampled_target_point_cloud = PtsUtil.random_downsample_point_cloud(first_target_point_cloud, self.pts_num)
|
|
||||||
first_to_world_rot_6d = PoseUtil.matrix_to_rotation_6d_numpy(np.asarray(first_left_cam_pose[:3,:3]))
|
|
||||||
first_to_world_trans = first_left_cam_pose[:3,3]
|
|
||||||
first_to_world_9d = np.concatenate([first_to_world_rot_6d, first_to_world_trans], axis=0)
|
|
||||||
diag = DataLoadUtil.get_bbox_diag(self.model_dir, scene_name)
|
|
||||||
voxel_threshold = diag*0.02
|
|
||||||
first_O_to_first_L_pose = np.dot(np.linalg.inv(first_left_cam_pose), first_center_cam_pose)
|
|
||||||
scene_path = os.path.join(self.root_dir, scene_name)
|
|
||||||
model_points_normals = DataLoadUtil.load_points_normals(self.root_dir, scene_name)
|
|
||||||
|
|
||||||
data_item = {
|
|
||||||
"first_pts_num": np.asarray(
|
|
||||||
first_pts_num, dtype=np.int32
|
|
||||||
),
|
|
||||||
"first_pts": np.asarray([first_downsampled_target_point_cloud],dtype=np.float32),
|
|
||||||
"combined_scanned_pts": np.asarray(first_downsampled_target_point_cloud,dtype=np.float32),
|
|
||||||
"first_to_world_9d": np.asarray([first_to_world_9d],dtype=np.float32),
|
|
||||||
"scene_name": scene_name,
|
|
||||||
"max_coverage_rate": max_coverage_rate,
|
|
||||||
"voxel_threshold": voxel_threshold,
|
|
||||||
"filter_degree": self.filter_degree,
|
|
||||||
"O_to_L_pose": first_O_to_first_L_pose,
|
|
||||||
"first_frame_coverage": first_frame_coverage,
|
|
||||||
"scene_path": scene_path,
|
|
||||||
"model_points_normals": model_points_normals,
|
|
||||||
"best_seq_len": data_item_info["best_seq_len"],
|
|
||||||
"first_frame_id": first_frame_idx,
|
|
||||||
}
|
|
||||||
return data_item
|
|
||||||
|
|
||||||
def __len__(self):
|
|
||||||
return len(self.datalist)
|
|
||||||
|
|
||||||
def get_collate_fn(self):
|
|
||||||
def collate_fn(batch):
|
|
||||||
collate_data = {}
|
|
||||||
collate_data["first_pts"] = [torch.tensor(item['first_pts']) for item in batch]
|
|
||||||
collate_data["first_to_world_9d"] = [torch.tensor(item['first_to_world_9d']) for item in batch]
|
|
||||||
collate_data["combined_scanned_pts"] = torch.stack([torch.tensor(item['combined_scanned_pts']) for item in batch])
|
|
||||||
for key in batch[0].keys():
|
|
||||||
if key not in ["first_pts", "first_to_world_9d", "combined_scanned_pts"]:
|
|
||||||
collate_data[key] = [item[key] for item in batch]
|
|
||||||
return collate_data
|
|
||||||
return collate_fn
|
|
||||||
|
|
||||||
# -------------- Debug ---------------- #
|
|
||||||
if __name__ == "__main__":
|
|
||||||
import torch
|
|
||||||
seed = 0
|
|
||||||
torch.manual_seed(seed)
|
|
||||||
np.random.seed(seed)
|
|
||||||
config = {
|
|
||||||
"root_dir": "/home/data/hofee/project/nbv_rec/data/nbv_rec_data_512_preproc_npy",
|
|
||||||
"split_file": "/home/data/hofee/project/nbv_rec/data/OmniObject3d_train.txt",
|
|
||||||
"model_dir": "/home/data/hofee/project/nbv_rec/data/scaled_object_meshes",
|
|
||||||
"ratio": 0.005,
|
|
||||||
"batch_size": 2,
|
|
||||||
"filter_degree": 75,
|
|
||||||
"num_workers": 0,
|
|
||||||
"pts_num": 32684,
|
|
||||||
"type": namespace.Mode.TEST,
|
|
||||||
"load_from_preprocess": True
|
|
||||||
}
|
|
||||||
ds = SeqNBVReconstructionDataset(config)
|
|
||||||
print(len(ds))
|
|
||||||
#ds.__getitem__(10)
|
|
||||||
dl = ds.get_loader(shuffle=True)
|
|
||||||
for idx, data in enumerate(dl):
|
|
||||||
data = ds.process_batch(data, "cuda:0")
|
|
||||||
print(data)
|
|
||||||
# ------ Debug Start ------
|
|
||||||
import ipdb;ipdb.set_trace()
|
|
||||||
# ------ Debug End ------+
|
|
@ -1,195 +1,154 @@
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
from PytorchBoot.dataset import BaseDataset
|
from PytorchBoot.dataset import BaseDataset
|
||||||
import PytorchBoot.namespace as namespace
|
import PytorchBoot.namespace as namespace
|
||||||
import PytorchBoot.stereotype as stereotype
|
import PytorchBoot.stereotype as stereotype
|
||||||
from PytorchBoot.config import ConfigManager
|
from PytorchBoot.utils.log_util import Log
|
||||||
from PytorchBoot.utils.log_util import Log
|
import torch
|
||||||
import torch
|
import os
|
||||||
import os
|
import sys
|
||||||
import sys
|
sys.path.append(r"/home/data/hofee/project/nbv_rec/nbv_reconstruction")
|
||||||
|
|
||||||
sys.path.append(r"/data/hofee/project/nbv_rec/nbv_reconstruction")
|
from utils.data_load import DataLoadUtil
|
||||||
|
from utils.pose import PoseUtil
|
||||||
from utils.data_load import DataLoadUtil
|
from utils.pts import PtsUtil
|
||||||
from utils.pose import PoseUtil
|
|
||||||
from utils.pts import PtsUtil
|
@stereotype.dataset("seq_nbv_reconstruction_dataset")
|
||||||
|
class SeqNBVReconstructionDataset(BaseDataset):
|
||||||
|
def __init__(self, config):
|
||||||
@stereotype.dataset("seq_reconstruction_dataset")
|
super(SeqNBVReconstructionDataset, self).__init__(config)
|
||||||
class SeqReconstructionDataset(BaseDataset):
|
self.type = config["type"]
|
||||||
def __init__(self, config):
|
if self.type != namespace.Mode.TEST:
|
||||||
super(SeqReconstructionDataset, self).__init__(config)
|
Log.error("Dataset <seq_nbv_reconstruction_dataset> Only support test mode", terminate=True)
|
||||||
self.config = config
|
self.config = config
|
||||||
self.root_dir = config["root_dir"]
|
self.root_dir = config["root_dir"]
|
||||||
self.split_file_path = config["split_file"]
|
self.split_file_path = config["split_file"]
|
||||||
self.scene_name_list = self.load_scene_name_list()
|
self.scene_name_list = self.load_scene_name_list()
|
||||||
self.datalist = self.get_datalist()
|
self.datalist = self.get_datalist()
|
||||||
|
self.pts_num = config["pts_num"]
|
||||||
self.pts_num = config["pts_num"]
|
|
||||||
self.type = config["type"]
|
self.model_dir = config["model_dir"]
|
||||||
self.cache = config.get("cache")
|
self.filter_degree = config["filter_degree"]
|
||||||
self.load_from_preprocess = config.get("load_from_preprocess", False)
|
self.load_from_preprocess = config.get("load_from_preprocess", False)
|
||||||
|
|
||||||
if self.type == namespace.Mode.TEST:
|
|
||||||
#self.model_dir = config["model_dir"]
|
def load_scene_name_list(self):
|
||||||
self.filter_degree = config["filter_degree"]
|
scene_name_list = []
|
||||||
if self.type == namespace.Mode.TRAIN:
|
with open(self.split_file_path, "r") as f:
|
||||||
scale_ratio = 1
|
for line in f:
|
||||||
self.datalist = self.datalist*scale_ratio
|
scene_name = line.strip()
|
||||||
if self.cache:
|
scene_name_list.append(scene_name)
|
||||||
expr_root = ConfigManager.get("runner", "experiment", "root_dir")
|
return scene_name_list
|
||||||
expr_name = ConfigManager.get("runner", "experiment", "name")
|
|
||||||
self.cache_dir = os.path.join(expr_root, expr_name, "cache")
|
def get_datalist(self):
|
||||||
# self.preprocess_cache()
|
datalist = []
|
||||||
|
for scene_name in self.scene_name_list:
|
||||||
def load_scene_name_list(self):
|
seq_num = DataLoadUtil.get_label_num(self.root_dir, scene_name)
|
||||||
scene_name_list = []
|
scene_max_coverage_rate = 0
|
||||||
with open(self.split_file_path, "r") as f:
|
scene_max_cr_idx = 0
|
||||||
for line in f:
|
|
||||||
scene_name = line.strip()
|
for seq_idx in range(seq_num):
|
||||||
scene_name_list.append(scene_name)
|
label_path = DataLoadUtil.get_label_path(self.root_dir, scene_name, seq_idx)
|
||||||
return scene_name_list
|
label_data = DataLoadUtil.load_label(label_path)
|
||||||
|
max_coverage_rate = label_data["max_coverage_rate"]
|
||||||
def get_datalist(self):
|
if max_coverage_rate > scene_max_coverage_rate:
|
||||||
datalist = []
|
scene_max_coverage_rate = max_coverage_rate
|
||||||
for scene_name in self.scene_name_list:
|
scene_max_cr_idx = seq_idx
|
||||||
seq_num = DataLoadUtil.get_label_num(self.root_dir, scene_name)
|
|
||||||
scene_max_coverage_rate = 0
|
label_path = DataLoadUtil.get_label_path(self.root_dir, scene_name, scene_max_cr_idx)
|
||||||
max_coverage_rate_list = []
|
label_data = DataLoadUtil.load_label(label_path)
|
||||||
scene_max_cr_idx = 0
|
first_frame = label_data["best_sequence"][0]
|
||||||
for seq_idx in range(seq_num):
|
best_seq_len = len(label_data["best_sequence"])
|
||||||
label_path = DataLoadUtil.get_label_path(
|
datalist.append({
|
||||||
self.root_dir, scene_name, seq_idx
|
"scene_name": scene_name,
|
||||||
)
|
"first_frame": first_frame,
|
||||||
label_data = DataLoadUtil.load_label(label_path)
|
"max_coverage_rate": scene_max_coverage_rate,
|
||||||
max_coverage_rate = label_data["max_coverage_rate"]
|
"best_seq_len": best_seq_len,
|
||||||
if max_coverage_rate > scene_max_coverage_rate:
|
"label_idx": scene_max_cr_idx,
|
||||||
scene_max_coverage_rate = max_coverage_rate
|
})
|
||||||
scene_max_cr_idx = seq_idx
|
return datalist
|
||||||
max_coverage_rate_list.append(max_coverage_rate)
|
|
||||||
best_label_path = DataLoadUtil.get_label_path(self.root_dir, scene_name, scene_max_cr_idx)
|
def __getitem__(self, index):
|
||||||
best_label_data = DataLoadUtil.load_label(best_label_path)
|
data_item_info = self.datalist[index]
|
||||||
first_frame = best_label_data["best_sequence"][0]
|
first_frame_idx = data_item_info["first_frame"][0]
|
||||||
best_seq_len = len(best_label_data["best_sequence"])
|
first_frame_coverage = data_item_info["first_frame"][1]
|
||||||
datalist.append({
|
max_coverage_rate = data_item_info["max_coverage_rate"]
|
||||||
"scene_name": scene_name,
|
scene_name = data_item_info["scene_name"]
|
||||||
"first_frame": first_frame,
|
first_cam_info = DataLoadUtil.load_cam_info(DataLoadUtil.get_path(self.root_dir, scene_name, first_frame_idx), binocular=True)
|
||||||
"best_seq_len": best_seq_len,
|
first_view_path = DataLoadUtil.get_path(self.root_dir, scene_name, first_frame_idx)
|
||||||
"max_coverage_rate": scene_max_coverage_rate,
|
first_left_cam_pose = first_cam_info["cam_to_world"]
|
||||||
"label_idx": scene_max_cr_idx,
|
first_center_cam_pose = first_cam_info["cam_to_world_O"]
|
||||||
})
|
first_target_point_cloud = DataLoadUtil.load_from_preprocessed_pts(first_view_path)
|
||||||
return datalist
|
first_pts_num = first_target_point_cloud.shape[0]
|
||||||
|
first_downsampled_target_point_cloud = PtsUtil.random_downsample_point_cloud(first_target_point_cloud, self.pts_num)
|
||||||
def preprocess_cache(self):
|
first_to_world_rot_6d = PoseUtil.matrix_to_rotation_6d_numpy(np.asarray(first_left_cam_pose[:3,:3]))
|
||||||
Log.info("preprocessing cache...")
|
first_to_world_trans = first_left_cam_pose[:3,3]
|
||||||
for item_idx in range(len(self.datalist)):
|
first_to_world_9d = np.concatenate([first_to_world_rot_6d, first_to_world_trans], axis=0)
|
||||||
self.__getitem__(item_idx)
|
diag = DataLoadUtil.get_bbox_diag(self.model_dir, scene_name)
|
||||||
Log.success("finish preprocessing cache.")
|
voxel_threshold = diag*0.02
|
||||||
|
first_O_to_first_L_pose = np.dot(np.linalg.inv(first_left_cam_pose), first_center_cam_pose)
|
||||||
def load_from_cache(self, scene_name, curr_frame_idx):
|
scene_path = os.path.join(self.root_dir, scene_name)
|
||||||
cache_name = f"{scene_name}_{curr_frame_idx}.txt"
|
model_points_normals = DataLoadUtil.load_points_normals(self.root_dir, scene_name)
|
||||||
cache_path = os.path.join(self.cache_dir, cache_name)
|
|
||||||
if os.path.exists(cache_path):
|
data_item = {
|
||||||
data = np.loadtxt(cache_path)
|
"first_pts_num": np.asarray(
|
||||||
return data
|
first_pts_num, dtype=np.int32
|
||||||
else:
|
),
|
||||||
return None
|
"first_pts": np.asarray([first_downsampled_target_point_cloud],dtype=np.float32),
|
||||||
|
"combined_scanned_pts": np.asarray(first_downsampled_target_point_cloud,dtype=np.float32),
|
||||||
def save_to_cache(self, scene_name, curr_frame_idx, data):
|
"first_to_world_9d": np.asarray([first_to_world_9d],dtype=np.float32),
|
||||||
cache_name = f"{scene_name}_{curr_frame_idx}.txt"
|
"scene_name": scene_name,
|
||||||
cache_path = os.path.join(self.cache_dir, cache_name)
|
"max_coverage_rate": max_coverage_rate,
|
||||||
try:
|
"voxel_threshold": voxel_threshold,
|
||||||
np.savetxt(cache_path, data)
|
"filter_degree": self.filter_degree,
|
||||||
except Exception as e:
|
"O_to_L_pose": first_O_to_first_L_pose,
|
||||||
Log.error(f"Save cache failed: {e}")
|
"first_frame_coverage": first_frame_coverage,
|
||||||
|
"scene_path": scene_path,
|
||||||
def seq_combined_pts(self, scene, frame_idx_list):
|
"model_points_normals": model_points_normals,
|
||||||
all_combined_pts = []
|
"best_seq_len": data_item_info["best_seq_len"],
|
||||||
for i in frame_idx_list:
|
"first_frame_id": first_frame_idx,
|
||||||
path = DataLoadUtil.get_path(self.root_dir, scene, i)
|
}
|
||||||
pts = DataLoadUtil.load_from_preprocessed_pts(path,"npy")
|
return data_item
|
||||||
if pts.shape[0] == 0:
|
|
||||||
continue
|
def __len__(self):
|
||||||
all_combined_pts.append(pts)
|
return len(self.datalist)
|
||||||
all_combined_pts = np.vstack(all_combined_pts)
|
|
||||||
downsampled_all_pts = PtsUtil.voxel_downsample_point_cloud(all_combined_pts, 0.003)
|
def get_collate_fn(self):
|
||||||
return downsampled_all_pts
|
def collate_fn(batch):
|
||||||
|
collate_data = {}
|
||||||
def __getitem__(self, index):
|
collate_data["first_pts"] = [torch.tensor(item['first_pts']) for item in batch]
|
||||||
data_item_info = self.datalist[index]
|
collate_data["first_to_world_9d"] = [torch.tensor(item['first_to_world_9d']) for item in batch]
|
||||||
max_coverage_rate = data_item_info["max_coverage_rate"]
|
collate_data["combined_scanned_pts"] = torch.stack([torch.tensor(item['combined_scanned_pts']) for item in batch])
|
||||||
scene_name = data_item_info["scene_name"]
|
for key in batch[0].keys():
|
||||||
(
|
if key not in ["first_pts", "first_to_world_9d", "combined_scanned_pts"]:
|
||||||
scanned_views_pts,
|
collate_data[key] = [item[key] for item in batch]
|
||||||
scanned_coverages_rate,
|
return collate_data
|
||||||
scanned_n_to_world_pose,
|
return collate_fn
|
||||||
) = ([], [], [])
|
|
||||||
view = data_item_info["first_frame"]
|
# -------------- Debug ---------------- #
|
||||||
frame_idx = view[0]
|
if __name__ == "__main__":
|
||||||
coverage_rate = view[1]
|
import torch
|
||||||
view_path = DataLoadUtil.get_path(self.root_dir, scene_name, frame_idx)
|
seed = 0
|
||||||
cam_info = DataLoadUtil.load_cam_info(view_path, binocular=True)
|
torch.manual_seed(seed)
|
||||||
|
np.random.seed(seed)
|
||||||
n_to_world_pose = cam_info["cam_to_world"]
|
config = {
|
||||||
target_point_cloud = (
|
"root_dir": "/home/data/hofee/project/nbv_rec/data/nbv_rec_data_512_preproc_npy",
|
||||||
DataLoadUtil.load_from_preprocessed_pts(view_path)
|
"split_file": "/home/data/hofee/project/nbv_rec/data/OmniObject3d_train.txt",
|
||||||
)
|
"model_dir": "/home/data/hofee/project/nbv_rec/data/scaled_object_meshes",
|
||||||
downsampled_target_point_cloud = PtsUtil.random_downsample_point_cloud(
|
"ratio": 0.005,
|
||||||
target_point_cloud, self.pts_num
|
"batch_size": 2,
|
||||||
)
|
"filter_degree": 75,
|
||||||
scanned_views_pts.append(downsampled_target_point_cloud)
|
"num_workers": 0,
|
||||||
scanned_coverages_rate.append(coverage_rate)
|
"pts_num": 32684,
|
||||||
n_to_world_6d = PoseUtil.matrix_to_rotation_6d_numpy(
|
"type": namespace.Mode.TEST,
|
||||||
np.asarray(n_to_world_pose[:3, :3])
|
"load_from_preprocess": True
|
||||||
)
|
}
|
||||||
first_left_cam_pose = cam_info["cam_to_world"]
|
ds = SeqNBVReconstructionDataset(config)
|
||||||
first_center_cam_pose = cam_info["cam_to_world_O"]
|
print(len(ds))
|
||||||
first_O_to_first_L_pose = np.dot(np.linalg.inv(first_left_cam_pose), first_center_cam_pose)
|
#ds.__getitem__(10)
|
||||||
n_to_world_trans = n_to_world_pose[:3, 3]
|
dl = ds.get_loader(shuffle=True)
|
||||||
n_to_world_9d = np.concatenate([n_to_world_6d, n_to_world_trans], axis=0)
|
for idx, data in enumerate(dl):
|
||||||
scanned_n_to_world_pose.append(n_to_world_9d)
|
data = ds.process_batch(data, "cuda:0")
|
||||||
|
print(data)
|
||||||
frame_list = []
|
# ------ Debug Start ------
|
||||||
for i in range(DataLoadUtil.get_scene_seq_length(self.root_dir, scene_name)):
|
import ipdb;ipdb.set_trace()
|
||||||
frame_list.append(i)
|
# ------ Debug End ------+
|
||||||
gt_pts = self.seq_combined_pts(scene_name, frame_list)
|
|
||||||
data_item = {
|
|
||||||
"first_scanned_pts": np.asarray(scanned_views_pts, dtype=np.float32), # Ndarray(S x Nv x 3)
|
|
||||||
"first_scanned_coverage_rate": scanned_coverages_rate, # List(S): Float, range(0, 1)
|
|
||||||
"first_scanned_n_to_world_pose_9d": np.asarray(scanned_n_to_world_pose, dtype=np.float32), # Ndarray(S x 9)
|
|
||||||
"seq_max_coverage_rate": max_coverage_rate, # Float, range(0, 1)
|
|
||||||
"scene_name": scene_name, # String
|
|
||||||
"gt_pts": gt_pts, # Ndarray(N x 3)
|
|
||||||
"scene_path": os.path.join(self.root_dir, scene_name), # String
|
|
||||||
"O_to_L_pose": first_O_to_first_L_pose,
|
|
||||||
}
|
|
||||||
|
|
||||||
return data_item
|
|
||||||
|
|
||||||
def __len__(self):
|
|
||||||
return len(self.datalist)
|
|
||||||
|
|
||||||
|
|
||||||
# -------------- Debug ---------------- #
|
|
||||||
if __name__ == "__main__":
|
|
||||||
import torch
|
|
||||||
|
|
||||||
seed = 0
|
|
||||||
torch.manual_seed(seed)
|
|
||||||
np.random.seed(seed)
|
|
||||||
config = {
|
|
||||||
"root_dir": "/data/hofee/data/new_full_data",
|
|
||||||
"source": "seq_reconstruction_dataset",
|
|
||||||
"split_file": "/data/hofee/data/sample.txt",
|
|
||||||
"load_from_preprocess": True,
|
|
||||||
"ratio": 0.5,
|
|
||||||
"batch_size": 2,
|
|
||||||
"filter_degree": 75,
|
|
||||||
"num_workers": 0,
|
|
||||||
"pts_num": 4096,
|
|
||||||
"type": namespace.Mode.TRAIN,
|
|
||||||
}
|
|
||||||
ds = SeqReconstructionDataset(config)
|
|
||||||
print(len(ds))
|
|
||||||
print(ds.__getitem__(10))
|
|
||||||
|
|
@ -27,7 +27,6 @@ class Inferencer(Runner):
|
|||||||
|
|
||||||
self.script_path = ConfigManager.get(namespace.Stereotype.RUNNER, "blender_script_path")
|
self.script_path = ConfigManager.get(namespace.Stereotype.RUNNER, "blender_script_path")
|
||||||
self.output_dir = ConfigManager.get(namespace.Stereotype.RUNNER, "output_dir")
|
self.output_dir = ConfigManager.get(namespace.Stereotype.RUNNER, "output_dir")
|
||||||
self.voxel_size = ConfigManager.get(namespace.Stereotype.RUNNER, "voxel_size")
|
|
||||||
''' Pipeline '''
|
''' Pipeline '''
|
||||||
self.pipeline_name = self.config[namespace.Stereotype.PIPELINE]
|
self.pipeline_name = self.config[namespace.Stereotype.PIPELINE]
|
||||||
self.pipeline:torch.nn.Module = ComponentFactory.create(namespace.Stereotype.PIPELINE, self.pipeline_name)
|
self.pipeline:torch.nn.Module = ComponentFactory.create(namespace.Stereotype.PIPELINE, self.pipeline_name)
|
||||||
@ -66,11 +65,16 @@ class Inferencer(Runner):
|
|||||||
for dataset_idx, test_set in enumerate(self.test_set_list):
|
for dataset_idx, test_set in enumerate(self.test_set_list):
|
||||||
status_manager.set_progress("inference", "inferencer", f"dataset", dataset_idx, len(self.test_set_list))
|
status_manager.set_progress("inference", "inferencer", f"dataset", dataset_idx, len(self.test_set_list))
|
||||||
test_set_name = test_set.get_name()
|
test_set_name = test_set.get_name()
|
||||||
|
test_loader = test_set.get_loader()
|
||||||
|
|
||||||
total=int(len(test_set))
|
if test_loader.batch_size > 1:
|
||||||
for i in range(total):
|
Log.error("Batch size should be 1 for inference, found {} in {}".format(test_loader.batch_size, test_set_name), terminate=True)
|
||||||
data = test_set.__getitem__(i)
|
|
||||||
|
total=int(len(test_loader))
|
||||||
|
loop = tqdm(enumerate(test_loader), total=total)
|
||||||
|
for i, data in loop:
|
||||||
status_manager.set_progress("inference", "inferencer", f"Batch[{test_set_name}]", i+1, total)
|
status_manager.set_progress("inference", "inferencer", f"Batch[{test_set_name}]", i+1, total)
|
||||||
|
test_set.process_batch(data, self.device)
|
||||||
output = self.predict_sequence(data)
|
output = self.predict_sequence(data)
|
||||||
self.save_inference_result(test_set_name, data["scene_name"][0], output)
|
self.save_inference_result(test_set_name, data["scene_name"][0], output)
|
||||||
|
|
||||||
@ -84,23 +88,26 @@ class Inferencer(Runner):
|
|||||||
''' data for rendering '''
|
''' data for rendering '''
|
||||||
scene_path = data["scene_path"][0]
|
scene_path = data["scene_path"][0]
|
||||||
O_to_L_pose = data["O_to_L_pose"][0]
|
O_to_L_pose = data["O_to_L_pose"][0]
|
||||||
voxel_threshold = self.voxel_size
|
voxel_threshold = data["voxel_threshold"][0]
|
||||||
filter_degree = 75
|
filter_degree = data["filter_degree"][0]
|
||||||
down_sampled_model_pts = data["gt_pts"]
|
model_points_normals = data["model_points_normals"][0]
|
||||||
import ipdb; ipdb.set_trace()
|
model_pts = model_points_normals[:,:3]
|
||||||
first_frame_to_world_9d = data["first_scanned_n_to_world_pose_9d"][0]
|
down_sampled_model_pts = PtsUtil.voxel_downsample_point_cloud(model_pts, voxel_threshold)
|
||||||
first_frame_to_world = np.eye(4)
|
first_frame_to_world_9d = data["first_to_world_9d"][0]
|
||||||
first_frame_to_world[:3,:3] = PoseUtil.rotation_6d_to_matrix_numpy(first_frame_to_world_9d[:6])
|
first_frame_to_world = torch.eye(4, device=first_frame_to_world_9d.device)
|
||||||
first_frame_to_world[:3,3] = first_frame_to_world_9d[6:]
|
first_frame_to_world[:3,:3] = PoseUtil.rotation_6d_to_matrix_tensor_batch(first_frame_to_world_9d[:,:6])[0]
|
||||||
|
first_frame_to_world[:3,3] = first_frame_to_world_9d[0,6:]
|
||||||
|
first_frame_to_world = first_frame_to_world.to(self.device)
|
||||||
|
|
||||||
''' data for inference '''
|
''' data for inference '''
|
||||||
input_data = {}
|
input_data = {}
|
||||||
input_data["combined_scanned_pts"] = torch.tensor(data["first_scanned_pts"][0], dtype=torch.float32).to(self.device)
|
input_data["scanned_pts"] = [data["first_pts"][0].to(self.device)]
|
||||||
input_data["scanned_n_to_world_pose_9d"] = [torch.tensor(data["first_scanned_n_to_world_pose_9d"], dtype=torch.float32).to(self.device)]
|
input_data["scanned_n_to_world_pose_9d"] = [data["first_to_world_9d"][0].to(self.device)]
|
||||||
input_data["mode"] = namespace.Mode.TEST
|
input_data["mode"] = namespace.Mode.TEST
|
||||||
input_pts_N = input_data["combined_scanned_pts"].shape[1]
|
input_data["combined_scanned_pts"] = data["combined_scanned_pts"]
|
||||||
|
input_pts_N = input_data["scanned_pts"][0].shape[1]
|
||||||
|
|
||||||
first_frame_target_pts, _ = RenderUtil.render_pts(first_frame_to_world, scene_path, self.script_path, down_sampled_model_pts, voxel_threshold=voxel_threshold, filter_degree=filter_degree, nO_to_nL_pose=O_to_L_pose)
|
first_frame_target_pts, _ = RenderUtil.render_pts(first_frame_to_world, scene_path, self.script_path, model_points_normals, voxel_threshold=voxel_threshold, filter_degree=filter_degree, nO_to_nL_pose=O_to_L_pose)
|
||||||
scanned_view_pts = [first_frame_target_pts]
|
scanned_view_pts = [first_frame_target_pts]
|
||||||
last_pred_cr = self.compute_coverage_rate(scanned_view_pts, None, down_sampled_model_pts, threshold=voxel_threshold)
|
last_pred_cr = self.compute_coverage_rate(scanned_view_pts, None, down_sampled_model_pts, threshold=voxel_threshold)
|
||||||
|
|
||||||
|
@ -10,7 +10,7 @@ from utils.pts import PtsUtil
|
|||||||
class RenderUtil:
|
class RenderUtil:
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def render_pts(cam_pose, scene_path, script_path, voxel_threshold=0.005, filter_degree=75, nO_to_nL_pose=None, require_full_scene=False):
|
def render_pts(cam_pose, scene_path, script_path, model_points_normals, voxel_threshold=0.005, filter_degree=75, nO_to_nL_pose=None, require_full_scene=False):
|
||||||
|
|
||||||
nO_to_world_pose = DataLoadUtil.get_real_cam_O_from_cam_L(cam_pose, nO_to_nL_pose, scene_path=scene_path)
|
nO_to_world_pose = DataLoadUtil.get_real_cam_O_from_cam_L(cam_pose, nO_to_nL_pose, scene_path=scene_path)
|
||||||
|
|
||||||
@ -34,10 +34,10 @@ class RenderUtil:
|
|||||||
return None
|
return None
|
||||||
path = os.path.join(temp_dir, "tmp")
|
path = os.path.join(temp_dir, "tmp")
|
||||||
point_cloud = DataLoadUtil.get_target_point_cloud_world_from_path(path, binocular=True)
|
point_cloud = DataLoadUtil.get_target_point_cloud_world_from_path(path, binocular=True)
|
||||||
normals = DataLoadUtil.get_target_normals_world_from_path(path, binocular=True)
|
|
||||||
cam_params = DataLoadUtil.load_cam_info(path, binocular=True)
|
cam_params = DataLoadUtil.load_cam_info(path, binocular=True)
|
||||||
|
|
||||||
filtered_point_cloud = PtsUtil.filter_points(point_cloud, normals, cam_pose=cam_params["cam_to_world"], voxel_size=voxel_threshold, theta=filter_degree)
|
''' TODO: old code: filter_points api is changed, need to update the code '''
|
||||||
|
filtered_point_cloud = PtsUtil.filter_points(point_cloud, model_points_normals, cam_pose=cam_params["cam_to_world"], voxel_size=voxel_threshold, theta=filter_degree)
|
||||||
full_scene_point_cloud = None
|
full_scene_point_cloud = None
|
||||||
if require_full_scene:
|
if require_full_scene:
|
||||||
depth_L, depth_R = DataLoadUtil.load_depth(path, cam_params['near_plane'], cam_params['far_plane'], binocular=True)
|
depth_L, depth_R = DataLoadUtil.load_depth(path, cam_params['near_plane'], cam_params['far_plane'], binocular=True)
|
||||||
|
Loading…
x
Reference in New Issue
Block a user