Compare commits
14 Commits
91cabec977
...
new_partia
Author | SHA1 | Date | |
---|---|---|---|
7c7f071f95 | |||
1a0e3c8042 | |||
2fcc650eb7 | |||
b20fa8bb75 | |||
d7fb64ed13 | |||
5a03659112 | |||
fca984e76b | |||
dec67e8255 | |||
1535a48a3f | |||
9c2625b11e | |||
2dfb6c57ce | |||
88d44f020e | |||
34548c64a3 | |||
47ea0ac434 |
11
app_sim.py
Normal file
11
app_sim.py
Normal file
@@ -0,0 +1,11 @@
|
||||
from PytorchBoot.application import PytorchBootApplication
|
||||
from runners.simulator import Simulator
|
||||
|
||||
@PytorchBootApplication("sim")
|
||||
class SimulateApp:
|
||||
@staticmethod
|
||||
def start():
|
||||
simulator = Simulator("configs/local/simulation_config.yaml")
|
||||
simulator.run("create")
|
||||
simulator.run("simulate")
|
||||
|
162
beans/predict_result.py
Normal file
162
beans/predict_result.py
Normal file
@@ -0,0 +1,162 @@
|
||||
import numpy as np
|
||||
from sklearn.cluster import DBSCAN
|
||||
|
||||
class PredictResult:
|
||||
def __init__(self, raw_predict_result, input_pts=None, cluster_params=dict(eps=0.5, min_samples=2)):
|
||||
self.input_pts = input_pts
|
||||
self.cluster_params = cluster_params
|
||||
self.sampled_9d_pose = raw_predict_result
|
||||
self.sampled_matrix_pose = self.get_sampled_matrix_pose()
|
||||
self.distance_matrix = self.calculate_distance_matrix()
|
||||
self.clusters = self.get_cluster_result()
|
||||
self.candidate_matrix_poses = self.get_candidate_poses()
|
||||
self.candidate_9d_poses = [np.concatenate((self.matrix_to_rotation_6d_numpy(matrix[:3,:3]), matrix[:3,3].reshape(-1,)), axis=-1) for matrix in self.candidate_matrix_poses]
|
||||
self.cluster_num = len(self.clusters)
|
||||
|
||||
@staticmethod
|
||||
def rotation_6d_to_matrix_numpy(d6):
|
||||
a1, a2 = d6[:3], d6[3:]
|
||||
b1 = a1 / np.linalg.norm(a1)
|
||||
b2 = a2 - np.dot(b1, a2) * b1
|
||||
b2 = b2 / np.linalg.norm(b2)
|
||||
b3 = np.cross(b1, b2)
|
||||
return np.stack((b1, b2, b3), axis=-2)
|
||||
|
||||
@staticmethod
|
||||
def matrix_to_rotation_6d_numpy(matrix):
|
||||
return np.copy(matrix[:2, :]).reshape((6,))
|
||||
|
||||
def __str__(self):
|
||||
info = "Predict Result:\n"
|
||||
info += f" Predicted pose number: {len(self.sampled_9d_pose)}\n"
|
||||
info += f" Cluster number: {self.cluster_num}\n"
|
||||
for i, cluster in enumerate(self.clusters):
|
||||
info += f" - Cluster {i} size: {len(cluster)}\n"
|
||||
max_distance = np.max(self.distance_matrix[self.distance_matrix != 0])
|
||||
min_distance = np.min(self.distance_matrix[self.distance_matrix != 0])
|
||||
info += f" Max distance: {max_distance}\n"
|
||||
info += f" Min distance: {min_distance}\n"
|
||||
return info
|
||||
|
||||
def get_sampled_matrix_pose(self):
|
||||
sampled_matrix_pose = []
|
||||
for pose in self.sampled_9d_pose:
|
||||
rotation = pose[:6]
|
||||
translation = pose[6:]
|
||||
pose = self.rotation_6d_to_matrix_numpy(rotation)
|
||||
pose = np.concatenate((pose, translation.reshape(-1, 1)), axis=-1)
|
||||
pose = np.concatenate((pose, np.array([[0, 0, 0, 1]])), axis=-2)
|
||||
sampled_matrix_pose.append(pose)
|
||||
return np.array(sampled_matrix_pose)
|
||||
|
||||
def rotation_distance(self, R1, R2):
|
||||
R = np.dot(R1.T, R2)
|
||||
trace = np.trace(R)
|
||||
angle = np.arccos(np.clip((trace - 1) / 2, -1, 1))
|
||||
return angle
|
||||
|
||||
def calculate_distance_matrix(self):
|
||||
n = len(self.sampled_matrix_pose)
|
||||
dist_matrix = np.zeros((n, n))
|
||||
for i in range(n):
|
||||
for j in range(n):
|
||||
dist_matrix[i, j] = self.rotation_distance(self.sampled_matrix_pose[i][:3, :3], self.sampled_matrix_pose[j][:3, :3])
|
||||
return dist_matrix
|
||||
|
||||
def cluster_rotations(self):
|
||||
clustering = DBSCAN(eps=self.cluster_params['eps'], min_samples=self.cluster_params['min_samples'], metric='precomputed')
|
||||
labels = clustering.fit_predict(self.distance_matrix)
|
||||
return labels
|
||||
|
||||
def get_cluster_result(self):
|
||||
labels = self.cluster_rotations()
|
||||
cluster_num = len(set(labels)) - (1 if -1 in labels else 0)
|
||||
clusters = []
|
||||
for _ in range(cluster_num):
|
||||
clusters.append([])
|
||||
for matrix_pose, label in zip(self.sampled_matrix_pose, labels):
|
||||
if label != -1:
|
||||
clusters[label].append(matrix_pose)
|
||||
clusters.sort(key=len, reverse=True)
|
||||
return clusters
|
||||
|
||||
def get_center_matrix_pose_from_cluster(self, cluster):
|
||||
min_total_distance = float('inf')
|
||||
center_matrix_pose = None
|
||||
|
||||
for matrix_pose in cluster:
|
||||
total_distance = 0
|
||||
for other_matrix_pose in cluster:
|
||||
rot_distance = self.rotation_distance(matrix_pose[:3, :3], other_matrix_pose[:3, :3])
|
||||
total_distance += rot_distance
|
||||
|
||||
if total_distance < min_total_distance:
|
||||
min_total_distance = total_distance
|
||||
center_matrix_pose = matrix_pose
|
||||
|
||||
return center_matrix_pose
|
||||
|
||||
def get_candidate_poses(self):
|
||||
candidate_poses = []
|
||||
for cluster in self.clusters:
|
||||
candidate_poses.append(self.get_center_matrix_pose_from_cluster(cluster))
|
||||
return candidate_poses
|
||||
|
||||
def visualize(self):
|
||||
import plotly.graph_objects as go
|
||||
fig = go.Figure()
|
||||
if self.input_pts is not None:
|
||||
fig.add_trace(go.Scatter3d(
|
||||
x=self.input_pts[:, 0], y=self.input_pts[:, 1], z=self.input_pts[:, 2],
|
||||
mode='markers', marker=dict(size=1, color='gray', opacity=0.5), name='Input Points'
|
||||
))
|
||||
colors = ['aggrnyl', 'agsunset', 'algae', 'amp', 'armyrose', 'balance',
|
||||
'blackbody', 'bluered', 'blues', 'blugrn', 'bluyl', 'brbg']
|
||||
for i, cluster in enumerate(self.clusters):
|
||||
color = colors[i]
|
||||
candidate_pose = self.candidate_matrix_poses[i]
|
||||
origin_candidate = candidate_pose[:3, 3]
|
||||
z_axis_candidate = candidate_pose[:3, 2]
|
||||
for pose in cluster:
|
||||
origin = pose[:3, 3]
|
||||
z_axis = pose[:3, 2]
|
||||
fig.add_trace(go.Cone(
|
||||
x=[origin[0]], y=[origin[1]], z=[origin[2]],
|
||||
u=[z_axis[0]], v=[z_axis[1]], w=[z_axis[2]],
|
||||
colorscale=color,
|
||||
sizemode="absolute", sizeref=0.05, anchor="tail", showscale=False
|
||||
))
|
||||
fig.add_trace(go.Cone(
|
||||
x=[origin_candidate[0]], y=[origin_candidate[1]], z=[origin_candidate[2]],
|
||||
u=[z_axis_candidate[0]], v=[z_axis_candidate[1]], w=[z_axis_candidate[2]],
|
||||
colorscale=color,
|
||||
sizemode="absolute", sizeref=0.1, anchor="tail", showscale=False
|
||||
))
|
||||
|
||||
fig.update_layout(
|
||||
title="Clustered Poses and Input Points",
|
||||
scene=dict(
|
||||
xaxis_title='X',
|
||||
yaxis_title='Y',
|
||||
zaxis_title='Z'
|
||||
),
|
||||
margin=dict(l=0, r=0, b=0, t=40),
|
||||
scene_camera=dict(eye=dict(x=1.25, y=1.25, z=1.25))
|
||||
)
|
||||
|
||||
fig.show()
|
||||
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
step = 0
|
||||
raw_predict_result = np.load(f"inference_result_pack/inference_result_pack/{step}/all_pred_pose_9d.npy")
|
||||
input_pts = np.loadtxt(f"inference_result_pack/inference_result_pack/{step}/input_pts.txt")
|
||||
print(raw_predict_result.shape)
|
||||
predict_result = PredictResult(raw_predict_result, input_pts, cluster_params=dict(eps=0.25, min_samples=3))
|
||||
print(predict_result)
|
||||
print(len(predict_result.candidate_matrix_poses))
|
||||
print(predict_result.distance_matrix)
|
||||
#import ipdb; ipdb.set_trace()
|
||||
predict_result.visualize()
|
||||
|
@@ -6,16 +6,16 @@ runner:
|
||||
cuda_visible_devices: "0,1,2,3,4,5,6,7"
|
||||
|
||||
experiment:
|
||||
name: train_ab_global_only
|
||||
name: train_ab_global_only_p++_wp
|
||||
root_dir: "experiments"
|
||||
epoch: -1 # -1 stands for last epoch
|
||||
epoch: 922 # -1 stands for last epoch
|
||||
|
||||
test:
|
||||
dataset_list:
|
||||
- OmniObject3d_test
|
||||
|
||||
blender_script_path: "/media/hofee/data/project/python/nbv_reconstruction/blender/data_renderer.py"
|
||||
output_dir: "/media/hofee/data/results/nbv_rec_inference/global_only_ycb_241204"
|
||||
output_dir: "/media/hofee/data/data/p++_wp"
|
||||
pipeline: nbv_reconstruction_pipeline
|
||||
voxel_size: 0.003
|
||||
min_new_area: 1.0
|
||||
@@ -34,8 +34,8 @@ dataset:
|
||||
# load_from_preprocess: True
|
||||
|
||||
OmniObject3d_test:
|
||||
root_dir: "/media/hofee/data/results/ycb_preprocessed_dataset"
|
||||
model_dir: "/media/hofee/data/data/ycb_obj"
|
||||
root_dir: "/media/hofee/data/data/new_testset_output"
|
||||
model_dir: "/media/hofee/data/data/scaled_object_meshes"
|
||||
source: seq_reconstruction_dataset_preprocessed
|
||||
# split_file: "C:\\Document\\Datasets\\data_list\\OmniObject3d_test.txt"
|
||||
type: test
|
||||
@@ -52,7 +52,7 @@ dataset:
|
||||
pipeline:
|
||||
nbv_reconstruction_pipeline:
|
||||
modules:
|
||||
pts_encoder: pointnet_encoder
|
||||
pts_encoder: pointnet++_encoder
|
||||
seq_encoder: transformer_seq_encoder
|
||||
pose_encoder: pose_encoder
|
||||
view_finder: gf_view_finder
|
||||
@@ -60,6 +60,10 @@ pipeline:
|
||||
global_scanned_feat: True
|
||||
|
||||
module:
|
||||
pointnet++_encoder:
|
||||
in_dim: 3
|
||||
params_name: light
|
||||
|
||||
pointnet_encoder:
|
||||
in_dim: 3
|
||||
out_dim: 1024
|
||||
|
36
configs/local/simulation_config.yaml
Normal file
36
configs/local/simulation_config.yaml
Normal file
@@ -0,0 +1,36 @@
|
||||
runner:
|
||||
general:
|
||||
seed: 0
|
||||
device: cuda
|
||||
cuda_visible_devices: "0,1,2,3,4,5,6,7"
|
||||
|
||||
experiment:
|
||||
name: simulation_debug
|
||||
root_dir: "experiments"
|
||||
|
||||
simulation:
|
||||
robot:
|
||||
urdf_path: "assets/franka_panda/panda.urdf"
|
||||
initial_position: [0, 0, 0] # 机械臂基座位置
|
||||
initial_orientation: [0, 0, 0] # 机械臂基座朝向(欧拉角)
|
||||
|
||||
turntable:
|
||||
radius: 0.3 # 转盘半径(米)
|
||||
height: 0.1 # 转盘高度
|
||||
center_position: [0.8, 0, 0.4]
|
||||
|
||||
target:
|
||||
obj_dir: /media/hofee/data/project/python/nbv_reconstruction/nbv_reconstruction/assets/object_meshes
|
||||
obj_name: "google_scan-box_0185"
|
||||
scale: 1.0 # 缩放系数
|
||||
mass: 0.1 # 质量(kg)
|
||||
rgba_color: [0.8, 0.8, 0.8, 1.0] # 目标物体颜色
|
||||
|
||||
camera:
|
||||
width: 640
|
||||
height: 480
|
||||
fov: 40
|
||||
near: 0.01
|
||||
far: 5.0
|
||||
|
||||
displaytable:
|
@@ -22,6 +22,6 @@ runner:
|
||||
|
||||
datasets:
|
||||
OmniObject3d:
|
||||
root_dir: /media/hofee/data/results/ycb_view_data
|
||||
root_dir: /media/hofee/data/data/test_bottle/view
|
||||
from: 0
|
||||
to: -1 # ..-1 means end
|
||||
|
@@ -8,16 +8,16 @@ runner:
|
||||
root_dir: experiments
|
||||
generate:
|
||||
port: 5002
|
||||
from: 1
|
||||
from: 0
|
||||
to: 50 # -1 means all
|
||||
object_dir: /media/hofee/data/data/ycb_obj
|
||||
object_dir: /media/hofee/data/data/test_bottle/bottle_mesh
|
||||
table_model_path: /media/hofee/data/data/others/table.obj
|
||||
output_dir: /media/hofee/data/results/ycb_view_data
|
||||
output_dir: /media/hofee/data/data/test_bottle/view
|
||||
binocular_vision: true
|
||||
plane_size: 10
|
||||
max_views: 512
|
||||
min_views: 128
|
||||
random_view_ratio: 0.02
|
||||
random_view_ratio: 0.002
|
||||
min_cam_table_included_degree: 20
|
||||
max_diag: 0.7
|
||||
min_diag: 0.01
|
||||
@@ -34,7 +34,7 @@ runner:
|
||||
max_y: 0.05
|
||||
min_z: 0.01
|
||||
max_z: 0.01
|
||||
random_rotation_ratio: 0.3
|
||||
random_rotation_ratio: 0.0
|
||||
random_objects:
|
||||
num: 4
|
||||
cluster: 0.9
|
||||
|
@@ -7,13 +7,13 @@ runner:
|
||||
parallel: False
|
||||
|
||||
experiment:
|
||||
name: train_ab_global_only
|
||||
name: train_ab_global_only_with_wp_p++_strong
|
||||
root_dir: "experiments"
|
||||
use_checkpoint: True
|
||||
use_checkpoint: False
|
||||
epoch: -1 # -1 stands for last epoch
|
||||
max_epochs: 5000
|
||||
save_checkpoint_interval: 1
|
||||
test_first: True
|
||||
test_first: False
|
||||
|
||||
train:
|
||||
optimizer:
|
||||
@@ -39,7 +39,7 @@ dataset:
|
||||
type: train
|
||||
cache: True
|
||||
ratio: 1
|
||||
batch_size: 80
|
||||
batch_size: 64
|
||||
num_workers: 128
|
||||
pts_num: 8192
|
||||
load_from_preprocess: True
|
||||
@@ -80,7 +80,7 @@ dataset:
|
||||
pipeline:
|
||||
nbv_reconstruction_pipeline:
|
||||
modules:
|
||||
pts_encoder: pointnet_encoder
|
||||
pts_encoder: pointnet++_encoder
|
||||
seq_encoder: transformer_seq_encoder
|
||||
pose_encoder: pose_encoder
|
||||
view_finder: gf_view_finder
|
||||
@@ -96,6 +96,10 @@ module:
|
||||
global_feat: True
|
||||
feature_transform: False
|
||||
|
||||
pointnet++_encoder:
|
||||
in_dim: 3
|
||||
params_name: strong
|
||||
|
||||
transformer_seq_encoder:
|
||||
embed_dim: 256
|
||||
num_heads: 4
|
||||
@@ -106,7 +110,7 @@ module:
|
||||
gf_view_finder:
|
||||
t_feat_dim: 128
|
||||
pose_feat_dim: 256
|
||||
main_feat_dim: 2048
|
||||
main_feat_dim: 5120
|
||||
regression_head: Rx_Ry_and_T
|
||||
pose_mode: rot_matrix
|
||||
per_point_feature: False
|
||||
|
@@ -7,6 +7,7 @@ from PytorchBoot.utils.log_util import Log
|
||||
import torch
|
||||
import os
|
||||
import sys
|
||||
import time
|
||||
|
||||
sys.path.append(r"/data/hofee/project/nbv_rec/nbv_reconstruction")
|
||||
|
||||
@@ -114,8 +115,13 @@ class NBVReconstructionDataset(BaseDataset):
|
||||
except Exception as e:
|
||||
Log.error(f"Save cache failed: {e}")
|
||||
|
||||
def voxel_downsample_with_mask(self, pts, voxel_size):
|
||||
pass
|
||||
def voxel_downsample_with_mapping(self, point_cloud, voxel_size=0.003):
|
||||
voxel_indices = np.floor(point_cloud / voxel_size).astype(np.int32)
|
||||
unique_voxels, inverse, counts = np.unique(voxel_indices, axis=0, return_inverse=True, return_counts=True)
|
||||
idx_sort = np.argsort(inverse)
|
||||
idx_unique = idx_sort[np.cumsum(counts)-counts]
|
||||
downsampled_points = point_cloud[idx_unique]
|
||||
return downsampled_points, inverse
|
||||
|
||||
|
||||
def __getitem__(self, index):
|
||||
@@ -129,6 +135,9 @@ class NBVReconstructionDataset(BaseDataset):
|
||||
scanned_coverages_rate,
|
||||
scanned_n_to_world_pose,
|
||||
) = ([], [], [])
|
||||
start_time = time.time()
|
||||
start_indices = [0]
|
||||
total_points = 0
|
||||
for view in scanned_views:
|
||||
frame_idx = view[0]
|
||||
coverage_rate = view[1]
|
||||
@@ -150,8 +159,12 @@ class NBVReconstructionDataset(BaseDataset):
|
||||
n_to_world_trans = n_to_world_pose[:3, 3]
|
||||
n_to_world_9d = np.concatenate([n_to_world_6d, n_to_world_trans], axis=0)
|
||||
scanned_n_to_world_pose.append(n_to_world_9d)
|
||||
total_points += len(downsampled_target_point_cloud)
|
||||
start_indices.append(total_points)
|
||||
|
||||
|
||||
end_time = time.time()
|
||||
#Log.info(f"load data time: {end_time - start_time}")
|
||||
nbv_idx, nbv_coverage_rate = nbv[0], nbv[1]
|
||||
nbv_path = DataLoadUtil.get_path(self.root_dir, scene_name, nbv_idx)
|
||||
cam_info = DataLoadUtil.load_cam_info(nbv_path)
|
||||
@@ -166,12 +179,25 @@ class NBVReconstructionDataset(BaseDataset):
|
||||
)
|
||||
|
||||
combined_scanned_views_pts = np.concatenate(scanned_views_pts, axis=0)
|
||||
voxel_downsampled_combined_scanned_pts_np = PtsUtil.voxel_downsample_point_cloud(combined_scanned_views_pts, 0.002)
|
||||
random_downsampled_combined_scanned_pts_np = PtsUtil.random_downsample_point_cloud(voxel_downsampled_combined_scanned_pts_np, self.pts_num)
|
||||
voxel_downsampled_combined_scanned_pts_np, inverse = self.voxel_downsample_with_mapping(combined_scanned_views_pts, 0.003)
|
||||
random_downsampled_combined_scanned_pts_np, random_downsample_idx = PtsUtil.random_downsample_point_cloud(voxel_downsampled_combined_scanned_pts_np, self.pts_num, require_idx=True)
|
||||
|
||||
all_idx_unique = np.arange(len(voxel_downsampled_combined_scanned_pts_np))
|
||||
all_random_downsample_idx = all_idx_unique[random_downsample_idx]
|
||||
scanned_pts_mask = []
|
||||
for idx, start_idx in enumerate(start_indices):
|
||||
if idx == len(start_indices) - 1:
|
||||
break
|
||||
end_idx = start_indices[idx+1]
|
||||
view_inverse = inverse[start_idx:end_idx]
|
||||
view_unique_downsampled_idx = np.unique(view_inverse)
|
||||
view_unique_downsampled_idx_set = set(view_unique_downsampled_idx)
|
||||
mask = np.array([idx in view_unique_downsampled_idx_set for idx in all_random_downsample_idx])
|
||||
scanned_pts_mask.append(mask)
|
||||
data_item = {
|
||||
"scanned_pts": np.asarray(scanned_views_pts, dtype=np.float32), # Ndarray(S x Nv x 3)
|
||||
"combined_scanned_pts": np.asarray(random_downsampled_combined_scanned_pts_np, dtype=np.float32), # Ndarray(N x 3)
|
||||
"scanned_pts_mask": np.asarray(scanned_pts_mask, dtype=np.bool), # Ndarray(N)
|
||||
"scanned_coverage_rate": scanned_coverages_rate, # List(S): Float, range(0, 1)
|
||||
"scanned_n_to_world_pose_9d": np.asarray(scanned_n_to_world_pose, dtype=np.float32), # Ndarray(S x 9)
|
||||
"best_coverage_rate": nbv_coverage_rate, # Float, range(0, 1)
|
||||
@@ -197,7 +223,9 @@ class NBVReconstructionDataset(BaseDataset):
|
||||
collate_data["scanned_n_to_world_pose_9d"] = [
|
||||
torch.tensor(item["scanned_n_to_world_pose_9d"]) for item in batch
|
||||
]
|
||||
|
||||
collate_data["scanned_pts_mask"] = [
|
||||
torch.tensor(item["scanned_pts_mask"]) for item in batch
|
||||
]
|
||||
''' ------ Fixed Length ------ '''
|
||||
|
||||
collate_data["best_to_world_pose_9d"] = torch.stack(
|
||||
@@ -206,12 +234,14 @@ class NBVReconstructionDataset(BaseDataset):
|
||||
collate_data["combined_scanned_pts"] = torch.stack(
|
||||
[torch.tensor(item["combined_scanned_pts"]) for item in batch]
|
||||
)
|
||||
|
||||
for key in batch[0].keys():
|
||||
if key not in [
|
||||
"scanned_pts",
|
||||
"scanned_n_to_world_pose_9d",
|
||||
"best_to_world_pose_9d",
|
||||
"combined_scanned_pts",
|
||||
"scanned_pts_mask",
|
||||
]:
|
||||
collate_data[key] = [item[key] for item in batch]
|
||||
return collate_data
|
||||
@@ -227,9 +257,9 @@ if __name__ == "__main__":
|
||||
torch.manual_seed(seed)
|
||||
np.random.seed(seed)
|
||||
config = {
|
||||
"root_dir": "/data/hofee/data/packed_preprocessed_data",
|
||||
"root_dir": "/data/hofee/nbv_rec_part2_preprocessed",
|
||||
"source": "nbv_reconstruction_dataset",
|
||||
"split_file": "/data/hofee/data/OmniObject3d_train.txt",
|
||||
"split_file": "/data/hofee/data/sample.txt",
|
||||
"load_from_preprocess": True,
|
||||
"ratio": 0.5,
|
||||
"batch_size": 2,
|
||||
|
@@ -75,6 +75,8 @@ class NBVReconstructionPipeline(nn.Module):
|
||||
|
||||
def forward_test(self, data):
|
||||
main_feat = self.get_main_feat(data)
|
||||
repeat_num = data.get("repeat_num", 1)
|
||||
main_feat = main_feat.repeat(repeat_num, 1)
|
||||
estimated_delta_rot_9d, in_process_sample = self.view_finder.next_best_view(
|
||||
main_feat
|
||||
)
|
||||
@@ -89,25 +91,49 @@ class NBVReconstructionPipeline(nn.Module):
|
||||
"scanned_n_to_world_pose_9d"
|
||||
] # List(B): Tensor(S x 9)
|
||||
|
||||
scanned_pts_mask_batch = data["scanned_pts_mask"] # List(B): Tensor(N)
|
||||
|
||||
device = next(self.parameters()).device
|
||||
|
||||
embedding_list_batch = []
|
||||
|
||||
combined_scanned_pts_batch = data["combined_scanned_pts"] # Tensor(B x N x 3)
|
||||
global_scanned_feat = self.pts_encoder.encode_points(
|
||||
combined_scanned_pts_batch, require_per_point_feat=False
|
||||
global_scanned_feat, per_point_feat_batch = self.pts_encoder.encode_points(
|
||||
combined_scanned_pts_batch, require_per_point_feat=True
|
||||
) # global_scanned_feat: Tensor(B x Dg)
|
||||
batch_size = len(scanned_n_to_world_pose_9d_batch)
|
||||
for i in range(batch_size):
|
||||
seq_len = len(scanned_n_to_world_pose_9d_batch[i])
|
||||
scanned_n_to_world_pose_9d = scanned_n_to_world_pose_9d_batch[i].to(device) # Tensor(S x 9)
|
||||
scanned_pts_mask = scanned_pts_mask_batch[i] # Tensor(S x N)
|
||||
per_point_feat = per_point_feat_batch[i] # Tensor(N x Dp)
|
||||
partial_point_feat_seq = []
|
||||
for j in range(seq_len):
|
||||
partial_per_point_feat = per_point_feat[scanned_pts_mask[j]]
|
||||
if partial_per_point_feat.shape[0] == 0:
|
||||
partial_point_feat = torch.zeros(per_point_feat.shape[1], device=device)
|
||||
else:
|
||||
partial_point_feat = torch.mean(partial_per_point_feat, dim=0) # Tensor(Dp)
|
||||
partial_point_feat_seq.append(partial_point_feat)
|
||||
partial_point_feat_seq = torch.stack(partial_point_feat_seq, dim=0) # Tensor(S x Dp)
|
||||
|
||||
for scanned_n_to_world_pose_9d in scanned_n_to_world_pose_9d_batch:
|
||||
scanned_n_to_world_pose_9d = scanned_n_to_world_pose_9d.to(device) # Tensor(S x 9)
|
||||
pose_feat_seq = self.pose_encoder.encode_pose(scanned_n_to_world_pose_9d) # Tensor(S x Dp)
|
||||
seq_embedding = pose_feat_seq
|
||||
|
||||
seq_embedding = torch.cat([partial_point_feat_seq, pose_feat_seq], dim=-1)
|
||||
|
||||
embedding_list_batch.append(seq_embedding) # List(B): Tensor(S x (Dp))
|
||||
|
||||
seq_feat = self.seq_encoder.encode_sequence(embedding_list_batch) # Tensor(B x Ds)
|
||||
main_feat = torch.cat([seq_feat, global_scanned_feat], dim=-1) # Tensor(B x (Ds+Dg))
|
||||
|
||||
if torch.isnan(main_feat).any():
|
||||
for i in range(len(main_feat)):
|
||||
if torch.isnan(main_feat[i]).any():
|
||||
scanned_pts_mask = scanned_pts_mask_batch[i]
|
||||
Log.info(f"scanned_pts_mask shape: {scanned_pts_mask.shape}")
|
||||
Log.info(f"scanned_pts_mask sum: {scanned_pts_mask.sum()}")
|
||||
import ipdb
|
||||
ipdb.set_trace()
|
||||
Log.error("nan in main_feat", True)
|
||||
|
||||
return main_feat
|
||||
|
@@ -64,11 +64,15 @@ class SeqReconstructionDataset(BaseDataset):
|
||||
scene_max_cr_idx = 0
|
||||
frame_len = DataLoadUtil.get_scene_seq_length(self.root_dir, scene_name)
|
||||
|
||||
for i in range(frame_len):
|
||||
for i in range(10,frame_len):
|
||||
path = DataLoadUtil.get_path(self.root_dir, scene_name, i)
|
||||
pts = DataLoadUtil.load_from_preprocessed_pts(path, "npy")
|
||||
print(pts.shape)
|
||||
if pts.shape[0] == 0:
|
||||
continue
|
||||
else:
|
||||
break
|
||||
print(i)
|
||||
datalist.append({
|
||||
"scene_name": scene_name,
|
||||
"first_frame": i,
|
||||
@@ -180,9 +184,9 @@ if __name__ == "__main__":
|
||||
np.random.seed(seed)
|
||||
|
||||
config = {
|
||||
"root_dir": "/media/hofee/data/results/ycb_view_data",
|
||||
"root_dir": "/media/hofee/data/data/test_bottle/view",
|
||||
"source": "seq_reconstruction_dataset",
|
||||
"split_file": "/media/hofee/data/results/ycb_test.txt",
|
||||
"split_file": "/media/hofee/data/data/test_bottle/test_bottle.txt",
|
||||
"load_from_preprocess": True,
|
||||
"filter_degree": 75,
|
||||
"num_workers": 0,
|
||||
@@ -190,7 +194,7 @@ if __name__ == "__main__":
|
||||
"type": namespace.Mode.TEST,
|
||||
}
|
||||
|
||||
output_dir = "/media/hofee/data/results/ycb_preprocessed_dataset"
|
||||
output_dir = "/media/hofee/data/data/test_bottle/preprocessed_dataset"
|
||||
os.makedirs(output_dir, exist_ok=True)
|
||||
|
||||
ds = SeqReconstructionDataset(config)
|
||||
|
@@ -21,7 +21,7 @@ class SeqReconstructionDatasetPreprocessed(BaseDataset):
|
||||
super(SeqReconstructionDatasetPreprocessed, self).__init__(config)
|
||||
self.config = config
|
||||
self.root_dir = config["root_dir"]
|
||||
self.real_root_dir = r"/media/hofee/data/results/ycb_view_data"
|
||||
self.real_root_dir = r"/media/hofee/data/data/new_testset"
|
||||
self.item_list = os.listdir(self.root_dir)
|
||||
|
||||
def __getitem__(self, index):
|
||||
@@ -66,7 +66,7 @@ if __name__ == "__main__":
|
||||
load_from_preprocess: True
|
||||
'''
|
||||
config = {
|
||||
"root_dir": "H:\\AI\\Datasets\\packed_test_data",
|
||||
"root_dir": "/media/hofee/data/data/test_bottle/preprocessed_dataset",
|
||||
"source": "seq_reconstruction_dataset",
|
||||
"split_file": "H:\\AI\\Datasets\\data_list\\OmniObject3d_test.txt",
|
||||
"load_from_preprocess": True,
|
||||
|
@@ -1,4 +0,0 @@
|
||||
pointnet2/build/
|
||||
pointnet2/dist/
|
||||
pointnet2/pointnet2.egg-info/
|
||||
__pycache__/
|
@@ -1,21 +0,0 @@
|
||||
MIT License
|
||||
|
||||
Copyright (c) 2019 Shaoshuai Shi
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this software and associated documentation files (the "Software"), to deal
|
||||
in the Software without restriction, including without limitation the rights
|
||||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
copies of the Software, and to permit persons to whom the Software is
|
||||
furnished to do so, subject to the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included in all
|
||||
copies or substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
SOFTWARE.
|
@@ -1,51 +0,0 @@
|
||||
# Pointnet2.PyTorch
|
||||
|
||||
* PyTorch implementation of [PointNet++](https://arxiv.org/abs/1706.02413) based on [erikwijmans/Pointnet2_PyTorch](https://github.com/erikwijmans/Pointnet2_PyTorch).
|
||||
* Faster than the original codes by re-implementing the CUDA operations.
|
||||
|
||||
## Installation
|
||||
### Requirements
|
||||
* Linux (tested on Ubuntu 14.04/16.04)
|
||||
* Python 3.6+
|
||||
* PyTorch 1.0
|
||||
|
||||
### Install
|
||||
Install this library by running the following command:
|
||||
|
||||
```shell
|
||||
cd pointnet2
|
||||
python setup.py install
|
||||
cd ../
|
||||
```
|
||||
|
||||
## Examples
|
||||
Here I provide a simple example to use this library in the task of KITTI ourdoor foreground point cloud segmentation, and you could refer to the paper [PointRCNN](https://arxiv.org/abs/1812.04244) for the details of task description and foreground label generation.
|
||||
|
||||
1. Download the training data from [KITTI 3D object detection](http://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=3d) website and organize the downloaded files as follows:
|
||||
```
|
||||
Pointnet2.PyTorch
|
||||
├── pointnet2
|
||||
├── tools
|
||||
│ ├──data
|
||||
│ │ ├── KITTI
|
||||
│ │ │ ├── ImageSets
|
||||
│ │ │ ├── object
|
||||
│ │ │ │ ├──training
|
||||
│ │ │ │ ├──calib & velodyne & label_2 & image_2
|
||||
│ │ train_and_eval.py
|
||||
```
|
||||
|
||||
2. Run the following command to train and evaluate:
|
||||
```shell
|
||||
cd tools
|
||||
python train_and_eval.py --batch_size 8 --epochs 100 --ckpt_save_interval 2
|
||||
```
|
||||
|
||||
|
||||
|
||||
## Project using this repo:
|
||||
* [PointRCNN](https://github.com/sshaoshuai/PointRCNN): 3D object detector from raw point cloud.
|
||||
|
||||
## Acknowledgement
|
||||
* [charlesq34/pointnet2](https://github.com/charlesq34/pointnet2): Paper author and official code repo.
|
||||
* [erikwijmans/Pointnet2_PyTorch](https://github.com/erikwijmans/Pointnet2_PyTorch): Initial work of PyTorch implementation of PointNet++.
|
Binary file not shown.
@@ -1,23 +0,0 @@
|
||||
from setuptools import setup
|
||||
from torch.utils.cpp_extension import BuildExtension, CUDAExtension
|
||||
|
||||
setup(
|
||||
name='pointnet2',
|
||||
ext_modules=[
|
||||
CUDAExtension('pointnet2_cuda', [
|
||||
'src/pointnet2_api.cpp',
|
||||
|
||||
'src/ball_query.cpp',
|
||||
'src/ball_query_gpu.cu',
|
||||
'src/group_points.cpp',
|
||||
'src/group_points_gpu.cu',
|
||||
'src/interpolate.cpp',
|
||||
'src/interpolate_gpu.cu',
|
||||
'src/sampling.cpp',
|
||||
'src/sampling_gpu.cu',
|
||||
],
|
||||
extra_compile_args={'cxx': ['-g'],
|
||||
'nvcc': ['-O2']})
|
||||
],
|
||||
cmdclass={'build_ext': BuildExtension}
|
||||
)
|
@@ -1,28 +0,0 @@
|
||||
#include <torch/serialize/tensor.h>
|
||||
#include <vector>
|
||||
// #include <THC/THC.h>
|
||||
#include <cuda.h>
|
||||
#include <cuda_runtime_api.h>
|
||||
#include "ball_query_gpu.h"
|
||||
#include <ATen/cuda/CUDAContext.h>
|
||||
#include <ATen/cuda/CUDAEvent.h>
|
||||
|
||||
// extern THCState *state;
|
||||
|
||||
#define CHECK_CUDA(x) TORCH_CHECK(x.type().is_cuda(), #x, " must be a CUDAtensor ")
|
||||
#define CHECK_CONTIGUOUS(x) TORCH_CHECK(x.is_contiguous(), #x, " must be contiguous ")
|
||||
#define CHECK_INPUT(x) CHECK_CUDA(x);CHECK_CONTIGUOUS(x)
|
||||
|
||||
int ball_query_wrapper_fast(int b, int n, int m, float radius, int nsample,
|
||||
at::Tensor new_xyz_tensor, at::Tensor xyz_tensor, at::Tensor idx_tensor) {
|
||||
CHECK_INPUT(new_xyz_tensor);
|
||||
CHECK_INPUT(xyz_tensor);
|
||||
const float *new_xyz = new_xyz_tensor.data<float>();
|
||||
const float *xyz = xyz_tensor.data<float>();
|
||||
int *idx = idx_tensor.data<int>();
|
||||
|
||||
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
||||
// cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
||||
ball_query_kernel_launcher_fast(b, n, m, radius, nsample, new_xyz, xyz, idx, stream);
|
||||
return 1;
|
||||
}
|
@@ -1,67 +0,0 @@
|
||||
#include <math.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
|
||||
#include "ball_query_gpu.h"
|
||||
#include "cuda_utils.h"
|
||||
|
||||
|
||||
__global__ void ball_query_kernel_fast(int b, int n, int m, float radius, int nsample,
|
||||
const float *__restrict__ new_xyz, const float *__restrict__ xyz, int *__restrict__ idx) {
|
||||
// new_xyz: (B, M, 3)
|
||||
// xyz: (B, N, 3)
|
||||
// output:
|
||||
// idx: (B, M, nsample)
|
||||
int bs_idx = blockIdx.y;
|
||||
int pt_idx = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
if (bs_idx >= b || pt_idx >= m) return;
|
||||
|
||||
new_xyz += bs_idx * m * 3 + pt_idx * 3;
|
||||
xyz += bs_idx * n * 3;
|
||||
idx += bs_idx * m * nsample + pt_idx * nsample;
|
||||
|
||||
float radius2 = radius * radius;
|
||||
float new_x = new_xyz[0];
|
||||
float new_y = new_xyz[1];
|
||||
float new_z = new_xyz[2];
|
||||
|
||||
int cnt = 0;
|
||||
for (int k = 0; k < n; ++k) {
|
||||
float x = xyz[k * 3 + 0];
|
||||
float y = xyz[k * 3 + 1];
|
||||
float z = xyz[k * 3 + 2];
|
||||
float d2 = (new_x - x) * (new_x - x) + (new_y - y) * (new_y - y) + (new_z - z) * (new_z - z);
|
||||
if (d2 < radius2){
|
||||
if (cnt == 0){
|
||||
for (int l = 0; l < nsample; ++l) {
|
||||
idx[l] = k;
|
||||
}
|
||||
}
|
||||
idx[cnt] = k;
|
||||
++cnt;
|
||||
if (cnt >= nsample) break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void ball_query_kernel_launcher_fast(int b, int n, int m, float radius, int nsample, \
|
||||
const float *new_xyz, const float *xyz, int *idx, cudaStream_t stream) {
|
||||
// new_xyz: (B, M, 3)
|
||||
// xyz: (B, N, 3)
|
||||
// output:
|
||||
// idx: (B, M, nsample)
|
||||
|
||||
cudaError_t err;
|
||||
|
||||
dim3 blocks(DIVUP(m, THREADS_PER_BLOCK), b); // blockIdx.x(col), blockIdx.y(row)
|
||||
dim3 threads(THREADS_PER_BLOCK);
|
||||
|
||||
ball_query_kernel_fast<<<blocks, threads, 0, stream>>>(b, n, m, radius, nsample, new_xyz, xyz, idx);
|
||||
// cudaDeviceSynchronize(); // for using printf in kernel function
|
||||
err = cudaGetLastError();
|
||||
if (cudaSuccess != err) {
|
||||
fprintf(stderr, "CUDA kernel failed : %s\n", cudaGetErrorString(err));
|
||||
exit(-1);
|
||||
}
|
||||
}
|
@@ -1,15 +0,0 @@
|
||||
#ifndef _BALL_QUERY_GPU_H
|
||||
#define _BALL_QUERY_GPU_H
|
||||
|
||||
#include <torch/serialize/tensor.h>
|
||||
#include <vector>
|
||||
#include <cuda.h>
|
||||
#include <cuda_runtime_api.h>
|
||||
|
||||
int ball_query_wrapper_fast(int b, int n, int m, float radius, int nsample,
|
||||
at::Tensor new_xyz_tensor, at::Tensor xyz_tensor, at::Tensor idx_tensor);
|
||||
|
||||
void ball_query_kernel_launcher_fast(int b, int n, int m, float radius, int nsample,
|
||||
const float *xyz, const float *new_xyz, int *idx, cudaStream_t stream);
|
||||
|
||||
#endif
|
@@ -1,15 +0,0 @@
|
||||
#ifndef _CUDA_UTILS_H
|
||||
#define _CUDA_UTILS_H
|
||||
|
||||
#include <cmath>
|
||||
|
||||
#define TOTAL_THREADS 1024
|
||||
#define THREADS_PER_BLOCK 256
|
||||
#define DIVUP(m,n) ((m) / (n) + ((m) % (n) > 0))
|
||||
|
||||
inline int opt_n_threads(int work_size) {
|
||||
const int pow_2 = std::log(static_cast<double>(work_size)) / std::log(2.0);
|
||||
|
||||
return max(min(1 << pow_2, TOTAL_THREADS), 1);
|
||||
}
|
||||
#endif
|
@@ -1,37 +0,0 @@
|
||||
#include <torch/serialize/tensor.h>
|
||||
#include <cuda.h>
|
||||
#include <cuda_runtime_api.h>
|
||||
#include <vector>
|
||||
// #include <THC/THC.h>
|
||||
#include "group_points_gpu.h"
|
||||
#include <ATen/cuda/CUDAContext.h>
|
||||
#include <ATen/cuda/CUDAEvent.h>
|
||||
// extern THCState *state;
|
||||
|
||||
|
||||
int group_points_grad_wrapper_fast(int b, int c, int n, int npoints, int nsample,
|
||||
at::Tensor grad_out_tensor, at::Tensor idx_tensor, at::Tensor grad_points_tensor) {
|
||||
|
||||
float *grad_points = grad_points_tensor.data<float>();
|
||||
const int *idx = idx_tensor.data<int>();
|
||||
const float *grad_out = grad_out_tensor.data<float>();
|
||||
|
||||
// cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
||||
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
||||
group_points_grad_kernel_launcher_fast(b, c, n, npoints, nsample, grad_out, idx, grad_points, stream);
|
||||
return 1;
|
||||
}
|
||||
|
||||
|
||||
int group_points_wrapper_fast(int b, int c, int n, int npoints, int nsample,
|
||||
at::Tensor points_tensor, at::Tensor idx_tensor, at::Tensor out_tensor) {
|
||||
|
||||
const float *points = points_tensor.data<float>();
|
||||
const int *idx = idx_tensor.data<int>();
|
||||
float *out = out_tensor.data<float>();
|
||||
|
||||
// cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
||||
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
||||
group_points_kernel_launcher_fast(b, c, n, npoints, nsample, points, idx, out, stream);
|
||||
return 1;
|
||||
}
|
@@ -1,86 +0,0 @@
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
|
||||
#include "cuda_utils.h"
|
||||
#include "group_points_gpu.h"
|
||||
|
||||
|
||||
__global__ void group_points_grad_kernel_fast(int b, int c, int n, int npoints, int nsample,
|
||||
const float *__restrict__ grad_out, const int *__restrict__ idx, float *__restrict__ grad_points) {
|
||||
// grad_out: (B, C, npoints, nsample)
|
||||
// idx: (B, npoints, nsample)
|
||||
// output:
|
||||
// grad_points: (B, C, N)
|
||||
int bs_idx = blockIdx.z;
|
||||
int c_idx = blockIdx.y;
|
||||
int index = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
int pt_idx = index / nsample;
|
||||
if (bs_idx >= b || c_idx >= c || pt_idx >= npoints) return;
|
||||
|
||||
int sample_idx = index % nsample;
|
||||
grad_out += bs_idx * c * npoints * nsample + c_idx * npoints * nsample + pt_idx * nsample + sample_idx;
|
||||
idx += bs_idx * npoints * nsample + pt_idx * nsample + sample_idx;
|
||||
|
||||
atomicAdd(grad_points + bs_idx * c * n + c_idx * n + idx[0] , grad_out[0]);
|
||||
}
|
||||
|
||||
void group_points_grad_kernel_launcher_fast(int b, int c, int n, int npoints, int nsample,
|
||||
const float *grad_out, const int *idx, float *grad_points, cudaStream_t stream) {
|
||||
// grad_out: (B, C, npoints, nsample)
|
||||
// idx: (B, npoints, nsample)
|
||||
// output:
|
||||
// grad_points: (B, C, N)
|
||||
cudaError_t err;
|
||||
dim3 blocks(DIVUP(npoints * nsample, THREADS_PER_BLOCK), c, b); // blockIdx.x(col), blockIdx.y(row)
|
||||
dim3 threads(THREADS_PER_BLOCK);
|
||||
|
||||
group_points_grad_kernel_fast<<<blocks, threads, 0, stream>>>(b, c, n, npoints, nsample, grad_out, idx, grad_points);
|
||||
|
||||
err = cudaGetLastError();
|
||||
if (cudaSuccess != err) {
|
||||
fprintf(stderr, "CUDA kernel failed : %s\n", cudaGetErrorString(err));
|
||||
exit(-1);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
__global__ void group_points_kernel_fast(int b, int c, int n, int npoints, int nsample,
|
||||
const float *__restrict__ points, const int *__restrict__ idx, float *__restrict__ out) {
|
||||
// points: (B, C, N)
|
||||
// idx: (B, npoints, nsample)
|
||||
// output:
|
||||
// out: (B, C, npoints, nsample)
|
||||
int bs_idx = blockIdx.z;
|
||||
int c_idx = blockIdx.y;
|
||||
int index = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
int pt_idx = index / nsample;
|
||||
if (bs_idx >= b || c_idx >= c || pt_idx >= npoints) return;
|
||||
|
||||
int sample_idx = index % nsample;
|
||||
|
||||
idx += bs_idx * npoints * nsample + pt_idx * nsample + sample_idx;
|
||||
int in_idx = bs_idx * c * n + c_idx * n + idx[0];
|
||||
int out_idx = bs_idx * c * npoints * nsample + c_idx * npoints * nsample + pt_idx * nsample + sample_idx;
|
||||
|
||||
out[out_idx] = points[in_idx];
|
||||
}
|
||||
|
||||
|
||||
void group_points_kernel_launcher_fast(int b, int c, int n, int npoints, int nsample,
|
||||
const float *points, const int *idx, float *out, cudaStream_t stream) {
|
||||
// points: (B, C, N)
|
||||
// idx: (B, npoints, nsample)
|
||||
// output:
|
||||
// out: (B, C, npoints, nsample)
|
||||
cudaError_t err;
|
||||
dim3 blocks(DIVUP(npoints * nsample, THREADS_PER_BLOCK), c, b); // blockIdx.x(col), blockIdx.y(row)
|
||||
dim3 threads(THREADS_PER_BLOCK);
|
||||
|
||||
group_points_kernel_fast<<<blocks, threads, 0, stream>>>(b, c, n, npoints, nsample, points, idx, out);
|
||||
// cudaDeviceSynchronize(); // for using printf in kernel function
|
||||
err = cudaGetLastError();
|
||||
if (cudaSuccess != err) {
|
||||
fprintf(stderr, "CUDA kernel failed : %s\n", cudaGetErrorString(err));
|
||||
exit(-1);
|
||||
}
|
||||
}
|
@@ -1,22 +0,0 @@
|
||||
#ifndef _GROUP_POINTS_GPU_H
|
||||
#define _GROUP_POINTS_GPU_H
|
||||
|
||||
#include <torch/serialize/tensor.h>
|
||||
#include <cuda.h>
|
||||
#include <cuda_runtime_api.h>
|
||||
#include <vector>
|
||||
|
||||
|
||||
int group_points_wrapper_fast(int b, int c, int n, int npoints, int nsample,
|
||||
at::Tensor points_tensor, at::Tensor idx_tensor, at::Tensor out_tensor);
|
||||
|
||||
void group_points_kernel_launcher_fast(int b, int c, int n, int npoints, int nsample,
|
||||
const float *points, const int *idx, float *out, cudaStream_t stream);
|
||||
|
||||
int group_points_grad_wrapper_fast(int b, int c, int n, int npoints, int nsample,
|
||||
at::Tensor grad_out_tensor, at::Tensor idx_tensor, at::Tensor grad_points_tensor);
|
||||
|
||||
void group_points_grad_kernel_launcher_fast(int b, int c, int n, int npoints, int nsample,
|
||||
const float *grad_out, const int *idx, float *grad_points, cudaStream_t stream);
|
||||
|
||||
#endif
|
@@ -1,59 +0,0 @@
|
||||
#include <torch/serialize/tensor.h>
|
||||
#include <vector>
|
||||
// #include <THC/THC.h>
|
||||
#include <ATen/cuda/CUDAContext.h>
|
||||
#include <ATen/cuda/CUDAEvent.h>
|
||||
#include <math.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <cuda.h>
|
||||
#include <cuda_runtime_api.h>
|
||||
#include "interpolate_gpu.h"
|
||||
|
||||
// extern THCState *state;
|
||||
|
||||
|
||||
void three_nn_wrapper_fast(int b, int n, int m, at::Tensor unknown_tensor,
|
||||
at::Tensor known_tensor, at::Tensor dist2_tensor, at::Tensor idx_tensor) {
|
||||
const float *unknown = unknown_tensor.data<float>();
|
||||
const float *known = known_tensor.data<float>();
|
||||
float *dist2 = dist2_tensor.data<float>();
|
||||
int *idx = idx_tensor.data<int>();
|
||||
|
||||
// cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
||||
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
||||
three_nn_kernel_launcher_fast(b, n, m, unknown, known, dist2, idx, stream);
|
||||
}
|
||||
|
||||
|
||||
void three_interpolate_wrapper_fast(int b, int c, int m, int n,
|
||||
at::Tensor points_tensor,
|
||||
at::Tensor idx_tensor,
|
||||
at::Tensor weight_tensor,
|
||||
at::Tensor out_tensor) {
|
||||
|
||||
const float *points = points_tensor.data<float>();
|
||||
const float *weight = weight_tensor.data<float>();
|
||||
float *out = out_tensor.data<float>();
|
||||
const int *idx = idx_tensor.data<int>();
|
||||
|
||||
// cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
||||
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
||||
three_interpolate_kernel_launcher_fast(b, c, m, n, points, idx, weight, out, stream);
|
||||
}
|
||||
|
||||
void three_interpolate_grad_wrapper_fast(int b, int c, int n, int m,
|
||||
at::Tensor grad_out_tensor,
|
||||
at::Tensor idx_tensor,
|
||||
at::Tensor weight_tensor,
|
||||
at::Tensor grad_points_tensor) {
|
||||
|
||||
const float *grad_out = grad_out_tensor.data<float>();
|
||||
const float *weight = weight_tensor.data<float>();
|
||||
float *grad_points = grad_points_tensor.data<float>();
|
||||
const int *idx = idx_tensor.data<int>();
|
||||
|
||||
// cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
||||
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
||||
three_interpolate_grad_kernel_launcher_fast(b, c, n, m, grad_out, idx, weight, grad_points, stream);
|
||||
}
|
@@ -1,161 +0,0 @@
|
||||
#include <math.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
|
||||
#include "cuda_utils.h"
|
||||
#include "interpolate_gpu.h"
|
||||
|
||||
|
||||
__global__ void three_nn_kernel_fast(int b, int n, int m, const float *__restrict__ unknown,
|
||||
const float *__restrict__ known, float *__restrict__ dist2, int *__restrict__ idx) {
|
||||
// unknown: (B, N, 3)
|
||||
// known: (B, M, 3)
|
||||
// output:
|
||||
// dist2: (B, N, 3)
|
||||
// idx: (B, N, 3)
|
||||
|
||||
int bs_idx = blockIdx.y;
|
||||
int pt_idx = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
if (bs_idx >= b || pt_idx >= n) return;
|
||||
|
||||
unknown += bs_idx * n * 3 + pt_idx * 3;
|
||||
known += bs_idx * m * 3;
|
||||
dist2 += bs_idx * n * 3 + pt_idx * 3;
|
||||
idx += bs_idx * n * 3 + pt_idx * 3;
|
||||
|
||||
float ux = unknown[0];
|
||||
float uy = unknown[1];
|
||||
float uz = unknown[2];
|
||||
|
||||
double best1 = 1e40, best2 = 1e40, best3 = 1e40;
|
||||
int besti1 = 0, besti2 = 0, besti3 = 0;
|
||||
for (int k = 0; k < m; ++k) {
|
||||
float x = known[k * 3 + 0];
|
||||
float y = known[k * 3 + 1];
|
||||
float z = known[k * 3 + 2];
|
||||
float d = (ux - x) * (ux - x) + (uy - y) * (uy - y) + (uz - z) * (uz - z);
|
||||
if (d < best1) {
|
||||
best3 = best2; besti3 = besti2;
|
||||
best2 = best1; besti2 = besti1;
|
||||
best1 = d; besti1 = k;
|
||||
}
|
||||
else if (d < best2) {
|
||||
best3 = best2; besti3 = besti2;
|
||||
best2 = d; besti2 = k;
|
||||
}
|
||||
else if (d < best3) {
|
||||
best3 = d; besti3 = k;
|
||||
}
|
||||
}
|
||||
dist2[0] = best1; dist2[1] = best2; dist2[2] = best3;
|
||||
idx[0] = besti1; idx[1] = besti2; idx[2] = besti3;
|
||||
}
|
||||
|
||||
|
||||
void three_nn_kernel_launcher_fast(int b, int n, int m, const float *unknown,
|
||||
const float *known, float *dist2, int *idx, cudaStream_t stream) {
|
||||
// unknown: (B, N, 3)
|
||||
// known: (B, M, 3)
|
||||
// output:
|
||||
// dist2: (B, N, 3)
|
||||
// idx: (B, N, 3)
|
||||
|
||||
cudaError_t err;
|
||||
dim3 blocks(DIVUP(n, THREADS_PER_BLOCK), b); // blockIdx.x(col), blockIdx.y(row)
|
||||
dim3 threads(THREADS_PER_BLOCK);
|
||||
|
||||
three_nn_kernel_fast<<<blocks, threads, 0, stream>>>(b, n, m, unknown, known, dist2, idx);
|
||||
|
||||
err = cudaGetLastError();
|
||||
if (cudaSuccess != err) {
|
||||
fprintf(stderr, "CUDA kernel failed : %s\n", cudaGetErrorString(err));
|
||||
exit(-1);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
__global__ void three_interpolate_kernel_fast(int b, int c, int m, int n, const float *__restrict__ points,
|
||||
const int *__restrict__ idx, const float *__restrict__ weight, float *__restrict__ out) {
|
||||
// points: (B, C, M)
|
||||
// idx: (B, N, 3)
|
||||
// weight: (B, N, 3)
|
||||
// output:
|
||||
// out: (B, C, N)
|
||||
|
||||
int bs_idx = blockIdx.z;
|
||||
int c_idx = blockIdx.y;
|
||||
int pt_idx = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
|
||||
if (bs_idx >= b || c_idx >= c || pt_idx >= n) return;
|
||||
|
||||
weight += bs_idx * n * 3 + pt_idx * 3;
|
||||
points += bs_idx * c * m + c_idx * m;
|
||||
idx += bs_idx * n * 3 + pt_idx * 3;
|
||||
out += bs_idx * c * n + c_idx * n;
|
||||
|
||||
out[pt_idx] = weight[0] * points[idx[0]] + weight[1] * points[idx[1]] + weight[2] * points[idx[2]];
|
||||
}
|
||||
|
||||
void three_interpolate_kernel_launcher_fast(int b, int c, int m, int n,
|
||||
const float *points, const int *idx, const float *weight, float *out, cudaStream_t stream) {
|
||||
// points: (B, C, M)
|
||||
// idx: (B, N, 3)
|
||||
// weight: (B, N, 3)
|
||||
// output:
|
||||
// out: (B, C, N)
|
||||
|
||||
cudaError_t err;
|
||||
dim3 blocks(DIVUP(n, THREADS_PER_BLOCK), c, b); // blockIdx.x(col), blockIdx.y(row)
|
||||
dim3 threads(THREADS_PER_BLOCK);
|
||||
three_interpolate_kernel_fast<<<blocks, threads, 0, stream>>>(b, c, m, n, points, idx, weight, out);
|
||||
|
||||
err = cudaGetLastError();
|
||||
if (cudaSuccess != err) {
|
||||
fprintf(stderr, "CUDA kernel failed : %s\n", cudaGetErrorString(err));
|
||||
exit(-1);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
__global__ void three_interpolate_grad_kernel_fast(int b, int c, int n, int m, const float *__restrict__ grad_out,
|
||||
const int *__restrict__ idx, const float *__restrict__ weight, float *__restrict__ grad_points) {
|
||||
// grad_out: (B, C, N)
|
||||
// weight: (B, N, 3)
|
||||
// output:
|
||||
// grad_points: (B, C, M)
|
||||
|
||||
int bs_idx = blockIdx.z;
|
||||
int c_idx = blockIdx.y;
|
||||
int pt_idx = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
|
||||
if (bs_idx >= b || c_idx >= c || pt_idx >= n) return;
|
||||
|
||||
grad_out += bs_idx * c * n + c_idx * n + pt_idx;
|
||||
weight += bs_idx * n * 3 + pt_idx * 3;
|
||||
grad_points += bs_idx * c * m + c_idx * m;
|
||||
idx += bs_idx * n * 3 + pt_idx * 3;
|
||||
|
||||
|
||||
atomicAdd(grad_points + idx[0], grad_out[0] * weight[0]);
|
||||
atomicAdd(grad_points + idx[1], grad_out[0] * weight[1]);
|
||||
atomicAdd(grad_points + idx[2], grad_out[0] * weight[2]);
|
||||
}
|
||||
|
||||
void three_interpolate_grad_kernel_launcher_fast(int b, int c, int n, int m, const float *grad_out,
|
||||
const int *idx, const float *weight, float *grad_points, cudaStream_t stream) {
|
||||
// grad_out: (B, C, N)
|
||||
// weight: (B, N, 3)
|
||||
// output:
|
||||
// grad_points: (B, C, M)
|
||||
|
||||
cudaError_t err;
|
||||
dim3 blocks(DIVUP(n, THREADS_PER_BLOCK), c, b); // blockIdx.x(col), blockIdx.y(row)
|
||||
dim3 threads(THREADS_PER_BLOCK);
|
||||
three_interpolate_grad_kernel_fast<<<blocks, threads, 0, stream>>>(b, c, n, m, grad_out, idx, weight, grad_points);
|
||||
|
||||
err = cudaGetLastError();
|
||||
if (cudaSuccess != err) {
|
||||
fprintf(stderr, "CUDA kernel failed : %s\n", cudaGetErrorString(err));
|
||||
exit(-1);
|
||||
}
|
||||
}
|
@@ -1,30 +0,0 @@
|
||||
#ifndef _INTERPOLATE_GPU_H
|
||||
#define _INTERPOLATE_GPU_H
|
||||
|
||||
#include <torch/serialize/tensor.h>
|
||||
#include<vector>
|
||||
#include <cuda.h>
|
||||
#include <cuda_runtime_api.h>
|
||||
|
||||
|
||||
void three_nn_wrapper_fast(int b, int n, int m, at::Tensor unknown_tensor,
|
||||
at::Tensor known_tensor, at::Tensor dist2_tensor, at::Tensor idx_tensor);
|
||||
|
||||
void three_nn_kernel_launcher_fast(int b, int n, int m, const float *unknown,
|
||||
const float *known, float *dist2, int *idx, cudaStream_t stream);
|
||||
|
||||
|
||||
void three_interpolate_wrapper_fast(int b, int c, int m, int n, at::Tensor points_tensor,
|
||||
at::Tensor idx_tensor, at::Tensor weight_tensor, at::Tensor out_tensor);
|
||||
|
||||
void three_interpolate_kernel_launcher_fast(int b, int c, int m, int n,
|
||||
const float *points, const int *idx, const float *weight, float *out, cudaStream_t stream);
|
||||
|
||||
|
||||
void three_interpolate_grad_wrapper_fast(int b, int c, int n, int m, at::Tensor grad_out_tensor,
|
||||
at::Tensor idx_tensor, at::Tensor weight_tensor, at::Tensor grad_points_tensor);
|
||||
|
||||
void three_interpolate_grad_kernel_launcher_fast(int b, int c, int n, int m, const float *grad_out,
|
||||
const int *idx, const float *weight, float *grad_points, cudaStream_t stream);
|
||||
|
||||
#endif
|
@@ -1,24 +0,0 @@
|
||||
#include <torch/serialize/tensor.h>
|
||||
#include <torch/extension.h>
|
||||
|
||||
#include "ball_query_gpu.h"
|
||||
#include "group_points_gpu.h"
|
||||
#include "sampling_gpu.h"
|
||||
#include "interpolate_gpu.h"
|
||||
|
||||
|
||||
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
|
||||
m.def("ball_query_wrapper", &ball_query_wrapper_fast, "ball_query_wrapper_fast");
|
||||
|
||||
m.def("group_points_wrapper", &group_points_wrapper_fast, "group_points_wrapper_fast");
|
||||
m.def("group_points_grad_wrapper", &group_points_grad_wrapper_fast, "group_points_grad_wrapper_fast");
|
||||
|
||||
m.def("gather_points_wrapper", &gather_points_wrapper_fast, "gather_points_wrapper_fast");
|
||||
m.def("gather_points_grad_wrapper", &gather_points_grad_wrapper_fast, "gather_points_grad_wrapper_fast");
|
||||
|
||||
m.def("furthest_point_sampling_wrapper", &furthest_point_sampling_wrapper, "furthest_point_sampling_wrapper");
|
||||
|
||||
m.def("three_nn_wrapper", &three_nn_wrapper_fast, "three_nn_wrapper_fast");
|
||||
m.def("three_interpolate_wrapper", &three_interpolate_wrapper_fast, "three_interpolate_wrapper_fast");
|
||||
m.def("three_interpolate_grad_wrapper", &three_interpolate_grad_wrapper_fast, "three_interpolate_grad_wrapper_fast");
|
||||
}
|
@@ -1,51 +0,0 @@
|
||||
#include <torch/serialize/tensor.h>
|
||||
#include <ATen/cuda/CUDAContext.h>
|
||||
#include <vector>
|
||||
// #include <THC/THC.h>
|
||||
|
||||
#include "sampling_gpu.h"
|
||||
#include <ATen/cuda/CUDAContext.h>
|
||||
#include <ATen/cuda/CUDAEvent.h>
|
||||
|
||||
// extern THCState *state;
|
||||
|
||||
|
||||
int gather_points_wrapper_fast(int b, int c, int n, int npoints,
|
||||
at::Tensor points_tensor, at::Tensor idx_tensor, at::Tensor out_tensor){
|
||||
const float *points = points_tensor.data<float>();
|
||||
const int *idx = idx_tensor.data<int>();
|
||||
float *out = out_tensor.data<float>();
|
||||
|
||||
// cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
||||
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
||||
gather_points_kernel_launcher_fast(b, c, n, npoints, points, idx, out, stream);
|
||||
return 1;
|
||||
}
|
||||
|
||||
|
||||
int gather_points_grad_wrapper_fast(int b, int c, int n, int npoints,
|
||||
at::Tensor grad_out_tensor, at::Tensor idx_tensor, at::Tensor grad_points_tensor) {
|
||||
|
||||
const float *grad_out = grad_out_tensor.data<float>();
|
||||
const int *idx = idx_tensor.data<int>();
|
||||
float *grad_points = grad_points_tensor.data<float>();
|
||||
|
||||
// cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
||||
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
||||
gather_points_grad_kernel_launcher_fast(b, c, n, npoints, grad_out, idx, grad_points, stream);
|
||||
return 1;
|
||||
}
|
||||
|
||||
|
||||
int furthest_point_sampling_wrapper(int b, int n, int m,
|
||||
at::Tensor points_tensor, at::Tensor temp_tensor, at::Tensor idx_tensor) {
|
||||
|
||||
const float *points = points_tensor.data<float>();
|
||||
float *temp = temp_tensor.data<float>();
|
||||
int *idx = idx_tensor.data<int>();
|
||||
|
||||
// cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
||||
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
||||
furthest_point_sampling_kernel_launcher(b, n, m, points, temp, idx, stream);
|
||||
return 1;
|
||||
}
|
@@ -1,253 +0,0 @@
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
|
||||
#include "cuda_utils.h"
|
||||
#include "sampling_gpu.h"
|
||||
|
||||
|
||||
__global__ void gather_points_kernel_fast(int b, int c, int n, int m,
|
||||
const float *__restrict__ points, const int *__restrict__ idx, float *__restrict__ out) {
|
||||
// points: (B, C, N)
|
||||
// idx: (B, M)
|
||||
// output:
|
||||
// out: (B, C, M)
|
||||
|
||||
int bs_idx = blockIdx.z;
|
||||
int c_idx = blockIdx.y;
|
||||
int pt_idx = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
if (bs_idx >= b || c_idx >= c || pt_idx >= m) return;
|
||||
|
||||
out += bs_idx * c * m + c_idx * m + pt_idx;
|
||||
idx += bs_idx * m + pt_idx;
|
||||
points += bs_idx * c * n + c_idx * n;
|
||||
out[0] = points[idx[0]];
|
||||
}
|
||||
|
||||
void gather_points_kernel_launcher_fast(int b, int c, int n, int npoints,
|
||||
const float *points, const int *idx, float *out, cudaStream_t stream) {
|
||||
// points: (B, C, N)
|
||||
// idx: (B, npoints)
|
||||
// output:
|
||||
// out: (B, C, npoints)
|
||||
|
||||
cudaError_t err;
|
||||
dim3 blocks(DIVUP(npoints, THREADS_PER_BLOCK), c, b); // blockIdx.x(col), blockIdx.y(row)
|
||||
dim3 threads(THREADS_PER_BLOCK);
|
||||
|
||||
gather_points_kernel_fast<<<blocks, threads, 0, stream>>>(b, c, n, npoints, points, idx, out);
|
||||
|
||||
err = cudaGetLastError();
|
||||
if (cudaSuccess != err) {
|
||||
fprintf(stderr, "CUDA kernel failed : %s\n", cudaGetErrorString(err));
|
||||
exit(-1);
|
||||
}
|
||||
}
|
||||
|
||||
__global__ void gather_points_grad_kernel_fast(int b, int c, int n, int m, const float *__restrict__ grad_out,
|
||||
const int *__restrict__ idx, float *__restrict__ grad_points) {
|
||||
// grad_out: (B, C, M)
|
||||
// idx: (B, M)
|
||||
// output:
|
||||
// grad_points: (B, C, N)
|
||||
|
||||
int bs_idx = blockIdx.z;
|
||||
int c_idx = blockIdx.y;
|
||||
int pt_idx = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
if (bs_idx >= b || c_idx >= c || pt_idx >= m) return;
|
||||
|
||||
grad_out += bs_idx * c * m + c_idx * m + pt_idx;
|
||||
idx += bs_idx * m + pt_idx;
|
||||
grad_points += bs_idx * c * n + c_idx * n;
|
||||
|
||||
atomicAdd(grad_points + idx[0], grad_out[0]);
|
||||
}
|
||||
|
||||
void gather_points_grad_kernel_launcher_fast(int b, int c, int n, int npoints,
|
||||
const float *grad_out, const int *idx, float *grad_points, cudaStream_t stream) {
|
||||
// grad_out: (B, C, npoints)
|
||||
// idx: (B, npoints)
|
||||
// output:
|
||||
// grad_points: (B, C, N)
|
||||
|
||||
cudaError_t err;
|
||||
dim3 blocks(DIVUP(npoints, THREADS_PER_BLOCK), c, b); // blockIdx.x(col), blockIdx.y(row)
|
||||
dim3 threads(THREADS_PER_BLOCK);
|
||||
|
||||
gather_points_grad_kernel_fast<<<blocks, threads, 0, stream>>>(b, c, n, npoints, grad_out, idx, grad_points);
|
||||
|
||||
err = cudaGetLastError();
|
||||
if (cudaSuccess != err) {
|
||||
fprintf(stderr, "CUDA kernel failed : %s\n", cudaGetErrorString(err));
|
||||
exit(-1);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
__device__ void __update(float *__restrict__ dists, int *__restrict__ dists_i, int idx1, int idx2){
|
||||
const float v1 = dists[idx1], v2 = dists[idx2];
|
||||
const int i1 = dists_i[idx1], i2 = dists_i[idx2];
|
||||
dists[idx1] = max(v1, v2);
|
||||
dists_i[idx1] = v2 > v1 ? i2 : i1;
|
||||
}
|
||||
|
||||
template <unsigned int block_size>
|
||||
__global__ void furthest_point_sampling_kernel(int b, int n, int m,
|
||||
const float *__restrict__ dataset, float *__restrict__ temp, int *__restrict__ idxs) {
|
||||
// dataset: (B, N, 3)
|
||||
// tmp: (B, N)
|
||||
// output:
|
||||
// idx: (B, M)
|
||||
|
||||
if (m <= 0) return;
|
||||
__shared__ float dists[block_size];
|
||||
__shared__ int dists_i[block_size];
|
||||
|
||||
int batch_index = blockIdx.x;
|
||||
dataset += batch_index * n * 3;
|
||||
temp += batch_index * n;
|
||||
idxs += batch_index * m;
|
||||
|
||||
int tid = threadIdx.x;
|
||||
const int stride = block_size;
|
||||
|
||||
int old = 0;
|
||||
if (threadIdx.x == 0)
|
||||
idxs[0] = old;
|
||||
|
||||
__syncthreads();
|
||||
for (int j = 1; j < m; j++) {
|
||||
int besti = 0;
|
||||
float best = -1;
|
||||
float x1 = dataset[old * 3 + 0];
|
||||
float y1 = dataset[old * 3 + 1];
|
||||
float z1 = dataset[old * 3 + 2];
|
||||
for (int k = tid; k < n; k += stride) {
|
||||
float x2, y2, z2;
|
||||
x2 = dataset[k * 3 + 0];
|
||||
y2 = dataset[k * 3 + 1];
|
||||
z2 = dataset[k * 3 + 2];
|
||||
// float mag = (x2 * x2) + (y2 * y2) + (z2 * z2);
|
||||
// if (mag <= 1e-3)
|
||||
// continue;
|
||||
|
||||
float d = (x2 - x1) * (x2 - x1) + (y2 - y1) * (y2 - y1) + (z2 - z1) * (z2 - z1);
|
||||
float d2 = min(d, temp[k]);
|
||||
temp[k] = d2;
|
||||
besti = d2 > best ? k : besti;
|
||||
best = d2 > best ? d2 : best;
|
||||
}
|
||||
dists[tid] = best;
|
||||
dists_i[tid] = besti;
|
||||
__syncthreads();
|
||||
|
||||
if (block_size >= 1024) {
|
||||
if (tid < 512) {
|
||||
__update(dists, dists_i, tid, tid + 512);
|
||||
}
|
||||
__syncthreads();
|
||||
}
|
||||
|
||||
if (block_size >= 512) {
|
||||
if (tid < 256) {
|
||||
__update(dists, dists_i, tid, tid + 256);
|
||||
}
|
||||
__syncthreads();
|
||||
}
|
||||
if (block_size >= 256) {
|
||||
if (tid < 128) {
|
||||
__update(dists, dists_i, tid, tid + 128);
|
||||
}
|
||||
__syncthreads();
|
||||
}
|
||||
if (block_size >= 128) {
|
||||
if (tid < 64) {
|
||||
__update(dists, dists_i, tid, tid + 64);
|
||||
}
|
||||
__syncthreads();
|
||||
}
|
||||
if (block_size >= 64) {
|
||||
if (tid < 32) {
|
||||
__update(dists, dists_i, tid, tid + 32);
|
||||
}
|
||||
__syncthreads();
|
||||
}
|
||||
if (block_size >= 32) {
|
||||
if (tid < 16) {
|
||||
__update(dists, dists_i, tid, tid + 16);
|
||||
}
|
||||
__syncthreads();
|
||||
}
|
||||
if (block_size >= 16) {
|
||||
if (tid < 8) {
|
||||
__update(dists, dists_i, tid, tid + 8);
|
||||
}
|
||||
__syncthreads();
|
||||
}
|
||||
if (block_size >= 8) {
|
||||
if (tid < 4) {
|
||||
__update(dists, dists_i, tid, tid + 4);
|
||||
}
|
||||
__syncthreads();
|
||||
}
|
||||
if (block_size >= 4) {
|
||||
if (tid < 2) {
|
||||
__update(dists, dists_i, tid, tid + 2);
|
||||
}
|
||||
__syncthreads();
|
||||
}
|
||||
if (block_size >= 2) {
|
||||
if (tid < 1) {
|
||||
__update(dists, dists_i, tid, tid + 1);
|
||||
}
|
||||
__syncthreads();
|
||||
}
|
||||
|
||||
old = dists_i[0];
|
||||
if (tid == 0)
|
||||
idxs[j] = old;
|
||||
}
|
||||
}
|
||||
|
||||
void furthest_point_sampling_kernel_launcher(int b, int n, int m,
|
||||
const float *dataset, float *temp, int *idxs, cudaStream_t stream) {
|
||||
// dataset: (B, N, 3)
|
||||
// tmp: (B, N)
|
||||
// output:
|
||||
// idx: (B, M)
|
||||
|
||||
cudaError_t err;
|
||||
unsigned int n_threads = opt_n_threads(n);
|
||||
|
||||
switch (n_threads) {
|
||||
case 1024:
|
||||
furthest_point_sampling_kernel<1024><<<b, n_threads, 0, stream>>>(b, n, m, dataset, temp, idxs); break;
|
||||
case 512:
|
||||
furthest_point_sampling_kernel<512><<<b, n_threads, 0, stream>>>(b, n, m, dataset, temp, idxs); break;
|
||||
case 256:
|
||||
furthest_point_sampling_kernel<256><<<b, n_threads, 0, stream>>>(b, n, m, dataset, temp, idxs); break;
|
||||
case 128:
|
||||
furthest_point_sampling_kernel<128><<<b, n_threads, 0, stream>>>(b, n, m, dataset, temp, idxs); break;
|
||||
case 64:
|
||||
furthest_point_sampling_kernel<64><<<b, n_threads, 0, stream>>>(b, n, m, dataset, temp, idxs); break;
|
||||
case 32:
|
||||
furthest_point_sampling_kernel<32><<<b, n_threads, 0, stream>>>(b, n, m, dataset, temp, idxs); break;
|
||||
case 16:
|
||||
furthest_point_sampling_kernel<16><<<b, n_threads, 0, stream>>>(b, n, m, dataset, temp, idxs); break;
|
||||
case 8:
|
||||
furthest_point_sampling_kernel<8><<<b, n_threads, 0, stream>>>(b, n, m, dataset, temp, idxs); break;
|
||||
case 4:
|
||||
furthest_point_sampling_kernel<4><<<b, n_threads, 0, stream>>>(b, n, m, dataset, temp, idxs); break;
|
||||
case 2:
|
||||
furthest_point_sampling_kernel<2><<<b, n_threads, 0, stream>>>(b, n, m, dataset, temp, idxs); break;
|
||||
case 1:
|
||||
furthest_point_sampling_kernel<1><<<b, n_threads, 0, stream>>>(b, n, m, dataset, temp, idxs); break;
|
||||
default:
|
||||
furthest_point_sampling_kernel<512><<<b, n_threads, 0, stream>>>(b, n, m, dataset, temp, idxs);
|
||||
}
|
||||
|
||||
err = cudaGetLastError();
|
||||
if (cudaSuccess != err) {
|
||||
fprintf(stderr, "CUDA kernel failed : %s\n", cudaGetErrorString(err));
|
||||
exit(-1);
|
||||
}
|
||||
}
|
@@ -1,29 +0,0 @@
|
||||
#ifndef _SAMPLING_GPU_H
|
||||
#define _SAMPLING_GPU_H
|
||||
|
||||
#include <torch/serialize/tensor.h>
|
||||
#include <ATen/cuda/CUDAContext.h>
|
||||
#include<vector>
|
||||
|
||||
|
||||
int gather_points_wrapper_fast(int b, int c, int n, int npoints,
|
||||
at::Tensor points_tensor, at::Tensor idx_tensor, at::Tensor out_tensor);
|
||||
|
||||
void gather_points_kernel_launcher_fast(int b, int c, int n, int npoints,
|
||||
const float *points, const int *idx, float *out, cudaStream_t stream);
|
||||
|
||||
|
||||
int gather_points_grad_wrapper_fast(int b, int c, int n, int npoints,
|
||||
at::Tensor grad_out_tensor, at::Tensor idx_tensor, at::Tensor grad_points_tensor);
|
||||
|
||||
void gather_points_grad_kernel_launcher_fast(int b, int c, int n, int npoints,
|
||||
const float *grad_out, const int *idx, float *grad_points, cudaStream_t stream);
|
||||
|
||||
|
||||
int furthest_point_sampling_wrapper(int b, int n, int m,
|
||||
at::Tensor points_tensor, at::Tensor temp_tensor, at::Tensor idx_tensor);
|
||||
|
||||
void furthest_point_sampling_kernel_launcher(int b, int n, int m,
|
||||
const float *dataset, float *temp, int *idxs, cudaStream_t stream);
|
||||
|
||||
#endif
|
@@ -1,2 +0,0 @@
|
||||
import os, sys
|
||||
sys.path.insert(0, os.path.join(os.path.dirname(os.path.abspath(__file__)), '../'))
|
@@ -1,188 +0,0 @@
|
||||
import os
|
||||
import numpy as np
|
||||
import torch.utils.data as torch_data
|
||||
import kitti_utils
|
||||
import cv2
|
||||
from PIL import Image
|
||||
|
||||
|
||||
USE_INTENSITY = False
|
||||
|
||||
|
||||
class KittiDataset(torch_data.Dataset):
|
||||
def __init__(self, root_dir, split='train', mode='TRAIN'):
|
||||
self.split = split
|
||||
self.mode = mode
|
||||
self.classes = ['Car']
|
||||
is_test = self.split == 'test'
|
||||
self.imageset_dir = os.path.join(root_dir, 'KITTI', 'object', 'testing' if is_test else 'training')
|
||||
|
||||
split_dir = os.path.join(root_dir, 'KITTI', 'ImageSets', split + '.txt')
|
||||
self.image_idx_list = [x.strip() for x in open(split_dir).readlines()]
|
||||
self.sample_id_list = [int(sample_id) for sample_id in self.image_idx_list]
|
||||
self.num_sample = self.image_idx_list.__len__()
|
||||
|
||||
self.npoints = 16384
|
||||
|
||||
self.image_dir = os.path.join(self.imageset_dir, 'image_2')
|
||||
self.lidar_dir = os.path.join(self.imageset_dir, 'velodyne')
|
||||
self.calib_dir = os.path.join(self.imageset_dir, 'calib')
|
||||
self.label_dir = os.path.join(self.imageset_dir, 'label_2')
|
||||
self.plane_dir = os.path.join(self.imageset_dir, 'planes')
|
||||
|
||||
def get_image(self, idx):
|
||||
img_file = os.path.join(self.image_dir, '%06d.png' % idx)
|
||||
assert os.path.exists(img_file)
|
||||
return cv2.imread(img_file) # (H, W, 3) BGR mode
|
||||
|
||||
def get_image_shape(self, idx):
|
||||
img_file = os.path.join(self.image_dir, '%06d.png' % idx)
|
||||
assert os.path.exists(img_file)
|
||||
im = Image.open(img_file)
|
||||
width, height = im.size
|
||||
return height, width, 3
|
||||
|
||||
def get_lidar(self, idx):
|
||||
lidar_file = os.path.join(self.lidar_dir, '%06d.bin' % idx)
|
||||
assert os.path.exists(lidar_file)
|
||||
return np.fromfile(lidar_file, dtype=np.float32).reshape(-1, 4)
|
||||
|
||||
def get_calib(self, idx):
|
||||
calib_file = os.path.join(self.calib_dir, '%06d.txt' % idx)
|
||||
assert os.path.exists(calib_file)
|
||||
return kitti_utils.Calibration(calib_file)
|
||||
|
||||
def get_label(self, idx):
|
||||
label_file = os.path.join(self.label_dir, '%06d.txt' % idx)
|
||||
assert os.path.exists(label_file)
|
||||
return kitti_utils.get_objects_from_label(label_file)
|
||||
|
||||
@staticmethod
|
||||
def get_valid_flag(pts_rect, pts_img, pts_rect_depth, img_shape):
|
||||
val_flag_1 = np.logical_and(pts_img[:, 0] >= 0, pts_img[:, 0] < img_shape[1])
|
||||
val_flag_2 = np.logical_and(pts_img[:, 1] >= 0, pts_img[:, 1] < img_shape[0])
|
||||
val_flag_merge = np.logical_and(val_flag_1, val_flag_2)
|
||||
pts_valid_flag = np.logical_and(val_flag_merge, pts_rect_depth >= 0)
|
||||
return pts_valid_flag
|
||||
|
||||
def filtrate_objects(self, obj_list):
|
||||
type_whitelist = self.classes
|
||||
if self.mode == 'TRAIN':
|
||||
type_whitelist = list(self.classes)
|
||||
if 'Car' in self.classes:
|
||||
type_whitelist.append('Van')
|
||||
|
||||
valid_obj_list = []
|
||||
for obj in obj_list:
|
||||
if obj.cls_type not in type_whitelist:
|
||||
continue
|
||||
|
||||
valid_obj_list.append(obj)
|
||||
return valid_obj_list
|
||||
|
||||
def __len__(self):
|
||||
return len(self.sample_id_list)
|
||||
|
||||
def __getitem__(self, index):
|
||||
sample_id = int(self.sample_id_list[index])
|
||||
calib = self.get_calib(sample_id)
|
||||
img_shape = self.get_image_shape(sample_id)
|
||||
pts_lidar = self.get_lidar(sample_id)
|
||||
|
||||
# get valid point (projected points should be in image)
|
||||
pts_rect = calib.lidar_to_rect(pts_lidar[:, 0:3])
|
||||
pts_intensity = pts_lidar[:, 3]
|
||||
|
||||
pts_img, pts_rect_depth = calib.rect_to_img(pts_rect)
|
||||
pts_valid_flag = self.get_valid_flag(pts_rect, pts_img, pts_rect_depth, img_shape)
|
||||
|
||||
pts_rect = pts_rect[pts_valid_flag][:, 0:3]
|
||||
pts_intensity = pts_intensity[pts_valid_flag]
|
||||
|
||||
if self.npoints < len(pts_rect):
|
||||
pts_depth = pts_rect[:, 2]
|
||||
pts_near_flag = pts_depth < 40.0
|
||||
far_idxs_choice = np.where(pts_near_flag == 0)[0]
|
||||
near_idxs = np.where(pts_near_flag == 1)[0]
|
||||
near_idxs_choice = np.random.choice(near_idxs, self.npoints - len(far_idxs_choice), replace=False)
|
||||
|
||||
choice = np.concatenate((near_idxs_choice, far_idxs_choice), axis=0) \
|
||||
if len(far_idxs_choice) > 0 else near_idxs_choice
|
||||
np.random.shuffle(choice)
|
||||
else:
|
||||
choice = np.arange(0, len(pts_rect), dtype=np.int32)
|
||||
if self.npoints > len(pts_rect):
|
||||
extra_choice = np.random.choice(choice, self.npoints - len(pts_rect), replace=False)
|
||||
choice = np.concatenate((choice, extra_choice), axis=0)
|
||||
np.random.shuffle(choice)
|
||||
|
||||
ret_pts_rect = pts_rect[choice, :]
|
||||
ret_pts_intensity = pts_intensity[choice] - 0.5 # translate intensity to [-0.5, 0.5]
|
||||
|
||||
pts_features = [ret_pts_intensity.reshape(-1, 1)]
|
||||
ret_pts_features = np.concatenate(pts_features, axis=1) if pts_features.__len__() > 1 else pts_features[0]
|
||||
|
||||
sample_info = {'sample_id': sample_id}
|
||||
|
||||
if self.mode == 'TEST':
|
||||
if USE_INTENSITY:
|
||||
pts_input = np.concatenate((ret_pts_rect, ret_pts_features), axis=1) # (N, C)
|
||||
else:
|
||||
pts_input = ret_pts_rect
|
||||
sample_info['pts_input'] = pts_input
|
||||
sample_info['pts_rect'] = ret_pts_rect
|
||||
sample_info['pts_features'] = ret_pts_features
|
||||
return sample_info
|
||||
|
||||
gt_obj_list = self.filtrate_objects(self.get_label(sample_id))
|
||||
|
||||
gt_boxes3d = kitti_utils.objs_to_boxes3d(gt_obj_list)
|
||||
|
||||
# prepare input
|
||||
if USE_INTENSITY:
|
||||
pts_input = np.concatenate((ret_pts_rect, ret_pts_features), axis=1) # (N, C)
|
||||
else:
|
||||
pts_input = ret_pts_rect
|
||||
|
||||
# generate training labels
|
||||
cls_labels = self.generate_training_labels(ret_pts_rect, gt_boxes3d)
|
||||
sample_info['pts_input'] = pts_input
|
||||
sample_info['pts_rect'] = ret_pts_rect
|
||||
sample_info['cls_labels'] = cls_labels
|
||||
return sample_info
|
||||
|
||||
@staticmethod
|
||||
def generate_training_labels(pts_rect, gt_boxes3d):
|
||||
cls_label = np.zeros((pts_rect.shape[0]), dtype=np.int32)
|
||||
gt_corners = kitti_utils.boxes3d_to_corners3d(gt_boxes3d, rotate=True)
|
||||
extend_gt_boxes3d = kitti_utils.enlarge_box3d(gt_boxes3d, extra_width=0.2)
|
||||
extend_gt_corners = kitti_utils.boxes3d_to_corners3d(extend_gt_boxes3d, rotate=True)
|
||||
for k in range(gt_boxes3d.shape[0]):
|
||||
box_corners = gt_corners[k]
|
||||
fg_pt_flag = kitti_utils.in_hull(pts_rect, box_corners)
|
||||
cls_label[fg_pt_flag] = 1
|
||||
|
||||
# enlarge the bbox3d, ignore nearby points
|
||||
extend_box_corners = extend_gt_corners[k]
|
||||
fg_enlarge_flag = kitti_utils.in_hull(pts_rect, extend_box_corners)
|
||||
ignore_flag = np.logical_xor(fg_pt_flag, fg_enlarge_flag)
|
||||
cls_label[ignore_flag] = -1
|
||||
|
||||
return cls_label
|
||||
|
||||
def collate_batch(self, batch):
|
||||
batch_size = batch.__len__()
|
||||
ans_dict = {}
|
||||
|
||||
for key in batch[0].keys():
|
||||
if isinstance(batch[0][key], np.ndarray):
|
||||
ans_dict[key] = np.concatenate([batch[k][key][np.newaxis, ...] for k in range(batch_size)], axis=0)
|
||||
|
||||
else:
|
||||
ans_dict[key] = [batch[k][key] for k in range(batch_size)]
|
||||
if isinstance(batch[0][key], int):
|
||||
ans_dict[key] = np.array(ans_dict[key], dtype=np.int32)
|
||||
elif isinstance(batch[0][key], float):
|
||||
ans_dict[key] = np.array(ans_dict[key], dtype=np.float32)
|
||||
|
||||
return ans_dict
|
@@ -1,229 +0,0 @@
|
||||
import numpy as np
|
||||
from scipy.spatial import Delaunay
|
||||
import scipy
|
||||
|
||||
|
||||
def cls_type_to_id(cls_type):
|
||||
type_to_id = {'Car': 1, 'Pedestrian': 2, 'Cyclist': 3, 'Van': 4}
|
||||
if cls_type not in type_to_id.keys():
|
||||
return -1
|
||||
return type_to_id[cls_type]
|
||||
|
||||
|
||||
class Object3d(object):
|
||||
def __init__(self, line):
|
||||
label = line.strip().split(' ')
|
||||
self.src = line
|
||||
self.cls_type = label[0]
|
||||
self.cls_id = cls_type_to_id(self.cls_type)
|
||||
self.trucation = float(label[1])
|
||||
self.occlusion = float(label[2]) # 0:fully visible 1:partly occluded 2:largely occluded 3:unknown
|
||||
self.alpha = float(label[3])
|
||||
self.box2d = np.array((float(label[4]), float(label[5]), float(label[6]), float(label[7])), dtype=np.float32)
|
||||
self.h = float(label[8])
|
||||
self.w = float(label[9])
|
||||
self.l = float(label[10])
|
||||
self.pos = np.array((float(label[11]), float(label[12]), float(label[13])), dtype=np.float32)
|
||||
self.dis_to_cam = np.linalg.norm(self.pos)
|
||||
self.ry = float(label[14])
|
||||
self.score = float(label[15]) if label.__len__() == 16 else -1.0
|
||||
self.level_str = None
|
||||
self.level = self.get_obj_level()
|
||||
|
||||
def get_obj_level(self):
|
||||
height = float(self.box2d[3]) - float(self.box2d[1]) + 1
|
||||
|
||||
if height >= 40 and self.trucation <= 0.15 and self.occlusion <= 0:
|
||||
self.level_str = 'Easy'
|
||||
return 1 # Easy
|
||||
elif height >= 25 and self.trucation <= 0.3 and self.occlusion <= 1:
|
||||
self.level_str = 'Moderate'
|
||||
return 2 # Moderate
|
||||
elif height >= 25 and self.trucation <= 0.5 and self.occlusion <= 2:
|
||||
self.level_str = 'Hard'
|
||||
return 3 # Hard
|
||||
else:
|
||||
self.level_str = 'UnKnown'
|
||||
return 4
|
||||
|
||||
def generate_corners3d(self):
|
||||
"""
|
||||
generate corners3d representation for this object
|
||||
:return corners_3d: (8, 3) corners of box3d in camera coord
|
||||
"""
|
||||
l, h, w = self.l, self.h, self.w
|
||||
x_corners = [l / 2, l / 2, -l / 2, -l / 2, l / 2, l / 2, -l / 2, -l / 2]
|
||||
y_corners = [0, 0, 0, 0, -h, -h, -h, -h]
|
||||
z_corners = [w / 2, -w / 2, -w / 2, w / 2, w / 2, -w / 2, -w / 2, w / 2]
|
||||
|
||||
R = np.array([[np.cos(self.ry), 0, np.sin(self.ry)],
|
||||
[0, 1, 0],
|
||||
[-np.sin(self.ry), 0, np.cos(self.ry)]])
|
||||
corners3d = np.vstack([x_corners, y_corners, z_corners]) # (3, 8)
|
||||
corners3d = np.dot(R, corners3d).T
|
||||
corners3d = corners3d + self.pos
|
||||
return corners3d
|
||||
|
||||
def to_str(self):
|
||||
print_str = '%s %.3f %.3f %.3f box2d: %s hwl: [%.3f %.3f %.3f] pos: %s ry: %.3f' \
|
||||
% (self.cls_type, self.trucation, self.occlusion, self.alpha, self.box2d, self.h, self.w, self.l,
|
||||
self.pos, self.ry)
|
||||
return print_str
|
||||
|
||||
def to_kitti_format(self):
|
||||
kitti_str = '%s %.2f %d %.2f %.2f %.2f %.2f %.2f %.2f %.2f %.2f %.2f %.2f %.2f %.2f' \
|
||||
% (self.cls_type, self.trucation, int(self.occlusion), self.alpha, self.box2d[0], self.box2d[1],
|
||||
self.box2d[2], self.box2d[3], self.h, self.w, self.l, self.pos[0], self.pos[1], self.pos[2],
|
||||
self.ry)
|
||||
return kitti_str
|
||||
|
||||
|
||||
def get_calib_from_file(calib_file):
|
||||
with open(calib_file) as f:
|
||||
lines = f.readlines()
|
||||
|
||||
obj = lines[2].strip().split(' ')[1:]
|
||||
P2 = np.array(obj, dtype=np.float32)
|
||||
obj = lines[3].strip().split(' ')[1:]
|
||||
P3 = np.array(obj, dtype=np.float32)
|
||||
obj = lines[4].strip().split(' ')[1:]
|
||||
R0 = np.array(obj, dtype=np.float32)
|
||||
obj = lines[5].strip().split(' ')[1:]
|
||||
Tr_velo_to_cam = np.array(obj, dtype=np.float32)
|
||||
|
||||
return {'P2': P2.reshape(3, 4),
|
||||
'P3': P3.reshape(3, 4),
|
||||
'R0': R0.reshape(3, 3),
|
||||
'Tr_velo2cam': Tr_velo_to_cam.reshape(3, 4)}
|
||||
|
||||
|
||||
class Calibration(object):
|
||||
def __init__(self, calib_file):
|
||||
if isinstance(calib_file, str):
|
||||
calib = get_calib_from_file(calib_file)
|
||||
else:
|
||||
calib = calib_file
|
||||
|
||||
self.P2 = calib['P2'] # 3 x 4
|
||||
self.R0 = calib['R0'] # 3 x 3
|
||||
self.V2C = calib['Tr_velo2cam'] # 3 x 4
|
||||
|
||||
def cart_to_hom(self, pts):
|
||||
"""
|
||||
:param pts: (N, 3 or 2)
|
||||
:return pts_hom: (N, 4 or 3)
|
||||
"""
|
||||
pts_hom = np.hstack((pts, np.ones((pts.shape[0], 1), dtype=np.float32)))
|
||||
return pts_hom
|
||||
|
||||
def lidar_to_rect(self, pts_lidar):
|
||||
"""
|
||||
:param pts_lidar: (N, 3)
|
||||
:return pts_rect: (N, 3)
|
||||
"""
|
||||
pts_lidar_hom = self.cart_to_hom(pts_lidar)
|
||||
pts_rect = np.dot(pts_lidar_hom, np.dot(self.V2C.T, self.R0.T))
|
||||
return pts_rect
|
||||
|
||||
def rect_to_img(self, pts_rect):
|
||||
"""
|
||||
:param pts_rect: (N, 3)
|
||||
:return pts_img: (N, 2)
|
||||
"""
|
||||
pts_rect_hom = self.cart_to_hom(pts_rect)
|
||||
pts_2d_hom = np.dot(pts_rect_hom, self.P2.T)
|
||||
pts_img = (pts_2d_hom[:, 0:2].T / pts_rect_hom[:, 2]).T # (N, 2)
|
||||
pts_rect_depth = pts_2d_hom[:, 2] - self.P2.T[3, 2] # depth in rect camera coord
|
||||
return pts_img, pts_rect_depth
|
||||
|
||||
def lidar_to_img(self, pts_lidar):
|
||||
"""
|
||||
:param pts_lidar: (N, 3)
|
||||
:return pts_img: (N, 2)
|
||||
"""
|
||||
pts_rect = self.lidar_to_rect(pts_lidar)
|
||||
pts_img, pts_depth = self.rect_to_img(pts_rect)
|
||||
return pts_img, pts_depth
|
||||
|
||||
|
||||
def get_objects_from_label(label_file):
|
||||
with open(label_file, 'r') as f:
|
||||
lines = f.readlines()
|
||||
objects = [Object3d(line) for line in lines]
|
||||
return objects
|
||||
|
||||
|
||||
def objs_to_boxes3d(obj_list):
|
||||
boxes3d = np.zeros((obj_list.__len__(), 7), dtype=np.float32)
|
||||
for k, obj in enumerate(obj_list):
|
||||
boxes3d[k, 0:3], boxes3d[k, 3], boxes3d[k, 4], boxes3d[k, 5], boxes3d[k, 6] \
|
||||
= obj.pos, obj.h, obj.w, obj.l, obj.ry
|
||||
return boxes3d
|
||||
|
||||
|
||||
def boxes3d_to_corners3d(boxes3d, rotate=True):
|
||||
"""
|
||||
:param boxes3d: (N, 7) [x, y, z, h, w, l, ry]
|
||||
:param rotate:
|
||||
:return: corners3d: (N, 8, 3)
|
||||
"""
|
||||
boxes_num = boxes3d.shape[0]
|
||||
h, w, l = boxes3d[:, 3], boxes3d[:, 4], boxes3d[:, 5]
|
||||
x_corners = np.array([l / 2., l / 2., -l / 2., -l / 2., l / 2., l / 2., -l / 2., -l / 2.], dtype=np.float32).T # (N, 8)
|
||||
z_corners = np.array([w / 2., -w / 2., -w / 2., w / 2., w / 2., -w / 2., -w / 2., w / 2.], dtype=np.float32).T # (N, 8)
|
||||
|
||||
y_corners = np.zeros((boxes_num, 8), dtype=np.float32)
|
||||
y_corners[:, 4:8] = -h.reshape(boxes_num, 1).repeat(4, axis=1) # (N, 8)
|
||||
|
||||
if rotate:
|
||||
ry = boxes3d[:, 6]
|
||||
zeros, ones = np.zeros(ry.size, dtype=np.float32), np.ones(ry.size, dtype=np.float32)
|
||||
rot_list = np.array([[np.cos(ry), zeros, -np.sin(ry)],
|
||||
[zeros, ones, zeros],
|
||||
[np.sin(ry), zeros, np.cos(ry)]]) # (3, 3, N)
|
||||
R_list = np.transpose(rot_list, (2, 0, 1)) # (N, 3, 3)
|
||||
|
||||
temp_corners = np.concatenate((x_corners.reshape(-1, 8, 1), y_corners.reshape(-1, 8, 1),
|
||||
z_corners.reshape(-1, 8, 1)), axis=2) # (N, 8, 3)
|
||||
rotated_corners = np.matmul(temp_corners, R_list) # (N, 8, 3)
|
||||
x_corners, y_corners, z_corners = rotated_corners[:, :, 0], rotated_corners[:, :, 1], rotated_corners[:, :, 2]
|
||||
|
||||
x_loc, y_loc, z_loc = boxes3d[:, 0], boxes3d[:, 1], boxes3d[:, 2]
|
||||
|
||||
x = x_loc.reshape(-1, 1) + x_corners.reshape(-1, 8)
|
||||
y = y_loc.reshape(-1, 1) + y_corners.reshape(-1, 8)
|
||||
z = z_loc.reshape(-1, 1) + z_corners.reshape(-1, 8)
|
||||
|
||||
corners = np.concatenate((x.reshape(-1, 8, 1), y.reshape(-1, 8, 1), z.reshape(-1, 8, 1)), axis=2)
|
||||
|
||||
return corners.astype(np.float32)
|
||||
|
||||
|
||||
def enlarge_box3d(boxes3d, extra_width):
|
||||
"""
|
||||
:param boxes3d: (N, 7) [x, y, z, h, w, l, ry]
|
||||
"""
|
||||
if isinstance(boxes3d, np.ndarray):
|
||||
large_boxes3d = boxes3d.copy()
|
||||
else:
|
||||
large_boxes3d = boxes3d.clone()
|
||||
large_boxes3d[:, 3:6] += extra_width * 2
|
||||
large_boxes3d[:, 1] += extra_width
|
||||
return large_boxes3d
|
||||
|
||||
|
||||
def in_hull(p, hull):
|
||||
"""
|
||||
:param p: (N, K) test points
|
||||
:param hull: (M, K) M corners of a box
|
||||
:return (N) bool
|
||||
"""
|
||||
try:
|
||||
if not isinstance(hull, Delaunay):
|
||||
hull = Delaunay(hull)
|
||||
flag = hull.find_simplex(p) >= 0
|
||||
except scipy.spatial.qhull.QhullError:
|
||||
print('Warning: not a hull %s' % str(hull))
|
||||
flag = np.zeros(p.shape[0], dtype=np.bool)
|
||||
|
||||
return flag
|
@@ -1,102 +0,0 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import sys
|
||||
sys.path.append('..')
|
||||
from pointnet2.pointnet2_modules import PointnetFPModule, PointnetSAModuleMSG
|
||||
import pointnet2.pytorch_utils as pt_utils
|
||||
|
||||
|
||||
def get_model(input_channels=0):
|
||||
return Pointnet2MSG(input_channels=input_channels)
|
||||
|
||||
|
||||
NPOINTS = [4096, 1024, 256, 64]
|
||||
RADIUS = [[0.1, 0.5], [0.5, 1.0], [1.0, 2.0], [2.0, 4.0]]
|
||||
NSAMPLE = [[16, 32], [16, 32], [16, 32], [16, 32]]
|
||||
MLPS = [[[16, 16, 32], [32, 32, 64]], [[64, 64, 128], [64, 96, 128]],
|
||||
[[128, 196, 256], [128, 196, 256]], [[256, 256, 512], [256, 384, 512]]]
|
||||
FP_MLPS = [[128, 128], [256, 256], [512, 512], [512, 512]]
|
||||
CLS_FC = [128]
|
||||
DP_RATIO = 0.5
|
||||
|
||||
|
||||
class Pointnet2MSG(nn.Module):
|
||||
def __init__(self, input_channels=6):
|
||||
super().__init__()
|
||||
|
||||
self.SA_modules = nn.ModuleList()
|
||||
channel_in = input_channels
|
||||
|
||||
skip_channel_list = [input_channels]
|
||||
for k in range(NPOINTS.__len__()):
|
||||
mlps = MLPS[k].copy()
|
||||
channel_out = 0
|
||||
for idx in range(mlps.__len__()):
|
||||
mlps[idx] = [channel_in] + mlps[idx]
|
||||
channel_out += mlps[idx][-1]
|
||||
|
||||
self.SA_modules.append(
|
||||
PointnetSAModuleMSG(
|
||||
npoint=NPOINTS[k],
|
||||
radii=RADIUS[k],
|
||||
nsamples=NSAMPLE[k],
|
||||
mlps=mlps,
|
||||
use_xyz=True,
|
||||
bn=True
|
||||
)
|
||||
)
|
||||
skip_channel_list.append(channel_out)
|
||||
channel_in = channel_out
|
||||
|
||||
self.FP_modules = nn.ModuleList()
|
||||
|
||||
for k in range(FP_MLPS.__len__()):
|
||||
pre_channel = FP_MLPS[k + 1][-1] if k + 1 < len(FP_MLPS) else channel_out
|
||||
self.FP_modules.append(
|
||||
PointnetFPModule(mlp=[pre_channel + skip_channel_list[k]] + FP_MLPS[k])
|
||||
)
|
||||
|
||||
cls_layers = []
|
||||
pre_channel = FP_MLPS[0][-1]
|
||||
for k in range(0, CLS_FC.__len__()):
|
||||
cls_layers.append(pt_utils.Conv1d(pre_channel, CLS_FC[k], bn=True))
|
||||
pre_channel = CLS_FC[k]
|
||||
cls_layers.append(pt_utils.Conv1d(pre_channel, 1, activation=None))
|
||||
cls_layers.insert(1, nn.Dropout(0.5))
|
||||
self.cls_layer = nn.Sequential(*cls_layers)
|
||||
|
||||
def _break_up_pc(self, pc):
|
||||
xyz = pc[..., 0:3].contiguous()
|
||||
features = (
|
||||
pc[..., 3:].transpose(1, 2).contiguous()
|
||||
if pc.size(-1) > 3 else None
|
||||
)
|
||||
|
||||
return xyz, features
|
||||
|
||||
def forward(self, pointcloud: torch.cuda.FloatTensor):
|
||||
xyz, features = self._break_up_pc(pointcloud)
|
||||
|
||||
l_xyz, l_features = [xyz], [features]
|
||||
for i in range(len(self.SA_modules)):
|
||||
li_xyz, li_features = self.SA_modules[i](l_xyz[i], l_features[i])
|
||||
|
||||
print(li_xyz.shape, li_features.shape)
|
||||
|
||||
l_xyz.append(li_xyz)
|
||||
l_features.append(li_features)
|
||||
|
||||
for i in range(-1, -(len(self.FP_modules) + 1), -1):
|
||||
l_features[i - 1] = self.FP_modules[i](
|
||||
l_xyz[i - 1], l_xyz[i], l_features[i - 1], l_features[i]
|
||||
)
|
||||
|
||||
pred_cls = self.cls_layer(l_features[0]).transpose(1, 2).contiguous() # (B, N, 1)
|
||||
return pred_cls
|
||||
|
||||
if __name__ == '__main__':
|
||||
net = Pointnet2MSG(0).cuda()
|
||||
pts = torch.randn(2, 1024, 3).cuda()
|
||||
|
||||
pre = net(pts)
|
||||
print(pre.shape)
|
@@ -1,217 +0,0 @@
|
||||
import _init_path
|
||||
import numpy as np
|
||||
import os
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.optim as optim
|
||||
import torch.optim.lr_scheduler as lr_sched
|
||||
from torch.nn.utils import clip_grad_norm_
|
||||
from torch.utils.data import DataLoader
|
||||
import tensorboard_logger as tb_log
|
||||
from dataset import KittiDataset
|
||||
import argparse
|
||||
import importlib
|
||||
|
||||
parser = argparse.ArgumentParser(description="Arg parser")
|
||||
parser.add_argument("--batch_size", type=int, default=8)
|
||||
parser.add_argument("--epochs", type=int, default=100)
|
||||
parser.add_argument("--ckpt_save_interval", type=int, default=5)
|
||||
parser.add_argument('--workers', type=int, default=4)
|
||||
parser.add_argument("--mode", type=str, default='train')
|
||||
parser.add_argument("--ckpt", type=str, default='None')
|
||||
|
||||
parser.add_argument("--net", type=str, default='pointnet2_msg')
|
||||
|
||||
parser.add_argument('--lr', type=float, default=0.002)
|
||||
parser.add_argument('--lr_decay', type=float, default=0.2)
|
||||
parser.add_argument('--lr_clip', type=float, default=0.000001)
|
||||
parser.add_argument('--decay_step_list', type=list, default=[50, 70, 80, 90])
|
||||
parser.add_argument('--weight_decay', type=float, default=0.001)
|
||||
|
||||
parser.add_argument("--output_dir", type=str, default='output')
|
||||
parser.add_argument("--extra_tag", type=str, default='default')
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
FG_THRESH = 0.3
|
||||
|
||||
|
||||
def log_print(info, log_f=None):
|
||||
print(info)
|
||||
if log_f is not None:
|
||||
print(info, file=log_f)
|
||||
|
||||
|
||||
class DiceLoss(nn.Module):
|
||||
def __init__(self, ignore_target=-1):
|
||||
super().__init__()
|
||||
self.ignore_target = ignore_target
|
||||
|
||||
def forward(self, input, target):
|
||||
"""
|
||||
:param input: (N), logit
|
||||
:param target: (N), {0, 1}
|
||||
:return:
|
||||
"""
|
||||
input = torch.sigmoid(input.view(-1))
|
||||
target = target.float().view(-1)
|
||||
mask = (target != self.ignore_target).float()
|
||||
return 1.0 - (torch.min(input, target) * mask).sum() / torch.clamp((torch.max(input, target) * mask).sum(), min=1.0)
|
||||
|
||||
|
||||
def train_one_epoch(model, train_loader, optimizer, epoch, lr_scheduler, total_it, tb_log, log_f):
|
||||
model.train()
|
||||
log_print('===============TRAIN EPOCH %d================' % epoch, log_f=log_f)
|
||||
loss_func = DiceLoss(ignore_target=-1)
|
||||
|
||||
for it, batch in enumerate(train_loader):
|
||||
optimizer.zero_grad()
|
||||
|
||||
pts_input, cls_labels = batch['pts_input'], batch['cls_labels']
|
||||
pts_input = torch.from_numpy(pts_input).cuda(non_blocking=True).float()
|
||||
cls_labels = torch.from_numpy(cls_labels).cuda(non_blocking=True).long().view(-1)
|
||||
|
||||
pred_cls = model(pts_input)
|
||||
pred_cls = pred_cls.view(-1)
|
||||
|
||||
loss = loss_func(pred_cls, cls_labels)
|
||||
loss.backward()
|
||||
clip_grad_norm_(model.parameters(), 1.0)
|
||||
optimizer.step()
|
||||
|
||||
total_it += 1
|
||||
|
||||
pred_class = (torch.sigmoid(pred_cls) > FG_THRESH)
|
||||
fg_mask = cls_labels > 0
|
||||
correct = ((pred_class.long() == cls_labels) & fg_mask).float().sum()
|
||||
union = fg_mask.sum().float() + (pred_class > 0).sum().float() - correct
|
||||
iou = correct / torch.clamp(union, min=1.0)
|
||||
|
||||
cur_lr = lr_scheduler.get_lr()[0]
|
||||
tb_log.log_value('learning_rate', cur_lr, epoch)
|
||||
if tb_log is not None:
|
||||
tb_log.log_value('train_loss', loss, total_it)
|
||||
tb_log.log_value('train_fg_iou', iou, total_it)
|
||||
|
||||
log_print('training epoch %d: it=%d/%d, total_it=%d, loss=%.5f, fg_iou=%.3f, lr=%f' %
|
||||
(epoch, it, len(train_loader), total_it, loss.item(), iou.item(), cur_lr), log_f=log_f)
|
||||
|
||||
return total_it
|
||||
|
||||
|
||||
def eval_one_epoch(model, eval_loader, epoch, tb_log=None, log_f=None):
|
||||
model.train()
|
||||
log_print('===============EVAL EPOCH %d================' % epoch, log_f=log_f)
|
||||
|
||||
iou_list = []
|
||||
for it, batch in enumerate(eval_loader):
|
||||
pts_input, cls_labels = batch['pts_input'], batch['cls_labels']
|
||||
pts_input = torch.from_numpy(pts_input).cuda(non_blocking=True).float()
|
||||
cls_labels = torch.from_numpy(cls_labels).cuda(non_blocking=True).long().view(-1)
|
||||
|
||||
pred_cls = model(pts_input)
|
||||
pred_cls = pred_cls.view(-1)
|
||||
|
||||
pred_class = (torch.sigmoid(pred_cls) > FG_THRESH)
|
||||
fg_mask = cls_labels > 0
|
||||
correct = ((pred_class.long() == cls_labels) & fg_mask).float().sum()
|
||||
union = fg_mask.sum().float() + (pred_class > 0).sum().float() - correct
|
||||
iou = correct / torch.clamp(union, min=1.0)
|
||||
|
||||
iou_list.append(iou.item())
|
||||
log_print('EVAL: it=%d/%d, iou=%.3f' % (it, len(eval_loader), iou), log_f=log_f)
|
||||
|
||||
iou_list = np.array(iou_list)
|
||||
avg_iou = iou_list.mean()
|
||||
if tb_log is not None:
|
||||
tb_log.log_value('eval_fg_iou', avg_iou, epoch)
|
||||
|
||||
log_print('\nEpoch %d: Average IoU (samples=%d): %.6f' % (epoch, iou_list.__len__(), avg_iou), log_f=log_f)
|
||||
return avg_iou
|
||||
|
||||
|
||||
def save_checkpoint(model, epoch, ckpt_name):
|
||||
if isinstance(model, torch.nn.DataParallel):
|
||||
model_state = model.module.state_dict()
|
||||
else:
|
||||
model_state = model.state_dict()
|
||||
|
||||
state = {'epoch': epoch, 'model_state': model_state}
|
||||
ckpt_name = '{}.pth'.format(ckpt_name)
|
||||
torch.save(state, ckpt_name)
|
||||
|
||||
|
||||
def load_checkpoint(model, filename):
|
||||
if os.path.isfile(filename):
|
||||
log_print("==> Loading from checkpoint %s" % filename)
|
||||
checkpoint = torch.load(filename)
|
||||
epoch = checkpoint['epoch']
|
||||
model.load_state_dict(checkpoint['model_state'])
|
||||
log_print("==> Done")
|
||||
else:
|
||||
raise FileNotFoundError
|
||||
|
||||
return epoch
|
||||
|
||||
|
||||
def train_and_eval(model, train_loader, eval_loader, tb_log, ckpt_dir, log_f):
|
||||
model.cuda()
|
||||
optimizer = optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
|
||||
|
||||
def lr_lbmd(cur_epoch):
|
||||
cur_decay = 1
|
||||
for decay_step in args.decay_step_list:
|
||||
if cur_epoch >= decay_step:
|
||||
cur_decay = cur_decay * args.lr_decay
|
||||
return max(cur_decay, args.lr_clip / args.lr)
|
||||
|
||||
lr_scheduler = lr_sched.LambdaLR(optimizer, lr_lbmd)
|
||||
|
||||
total_it = 0
|
||||
for epoch in range(1, args.epochs + 1):
|
||||
lr_scheduler.step(epoch)
|
||||
total_it = train_one_epoch(model, train_loader, optimizer, epoch, lr_scheduler, total_it, tb_log, log_f)
|
||||
|
||||
if epoch % args.ckpt_save_interval == 0:
|
||||
with torch.no_grad():
|
||||
avg_iou = eval_one_epoch(model, eval_loader, epoch, tb_log, log_f)
|
||||
ckpt_name = os.path.join(ckpt_dir, 'checkpoint_epoch_%d' % epoch)
|
||||
save_checkpoint(model, epoch, ckpt_name)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
MODEL = importlib.import_module(args.net) # import network module
|
||||
model = MODEL.get_model(input_channels=0)
|
||||
|
||||
eval_set = KittiDataset(root_dir='./data', mode='EVAL', split='val')
|
||||
eval_loader = DataLoader(eval_set, batch_size=args.batch_size, shuffle=False, pin_memory=True,
|
||||
num_workers=args.workers, collate_fn=eval_set.collate_batch)
|
||||
|
||||
if args.mode == 'train':
|
||||
train_set = KittiDataset(root_dir='./data', mode='TRAIN', split='train')
|
||||
train_loader = DataLoader(train_set, batch_size=args.batch_size, shuffle=True, pin_memory=True,
|
||||
num_workers=args.workers, collate_fn=train_set.collate_batch)
|
||||
# output dir config
|
||||
output_dir = os.path.join(args.output_dir, args.extra_tag)
|
||||
os.makedirs(output_dir, exist_ok=True)
|
||||
tb_log.configure(os.path.join(output_dir, 'tensorboard'))
|
||||
ckpt_dir = os.path.join(output_dir, 'ckpt')
|
||||
os.makedirs(ckpt_dir, exist_ok=True)
|
||||
|
||||
log_file = os.path.join(output_dir, 'log.txt')
|
||||
log_f = open(log_file, 'w')
|
||||
|
||||
for key, val in vars(args).items():
|
||||
log_print("{:16} {}".format(key, val), log_f=log_f)
|
||||
|
||||
# train and eval
|
||||
train_and_eval(model, train_loader, eval_loader, tb_log, ckpt_dir, log_f)
|
||||
log_f.close()
|
||||
elif args.mode == 'eval':
|
||||
epoch = load_checkpoint(model, args.ckpt)
|
||||
model.cuda()
|
||||
with torch.no_grad():
|
||||
avg_iou = eval_one_epoch(model, eval_loader, epoch)
|
||||
else:
|
||||
raise NotImplementedError
|
||||
|
@@ -7,7 +7,9 @@ for i in range(2):
|
||||
path = os.path.dirname(path)
|
||||
PROJECT_ROOT = path
|
||||
sys.path.append(PROJECT_ROOT)
|
||||
from modules.module_lib.pointnet2_utils.pointnet2.pointnet2_modules import PointnetSAModuleMSG
|
||||
import PytorchBoot.stereotype as stereotype
|
||||
from modules.module_lib.pointnet2_modules import PointnetSAModuleMSG
|
||||
|
||||
|
||||
ClsMSG_CFG_Dense = {
|
||||
'NPOINTS': [512, 256, 128, None],
|
||||
@@ -31,6 +33,30 @@ ClsMSG_CFG_Light = {
|
||||
'DP_RATIO': 0.5,
|
||||
}
|
||||
|
||||
ClsMSG_CFG_Light_2048 = {
|
||||
'NPOINTS': [512, 256, 128, None],
|
||||
'RADIUS': [[0.02, 0.04], [0.04, 0.08], [0.08, 0.16], [None, None]],
|
||||
'NSAMPLE': [[16, 32], [16, 32], [16, 32], [None, None]],
|
||||
'MLPS': [[[16, 16, 32], [32, 32, 64]],
|
||||
[[64, 64, 128], [64, 96, 128]],
|
||||
[[128, 196, 256], [128, 196, 256]],
|
||||
[[256, 256, 1024], [256, 512, 1024]]],
|
||||
'DP_RATIO': 0.5,
|
||||
}
|
||||
|
||||
ClsMSG_CFG_Strong = {
|
||||
'NPOINTS': [512, 256, 128, 64, None],
|
||||
'RADIUS': [[0.02, 0.04], [0.04, 0.08], [0.08, 0.16],[0.16, 0.32], [None, None]],
|
||||
'NSAMPLE': [[16, 32], [16, 32], [16, 32], [16, 32], [None, None]],
|
||||
'MLPS': [[[16, 16, 32], [32, 32, 64]],
|
||||
[[64, 64, 128], [64, 96, 128]],
|
||||
[[128, 196, 256], [128, 196, 256]],
|
||||
[[256, 256, 512], [256, 512, 512]],
|
||||
[[512, 512, 2048], [512, 1024, 2048]]
|
||||
],
|
||||
'DP_RATIO': 0.5,
|
||||
}
|
||||
|
||||
ClsMSG_CFG_Lighter = {
|
||||
'NPOINTS': [512, 256, 128, 64, None],
|
||||
'RADIUS': [[0.01], [0.02], [0.04], [0.08], [None]],
|
||||
@@ -51,6 +77,10 @@ def select_params(name):
|
||||
return ClsMSG_CFG_Lighter
|
||||
elif name == 'dense':
|
||||
return ClsMSG_CFG_Dense
|
||||
elif name == 'light_2048':
|
||||
return ClsMSG_CFG_Light_2048
|
||||
elif name == 'strong':
|
||||
return ClsMSG_CFG_Strong
|
||||
else:
|
||||
raise NotImplementedError
|
||||
|
||||
@@ -65,18 +95,18 @@ def break_up_pc(pc):
|
||||
return xyz, features
|
||||
|
||||
|
||||
@stereotype.module("pointnet++_encoder")
|
||||
class PointNet2Encoder(nn.Module):
|
||||
def encode_points(self, pts):
|
||||
def encode_points(self, pts, require_per_point_feat=False):
|
||||
return self.forward(pts)
|
||||
|
||||
def __init__(self, config:dict):
|
||||
super().__init__()
|
||||
|
||||
input_channels = config.get("in_dim", 0)
|
||||
channel_in = config.get("in_dim", 3) - 3
|
||||
params_name = config.get("params_name", "light")
|
||||
|
||||
self.SA_modules = nn.ModuleList()
|
||||
channel_in = input_channels
|
||||
selected_params = select_params(params_name)
|
||||
for k in range(selected_params['NPOINTS'].__len__()):
|
||||
mlps = selected_params['MLPS'][k].copy()
|
||||
@@ -112,8 +142,8 @@ if __name__ == '__main__':
|
||||
seed = 100
|
||||
torch.manual_seed(seed)
|
||||
torch.cuda.manual_seed(seed)
|
||||
net = PointNet2Encoder(config={"in_dim": 0, "params_name": "light"}).cuda()
|
||||
pts = torch.randn(2, 1024, 3).cuda()
|
||||
net = PointNet2Encoder(config={"in_dim": 3, "params_name": "strong"}).cuda()
|
||||
pts = torch.randn(2, 2444, 3).cuda()
|
||||
print(torch.mean(pts, dim=1))
|
||||
pre = net.encode_points(pts)
|
||||
print(pre.shape)
|
||||
|
@@ -164,7 +164,7 @@ def save_scene_data(root, scene, scene_idx=0, scene_total=1,file_type="txt"):
|
||||
|
||||
if __name__ == "__main__":
|
||||
#root = "/media/hofee/repository/new_data_with_normal"
|
||||
root = r"/media/hofee/data/results/ycb_view_data"
|
||||
root = r"/media/hofee/data/data/test_bottle/view"
|
||||
scene_list = os.listdir(root)
|
||||
from_idx = 0 # 1000
|
||||
to_idx = len(scene_list) # 1500
|
||||
|
@@ -12,6 +12,7 @@ from PytorchBoot.runners.runner import Runner
|
||||
from PytorchBoot.utils import Log
|
||||
|
||||
from utils.pts import PtsUtil
|
||||
from beans.predict_result import PredictResult
|
||||
|
||||
@stereotype.runner("inferencer_server")
|
||||
class InferencerServer(Runner):
|
||||
@@ -50,6 +51,7 @@ class InferencerServer(Runner):
|
||||
def get_result(self, output_data):
|
||||
|
||||
pred_pose_9d = output_data["pred_pose_9d"]
|
||||
pred_pose_9d = np.asarray(PredictResult(pred_pose_9d.cpu().numpy(), None, cluster_params=dict(eps=0.25, min_samples=3)).candidate_9d_poses, dtype=np.float32)
|
||||
result = {
|
||||
"pred_pose_9d": pred_pose_9d.tolist()
|
||||
}
|
||||
|
@@ -4,6 +4,7 @@ from utils.render import RenderUtil
|
||||
from utils.pose import PoseUtil
|
||||
from utils.pts import PtsUtil
|
||||
from utils.reconstruction import ReconstructionUtil
|
||||
from beans.predict_result import PredictResult
|
||||
|
||||
import torch
|
||||
from tqdm import tqdm
|
||||
@@ -82,6 +83,7 @@ class Inferencer(Runner):
|
||||
data = test_set.__getitem__(i)
|
||||
scene_name = data["scene_name"]
|
||||
inference_result_path = os.path.join(self.output_dir, test_set_name, f"{scene_name}.pkl")
|
||||
|
||||
if os.path.exists(inference_result_path):
|
||||
Log.info(f"Inference result already exists for scene: {scene_name}")
|
||||
continue
|
||||
@@ -135,19 +137,36 @@ class Inferencer(Runner):
|
||||
pred_cr_seq = [last_pred_cr]
|
||||
success = 0
|
||||
last_pts_num = PtsUtil.voxel_downsample_point_cloud(data["first_scanned_pts"][0], voxel_threshold).shape[0]
|
||||
import time
|
||||
#import time
|
||||
while len(pred_cr_seq) < max_iter and retry < max_retry and success < max_success:
|
||||
Log.green(f"iter: {len(pred_cr_seq)}, retry: {retry}/{max_retry}, success: {success}/{max_success}")
|
||||
combined_scanned_pts = np.vstack(scanned_view_pts)
|
||||
voxel_downsampled_combined_scanned_pts_np, inverse = self.voxel_downsample_with_mapping(combined_scanned_pts, voxel_threshold)
|
||||
output = self.pipeline(input_data)
|
||||
pred_pose_9d = output["pred_pose_9d"]
|
||||
import ipdb; ipdb.set_trace()
|
||||
pred_pose = torch.eye(4, device=pred_pose_9d.device)
|
||||
|
||||
# # save pred_pose_9d ------
|
||||
# root = "/media/hofee/data/project/python/nbv_reconstruction/nbv_reconstruction/temp_output_result"
|
||||
# scene_dir = os.path.join(root, scene_name)
|
||||
# if not os.path.exists(scene_dir):
|
||||
# os.makedirs(scene_dir)
|
||||
# pred_9d_path = os.path.join(scene_dir,f"pred_pose_9d_{len(pred_cr_seq)}.npy")
|
||||
# pts_path = os.path.join(scene_dir,f"combined_scanned_pts_{len(pred_cr_seq)}.txt")
|
||||
# np_combined_scanned_pts = input_data["combined_scanned_pts"][0].cpu().numpy()
|
||||
# np.save(pred_9d_path, pred_pose_9d.cpu().numpy())
|
||||
# np.savetxt(pts_path, np_combined_scanned_pts)
|
||||
# # ----- ----- -----
|
||||
predict_result = PredictResult(pred_pose_9d.cpu().numpy(), input_pts=input_data["combined_scanned_pts"][0].cpu().numpy(), cluster_params=dict(eps=0.25, min_samples=3))
|
||||
# -----------------------
|
||||
# import ipdb; ipdb.set_trace()
|
||||
# predict_result.visualize()
|
||||
# -----------------------
|
||||
pred_pose_9d_candidates = predict_result.candidate_9d_poses
|
||||
for pred_pose_9d in pred_pose_9d_candidates:
|
||||
#import ipdb; ipdb.set_trace()
|
||||
pred_pose_9d = torch.tensor(pred_pose_9d, dtype=torch.float32).to(self.device).unsqueeze(0)
|
||||
pred_pose[:3,:3] = PoseUtil.rotation_6d_to_matrix_tensor_batch(pred_pose_9d[:,:6])[0]
|
||||
pred_pose[:3,3] = pred_pose_9d[0,6:]
|
||||
|
||||
try:
|
||||
new_target_pts, new_target_normals, new_scan_points_indices = RenderUtil.render_pts(pred_pose, scene_path, self.script_path, scan_points, voxel_threshold=voxel_threshold, filter_degree=filter_degree, nO_to_nL_pose=O_to_L_pose)
|
||||
#import ipdb; ipdb.set_trace()
|
||||
|
456
runners/simulator.py
Normal file
456
runners/simulator.py
Normal file
@@ -0,0 +1,456 @@
|
||||
import pybullet as p
|
||||
import pybullet_data
|
||||
import numpy as np
|
||||
import os
|
||||
import time
|
||||
from PytorchBoot.runners.runner import Runner
|
||||
import PytorchBoot.stereotype as stereotype
|
||||
from PytorchBoot.config import ConfigManager
|
||||
from utils.control import ControlUtil
|
||||
|
||||
|
||||
@stereotype.runner("simulator")
|
||||
class Simulator(Runner):
|
||||
CREATE: str = "create"
|
||||
SIMULATE: str = "simulate"
|
||||
INIT_GRIPPER_POSE:np.ndarray = np.asarray(
|
||||
[[0.41869126 ,0.87596275 , 0.23951774 , 0.36005292],
|
||||
[ 0.70787907 ,-0.4800251 , 0.51813998 ,-0.40499909],
|
||||
[ 0.56884584, -0.04739109 ,-0.82107382 ,0.76881103],
|
||||
[ 0. , 0. , 0. , 1. ]])
|
||||
TURNTABLE_WORLD_TO_PYBULLET_WORLD:np.ndarray = np.asarray(
|
||||
[[1, 0, 0, 0.8],
|
||||
[0, 1, 0, 0],
|
||||
[0, 0, 1, 0.5],
|
||||
[0, 0, 0, 1]])
|
||||
|
||||
debug_pose = np.asarray([
|
||||
[
|
||||
0.992167055606842,
|
||||
-0.10552699863910675,
|
||||
0.06684812903404236,
|
||||
-0.07388903945684433
|
||||
],
|
||||
[
|
||||
0.10134342312812805,
|
||||
0.3670985698699951,
|
||||
-0.9246448874473572,
|
||||
-0.41582486033439636
|
||||
],
|
||||
[
|
||||
0.07303514331579208,
|
||||
0.9241767525672913,
|
||||
0.37491756677627563,
|
||||
1.0754833221435547
|
||||
],
|
||||
[
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
1.0
|
||||
]])
|
||||
|
||||
def __init__(self, config_path):
|
||||
super().__init__(config_path)
|
||||
self.config_path = config_path
|
||||
self.robot_id = None
|
||||
self.turntable_id = None
|
||||
self.target_id = None
|
||||
camera_config = ConfigManager.get("simulation", "camera")
|
||||
self.camera_params = {
|
||||
'width': camera_config["width"],
|
||||
'height': camera_config["height"],
|
||||
'fov': camera_config["fov"],
|
||||
'near': camera_config["near"],
|
||||
'far': camera_config["far"]
|
||||
}
|
||||
self.sim_config = ConfigManager.get("simulation")
|
||||
|
||||
def run(self, cmd):
|
||||
print(f"Simulator run {cmd}")
|
||||
if cmd == self.CREATE:
|
||||
self.prepare_env()
|
||||
self.create_env()
|
||||
elif cmd == self.SIMULATE:
|
||||
self.simulate()
|
||||
|
||||
def simulate(self):
|
||||
self.reset()
|
||||
self.init()
|
||||
debug_pose = Simulator.debug_pose
|
||||
offset = np.asarray([[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, 1]])
|
||||
debug_pose = debug_pose @ offset
|
||||
for _ in range(10000):
|
||||
debug_pose_2 = np.eye(4)
|
||||
debug_pose_2[0,0] = -1
|
||||
debug_pose_2[2,3] = 0.5
|
||||
self.move_to(debug_pose_2)
|
||||
# Wait for the system to stabilize
|
||||
for _ in range(20): # Simulate 20 steps to ensure stability
|
||||
p.stepSimulation()
|
||||
time.sleep(0.001) # Add small delay to ensure physics simulation
|
||||
|
||||
depth_img, segm_img = self.take_picture()
|
||||
p.stepSimulation()
|
||||
|
||||
def prepare_env(self):
|
||||
p.connect(p.GUI)
|
||||
p.setAdditionalSearchPath(pybullet_data.getDataPath())
|
||||
p.setGravity(0, 0, 0)
|
||||
p.loadURDF("plane.urdf")
|
||||
|
||||
def create_env(self):
|
||||
print(self.config)
|
||||
robot_config = self.sim_config["robot"]
|
||||
turntable_config = self.sim_config["turntable"]
|
||||
target_config = self.sim_config["target"]
|
||||
|
||||
self.robot_id = p.loadURDF(
|
||||
robot_config["urdf_path"],
|
||||
robot_config["initial_position"],
|
||||
p.getQuaternionFromEuler(robot_config["initial_orientation"]),
|
||||
useFixedBase=True
|
||||
)
|
||||
|
||||
p.changeDynamics(
|
||||
self.robot_id,
|
||||
linkIndex=-1,
|
||||
mass=0,
|
||||
linearDamping=0,
|
||||
angularDamping=0,
|
||||
lateralFriction=0
|
||||
)
|
||||
|
||||
visual_shape_id = p.createVisualShape(
|
||||
shapeType=p.GEOM_CYLINDER,
|
||||
radius=turntable_config["radius"],
|
||||
length=turntable_config["height"],
|
||||
rgbaColor=[0.7, 0.7, 0.7, 1]
|
||||
)
|
||||
collision_shape_id = p.createCollisionShape(
|
||||
shapeType=p.GEOM_CYLINDER,
|
||||
radius=turntable_config["radius"],
|
||||
height=turntable_config["height"]
|
||||
)
|
||||
self.turntable_id = p.createMultiBody(
|
||||
baseMass=0, # 设置质量为0使其成为静态物体
|
||||
baseCollisionShapeIndex=collision_shape_id,
|
||||
baseVisualShapeIndex=visual_shape_id,
|
||||
basePosition=turntable_config["center_position"]
|
||||
)
|
||||
|
||||
# 禁用转盘的动力学
|
||||
p.changeDynamics(
|
||||
self.turntable_id,
|
||||
-1, # -1 表示基座
|
||||
mass=0,
|
||||
linearDamping=0,
|
||||
angularDamping=0,
|
||||
lateralFriction=0
|
||||
)
|
||||
|
||||
|
||||
obj_path = os.path.join(target_config["obj_dir"], target_config["obj_name"], "mesh.obj")
|
||||
|
||||
assert os.path.exists(obj_path), f"Error: File not found at {obj_path}"
|
||||
|
||||
# 加载OBJ文件作为目标物体
|
||||
target_visual = p.createVisualShape(
|
||||
shapeType=p.GEOM_MESH,
|
||||
fileName=obj_path,
|
||||
rgbaColor=target_config["rgba_color"],
|
||||
specularColor=[0.4, 0.4, 0.4],
|
||||
meshScale=[target_config["scale"]] * 3
|
||||
)
|
||||
|
||||
# 使用简化的碰撞形状
|
||||
target_collision = p.createCollisionShape(
|
||||
shapeType=p.GEOM_MESH,
|
||||
fileName=obj_path,
|
||||
meshScale=[target_config["scale"]] * 3,
|
||||
flags=p.GEOM_FORCE_CONCAVE_TRIMESH # 尝试使用凹面网格
|
||||
)
|
||||
|
||||
|
||||
# 创建目标物体
|
||||
self.target_id = p.createMultiBody(
|
||||
baseMass=0, # 设置质量为0使其成为静态物体
|
||||
baseCollisionShapeIndex=target_collision,
|
||||
baseVisualShapeIndex=target_visual,
|
||||
basePosition=[
|
||||
turntable_config["center_position"][0],
|
||||
turntable_config["center_position"][1],
|
||||
turntable_config["height"] + turntable_config["center_position"][2]
|
||||
],
|
||||
baseOrientation=p.getQuaternionFromEuler([np.pi/2, 0, 0])
|
||||
)
|
||||
|
||||
# 禁用目标物体的动力学
|
||||
p.changeDynamics(
|
||||
self.target_id,
|
||||
-1, # -1 表示基座
|
||||
mass=0,
|
||||
linearDamping=0,
|
||||
angularDamping=0,
|
||||
lateralFriction=0
|
||||
)
|
||||
|
||||
# 创建固定约束,将目标物体固定在转盘上
|
||||
cid = p.createConstraint(
|
||||
parentBodyUniqueId=self.turntable_id,
|
||||
parentLinkIndex=-1, # -1 表示基座
|
||||
childBodyUniqueId=self.target_id,
|
||||
childLinkIndex=-1, # -1 表示基座
|
||||
jointType=p.JOINT_FIXED,
|
||||
jointAxis=[0, 0, 0],
|
||||
parentFramePosition=[0, 0, 0], # 相对于转盘中心的偏移
|
||||
childFramePosition=[0, 0, 0] # 相对于物体中心的偏移
|
||||
)
|
||||
|
||||
# 设置约束参数
|
||||
p.changeConstraint(cid, maxForce=100) # 设置最大力,确保约束稳定
|
||||
|
||||
def move_robot_to_pose(self, target_matrix):
|
||||
# 从4x4齐次矩阵中提取位置(前3个元素)
|
||||
position = target_matrix[:3, 3]
|
||||
|
||||
# 从3x3旋转矩阵中提取方向四元数
|
||||
R = target_matrix[:3, :3]
|
||||
|
||||
# 计算四元数的w分量
|
||||
w = np.sqrt(max(0, 1 + R[0,0] + R[1,1] + R[2,2])) / 2
|
||||
|
||||
# 避免除零错误,同时处理不同情况
|
||||
if abs(w) < 1e-8:
|
||||
# 当w接近0时的特殊情况
|
||||
x = np.sqrt(max(0, 1 + R[0,0] - R[1,1] - R[2,2])) / 2
|
||||
y = np.sqrt(max(0, 1 - R[0,0] + R[1,1] - R[2,2])) / 2
|
||||
z = np.sqrt(max(0, 1 - R[0,0] - R[1,1] + R[2,2])) / 2
|
||||
|
||||
# 确定符号
|
||||
if R[2,1] - R[1,2] < 0: x = -x
|
||||
if R[0,2] - R[2,0] < 0: y = -y
|
||||
if R[1,0] - R[0,1] < 0: z = -z
|
||||
else:
|
||||
# 正常情况
|
||||
x = (R[2,1] - R[1,2]) / (4 * w)
|
||||
y = (R[0,2] - R[2,0]) / (4 * w)
|
||||
z = (R[1,0] - R[0,1]) / (4 * w)
|
||||
|
||||
orientation = (x, y, z, w)
|
||||
|
||||
# 设置IK求解参数
|
||||
num_joints = p.getNumJoints(self.robot_id)
|
||||
lower_limits = []
|
||||
upper_limits = []
|
||||
joint_ranges = []
|
||||
rest_poses = []
|
||||
|
||||
# 获取关节限制和默认姿态
|
||||
for i in range(num_joints):
|
||||
joint_info = p.getJointInfo(self.robot_id, i)
|
||||
lower_limits.append(joint_info[8])
|
||||
upper_limits.append(joint_info[9])
|
||||
joint_ranges.append(joint_info[9] - joint_info[8])
|
||||
rest_poses.append(0) # 可以设置一个较好的默认姿态
|
||||
|
||||
# 使用增强版IK求解器,考虑碰撞避障
|
||||
joint_poses = p.calculateInverseKinematics(
|
||||
self.robot_id,
|
||||
7, # end effector link index
|
||||
position,
|
||||
orientation,
|
||||
lowerLimits=lower_limits,
|
||||
upperLimits=upper_limits,
|
||||
jointRanges=joint_ranges,
|
||||
restPoses=rest_poses,
|
||||
maxNumIterations=100,
|
||||
residualThreshold=1e-4
|
||||
)
|
||||
|
||||
# 分步移动到目标位置,同时检查碰撞
|
||||
current_poses = [p.getJointState(self.robot_id, i)[0] for i in range(7)]
|
||||
steps = 50 # 分50步移动
|
||||
|
||||
for step in range(steps):
|
||||
# 线性插值计算中间位置
|
||||
intermediate_poses = []
|
||||
for current, target in zip(current_poses, joint_poses):
|
||||
t = (step + 1) / steps
|
||||
intermediate = current + (target - current) * t
|
||||
intermediate_poses.append(intermediate)
|
||||
|
||||
# 设置关节位置
|
||||
for i in range(7):
|
||||
p.setJointMotorControl2(
|
||||
self.robot_id,
|
||||
i,
|
||||
p.POSITION_CONTROL,
|
||||
intermediate_poses[i]
|
||||
)
|
||||
|
||||
# 执行一步模拟
|
||||
p.stepSimulation()
|
||||
|
||||
# 检查碰撞
|
||||
if p.getContactPoints(self.robot_id, self.turntable_id):
|
||||
print("检测到潜在碰撞,停止移动")
|
||||
return False
|
||||
|
||||
return True
|
||||
|
||||
|
||||
def rotate_turntable(self, angle_degrees):
|
||||
# 旋转转盘
|
||||
current_pos, current_orn = p.getBasePositionAndOrientation(self.turntable_id)
|
||||
current_orn = p.getEulerFromQuaternion(current_orn)
|
||||
|
||||
new_orn = list(current_orn)
|
||||
new_orn[2] += np.radians(angle_degrees)
|
||||
new_orn_quat = p.getQuaternionFromEuler(new_orn)
|
||||
|
||||
p.resetBasePositionAndOrientation(
|
||||
self.turntable_id,
|
||||
current_pos,
|
||||
new_orn_quat
|
||||
)
|
||||
|
||||
# 同时旋转目标物体
|
||||
target_pos, target_orn = p.getBasePositionAndOrientation(self.target_id)
|
||||
target_orn = p.getEulerFromQuaternion(target_orn)
|
||||
|
||||
# 更新目标物体的方向
|
||||
target_orn = list(target_orn)
|
||||
target_orn[2] += np.radians(angle_degrees)
|
||||
target_orn_quat = p.getQuaternionFromEuler(target_orn)
|
||||
|
||||
# 计算物体新的位置(绕转盘中心旋转)
|
||||
turntable_center = current_pos
|
||||
relative_pos = np.array(target_pos) - np.array(turntable_center)
|
||||
|
||||
# 创建旋转矩阵
|
||||
theta = np.radians(angle_degrees)
|
||||
rotation_matrix = np.array([
|
||||
[np.cos(theta), -np.sin(theta), 0],
|
||||
[np.sin(theta), np.cos(theta), 0],
|
||||
[0, 0, 1]
|
||||
])
|
||||
|
||||
# 计算新的相对位置
|
||||
new_relative_pos = rotation_matrix.dot(relative_pos)
|
||||
new_pos = np.array(turntable_center) + new_relative_pos
|
||||
|
||||
# 更新目标物体的位置和方向
|
||||
p.resetBasePositionAndOrientation(
|
||||
self.target_id,
|
||||
new_pos,
|
||||
target_orn_quat
|
||||
)
|
||||
|
||||
def get_camera_pose(self):
|
||||
end_effector_link = 7 # Franka末端执行器的链接索引
|
||||
state = p.getLinkState(self.robot_id, end_effector_link)
|
||||
ee_pos = state[0] # 世界坐标系中的位置
|
||||
camera_orn = state[1] # 世界坐标系中的朝向(四元数)
|
||||
|
||||
# 计算相机的视角矩阵
|
||||
rot_matrix = p.getMatrixFromQuaternion(camera_orn)
|
||||
rot_matrix = np.array(rot_matrix).reshape(3, 3)
|
||||
|
||||
# 相机的前向向量(与末端执行器的x轴对齐)
|
||||
camera_forward = rot_matrix.dot(np.array([0, 0, 1])) # x轴方向
|
||||
|
||||
# 将相机位置向前偏移0.1米
|
||||
offset = 0.12
|
||||
camera_pos = np.array(ee_pos) + camera_forward * offset
|
||||
camera_target = camera_pos + camera_forward
|
||||
|
||||
# 相机的上向量(与末端执行器的z轴对齐)
|
||||
camera_up = rot_matrix.dot(np.array([1, 0, 0])) # z轴方向
|
||||
|
||||
return camera_pos, camera_target, camera_up
|
||||
|
||||
def take_picture(self):
|
||||
camera_pos, camera_target, camera_up = self.get_camera_pose()
|
||||
|
||||
view_matrix = p.computeViewMatrix(
|
||||
cameraEyePosition=camera_pos,
|
||||
cameraTargetPosition=camera_target,
|
||||
cameraUpVector=camera_up
|
||||
)
|
||||
|
||||
projection_matrix = p.computeProjectionMatrixFOV(
|
||||
fov=self.camera_params['fov'],
|
||||
aspect=self.camera_params['width'] / self.camera_params['height'],
|
||||
nearVal=self.camera_params['near'],
|
||||
farVal=self.camera_params['far']
|
||||
)
|
||||
|
||||
_,_,rgb_img,depth_img,segm_img = p.getCameraImage(
|
||||
width=self.camera_params['width'],
|
||||
height=self.camera_params['height'],
|
||||
viewMatrix=view_matrix,
|
||||
projectionMatrix=projection_matrix,
|
||||
renderer=p.ER_BULLET_HARDWARE_OPENGL
|
||||
)
|
||||
|
||||
depth_img = self.camera_params['far'] * self.camera_params['near'] / (
|
||||
self.camera_params['far'] - (self.camera_params['far'] - self.camera_params['near']) * depth_img)
|
||||
|
||||
depth_img = np.array(depth_img)
|
||||
segm_img = np.array(segm_img)
|
||||
|
||||
return depth_img, segm_img
|
||||
|
||||
def reset(self):
|
||||
target_pos = [0.5, 0, 1]
|
||||
target_orn = p.getQuaternionFromEuler([np.pi, 0, 0])
|
||||
target_matrix = np.eye(4)
|
||||
target_matrix[:3, 3] = target_pos
|
||||
target_matrix[:3, :3] = np.asarray(p.getMatrixFromQuaternion(target_orn)).reshape(3,3)
|
||||
self.move_robot_to_pose(target_matrix)
|
||||
|
||||
def init(self):
|
||||
self.move_to(Simulator.INIT_GRIPPER_POSE)
|
||||
|
||||
def move_to(self, pose: np.ndarray):
|
||||
#delta_degree, min_new_cam_to_world = ControlUtil.solve_display_table_rot_and_cam_to_world(pose)
|
||||
#print(delta_degree)
|
||||
min_new_cam_to_pybullet_world = Simulator.TURNTABLE_WORLD_TO_PYBULLET_WORLD@pose
|
||||
self.move_to_cam_pose(min_new_cam_to_pybullet_world)
|
||||
#self.rotate_turntable(delta_degree)
|
||||
|
||||
|
||||
|
||||
def __del__(self):
|
||||
p.disconnect()
|
||||
|
||||
def create_experiment(self, backup_name=None):
|
||||
return super().create_experiment(backup_name)
|
||||
|
||||
def load_experiment(self, backup_name=None):
|
||||
super().load_experiment(backup_name)
|
||||
|
||||
def move_to_cam_pose(self, camera_pose: np.ndarray):
|
||||
# 从相机位姿矩阵中提取位置和旋转矩阵
|
||||
camera_pos = camera_pose[:3, 3]
|
||||
R_camera = camera_pose[:3, :3]
|
||||
|
||||
# 相机的朝向向量(z轴)
|
||||
forward = R_camera[:, 2]
|
||||
|
||||
# 由于相机与末端执行器之间有固定偏移,需要计算末端执行器位置
|
||||
# 相机在末端执行器前方0.12米
|
||||
gripper_pos = camera_pos - forward * 0.12
|
||||
|
||||
# 末端执行器的旋转矩阵需要考虑与相机坐标系的固定变换
|
||||
# 假设相机的forward对应gripper的z轴,相机的x轴对应gripper的x轴
|
||||
R_gripper = R_camera
|
||||
|
||||
# 构建4x4齐次变换矩阵
|
||||
gripper_pose = np.eye(4)
|
||||
gripper_pose[:3, :3] = R_gripper
|
||||
gripper_pose[:3, 3] = gripper_pos
|
||||
print(gripper_pose)
|
||||
# 移动机器人到计算出的位姿
|
||||
return self.move_robot_to_pose(gripper_pose)
|
59
utils/control.py
Normal file
59
utils/control.py
Normal file
@@ -0,0 +1,59 @@
|
||||
import numpy as np
|
||||
from scipy.spatial.transform import Rotation as R
|
||||
import time
|
||||
|
||||
class ControlUtil:
|
||||
|
||||
curr_rotation = 0
|
||||
|
||||
@staticmethod
|
||||
def check_limit(new_cam_to_world):
|
||||
if new_cam_to_world[0,3] < 0 or new_cam_to_world[1,3] > 0:
|
||||
# if new_cam_to_world[0,3] > 0:
|
||||
return False
|
||||
x = abs(new_cam_to_world[0,3])
|
||||
y = abs(new_cam_to_world[1,3])
|
||||
tan_y_x = y/x
|
||||
min_angle = 0 / 180 * np.pi
|
||||
max_angle = 90 / 180 * np.pi
|
||||
if tan_y_x < np.tan(min_angle) or tan_y_x > np.tan(max_angle):
|
||||
return False
|
||||
|
||||
return True
|
||||
|
||||
@staticmethod
|
||||
def solve_display_table_rot_and_cam_to_world(cam_to_world: np.ndarray) -> tuple:
|
||||
if ControlUtil.check_limit(cam_to_world):
|
||||
return 0, cam_to_world
|
||||
else:
|
||||
min_display_table_rot = 180
|
||||
min_new_cam_to_world = None
|
||||
for display_table_rot in np.linspace(0.1,360, 1800):
|
||||
new_world_to_world = ControlUtil.get_z_axis_rot_mat(display_table_rot)
|
||||
new_cam_to_new_world = cam_to_world
|
||||
new_cam_to_world = new_world_to_world @ new_cam_to_new_world
|
||||
|
||||
if ControlUtil.check_limit(new_cam_to_world):
|
||||
if display_table_rot < min_display_table_rot:
|
||||
min_display_table_rot, min_new_cam_to_world = display_table_rot, new_cam_to_world
|
||||
if abs(display_table_rot - 360) < min_display_table_rot:
|
||||
min_display_table_rot, min_new_cam_to_world = display_table_rot - 360, new_cam_to_world
|
||||
|
||||
if min_new_cam_to_world is None:
|
||||
raise ValueError("No valid display table rotation found")
|
||||
|
||||
delta_degree = min_display_table_rot - ControlUtil.curr_rotation
|
||||
ControlUtil.curr_rotation = min_display_table_rot
|
||||
return delta_degree, min_new_cam_to_world
|
||||
|
||||
@staticmethod
|
||||
def get_z_axis_rot_mat(degree):
|
||||
radian = np.radians(degree)
|
||||
return np.array([
|
||||
[np.cos(radian), -np.sin(radian), 0, 0],
|
||||
[np.sin(radian), np.cos(radian), 0, 0],
|
||||
[0, 0, 1, 0],
|
||||
[0, 0, 0, 1]
|
||||
])
|
||||
|
||||
|
@@ -70,7 +70,7 @@ class RenderUtil:
|
||||
|
||||
@staticmethod
|
||||
def render_pts(cam_pose, scene_path, script_path, scan_points, voxel_threshold=0.005, filter_degree=75, nO_to_nL_pose=None, require_full_scene=False):
|
||||
|
||||
import ipdb; ipdb.set_trace()
|
||||
nO_to_world_pose = DataLoadUtil.get_real_cam_O_from_cam_L(cam_pose, nO_to_nL_pose, scene_path=scene_path)
|
||||
|
||||
|
||||
@@ -88,6 +88,7 @@ class RenderUtil:
|
||||
'/home/hofee/blender-4.0.2-linux-x64/blender', '-b', '-P', script_path, '--', temp_dir
|
||||
], capture_output=True, text=True)
|
||||
#print(result)
|
||||
#import ipdb; ipdb.set_trace()
|
||||
path = os.path.join(temp_dir, "tmp")
|
||||
cam_info = DataLoadUtil.load_cam_info(path, binocular=True)
|
||||
depth_L, depth_R = DataLoadUtil.load_depth(
|
||||
|
16
utils/vis.py
16
utils/vis.py
@@ -7,6 +7,7 @@ import trimesh
|
||||
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
|
||||
from utils.data_load import DataLoadUtil
|
||||
from utils.pts import PtsUtil
|
||||
from utils.pose import PoseUtil
|
||||
|
||||
class visualizeUtil:
|
||||
|
||||
@@ -34,6 +35,21 @@ class visualizeUtil:
|
||||
np.savetxt(os.path.join(output_dir, "all_cam_pos.txt"), all_cam_pos)
|
||||
np.savetxt(os.path.join(output_dir, "all_cam_axis.txt"), all_cam_axis)
|
||||
|
||||
@staticmethod
|
||||
def get_cam_pose_and_cam_axis(cam_pose, is_6d_pose):
|
||||
if is_6d_pose:
|
||||
matrix_cam_pose = np.eye(4)
|
||||
matrix_cam_pose[:3,:3] = PoseUtil.rotation_6d_to_matrix_numpy(cam_pose[:6])
|
||||
matrix_cam_pose[:3, 3] = cam_pose[6:]
|
||||
else:
|
||||
matrix_cam_pose = cam_pose
|
||||
cam_pos = matrix_cam_pose[:3, 3]
|
||||
cam_axis = matrix_cam_pose[:3, 2]
|
||||
num_samples = 10
|
||||
sample_points = [cam_pos + 0.02*t * cam_axis for t in range(num_samples)]
|
||||
sample_points = np.array(sample_points)
|
||||
return cam_pos, sample_points
|
||||
|
||||
@staticmethod
|
||||
def save_all_combined_pts(root, scene, output_dir):
|
||||
length = DataLoadUtil.get_scene_seq_length(root, scene)
|
||||
|
Reference in New Issue
Block a user