8 Commits

Author SHA1 Message Date
1862dce077 upd 2024-10-29 17:09:36 +00:00
420e9c97bd update 2024-10-29 16:59:03 +00:00
b3a7650d3e local_only: debug 2024-10-29 16:54:42 +00:00
8d7299b482 local_only: dataset 2024-10-29 12:40:06 +00:00
234c8bccc3 local_only: pipeline 2024-10-29 12:39:06 +00:00
b30e9d535a global_and_local: config 2024-10-29 12:34:37 +00:00
d8c95b6f0c global_and_local: pipeline 2024-10-29 12:32:42 +00:00
ab31ba46a9 global_and_local: config 2024-10-29 12:29:04 +00:00
3 changed files with 33 additions and 37 deletions

View File

@@ -3,11 +3,11 @@ runner:
general:
seed: 0
device: cuda
cuda_visible_devices: "0"
cuda_visible_devices: "1"
parallel: False
experiment:
name: train_ab_global_only
name: overfit_ab_local_only
root_dir: "experiments"
use_checkpoint: False
epoch: -1 # -1 stands for last epoch
@@ -25,53 +25,53 @@ runner:
test:
frequency: 3 # test frequency
dataset_list:
- OmniObject3d_test
#- OmniObject3d_test
- OmniObject3d_val
pipeline: nbv_reconstruction_pipeline
dataset:
OmniObject3d_train:
root_dir: "/data/hofee/data/new_full_data"
root_dir: "/data/hofee/nbv_rec_part2_preprocessed"
model_dir: "../data/scaled_object_meshes"
source: nbv_reconstruction_dataset
split_file: "/data/hofee/data/new_full_data_list/OmniObject3d_train.txt"
split_file: "/data/hofee/data/sample.txt"
type: train
cache: True
ratio: 1
batch_size: 80
num_workers: 128
batch_size: 32
num_workers: 16
pts_num: 8192
load_from_preprocess: True
OmniObject3d_test:
root_dir: "/data/hofee/data/new_full_data"
root_dir: "/data/hofee/nbv_rec_part2_preprocessed"
model_dir: "../data/scaled_object_meshes"
source: nbv_reconstruction_dataset
split_file: "/data/hofee/data/new_full_data_list/OmniObject3d_test.txt"
split_file: "/data/hofee/data/sample.txt"
type: test
cache: True
filter_degree: 75
eval_list:
- pose_diff
ratio: 0.1
batch_size: 80
ratio: 1
batch_size: 32
num_workers: 12
pts_num: 8192
load_from_preprocess: True
OmniObject3d_val:
root_dir: "/data/hofee/data/new_full_data"
root_dir: "/data/hofee/nbv_rec_part2_preprocessed"
model_dir: "../data/scaled_object_meshes"
source: nbv_reconstruction_dataset
split_file: "/data/hofee/data/new_full_data_list/OmniObject3d_train.txt"
split_file: "/data/hofee/data/sample.txt"
type: test
cache: True
filter_degree: 75
eval_list:
- pose_diff
ratio: 0.01
batch_size: 80
ratio: 1
batch_size: 32
num_workers: 12
pts_num: 8192
load_from_preprocess: True
@@ -92,16 +92,16 @@ module:
pointnet_encoder:
in_dim: 3
out_dim: 1024
out_dim: 512
global_feat: True
feature_transform: False
transformer_seq_encoder:
embed_dim: 256
embed_dim: 768
num_heads: 4
ffn_dim: 256
num_layers: 3
output_dim: 1024
output_dim: 2048
gf_view_finder:
t_feat_dim: 128

View File

@@ -165,13 +165,8 @@ class NBVReconstructionDataset(BaseDataset):
[best_to_world_6d, best_to_world_trans], axis=0
)
combined_scanned_views_pts = np.concatenate(scanned_views_pts, axis=0)
voxel_downsampled_combined_scanned_pts_np = PtsUtil.voxel_downsample_point_cloud(combined_scanned_views_pts, 0.002)
random_downsampled_combined_scanned_pts_np = PtsUtil.random_downsample_point_cloud(voxel_downsampled_combined_scanned_pts_np, self.pts_num)
data_item = {
"scanned_pts": np.asarray(scanned_views_pts, dtype=np.float32), # Ndarray(S x Nv x 3)
"combined_scanned_pts": np.asarray(random_downsampled_combined_scanned_pts_np, dtype=np.float32), # Ndarray(N x 3)
"scanned_coverage_rate": scanned_coverages_rate, # List(S): Float, range(0, 1)
"scanned_n_to_world_pose_9d": np.asarray(scanned_n_to_world_pose, dtype=np.float32), # Ndarray(S x 9)
"best_coverage_rate": nbv_coverage_rate, # Float, range(0, 1)
@@ -203,15 +198,13 @@ class NBVReconstructionDataset(BaseDataset):
collate_data["best_to_world_pose_9d"] = torch.stack(
[torch.tensor(item["best_to_world_pose_9d"]) for item in batch]
)
collate_data["combined_scanned_pts"] = torch.stack(
[torch.tensor(item["combined_scanned_pts"]) for item in batch]
)
for key in batch[0].keys():
if key not in [
"scanned_pts",
"scanned_pts_mask",
"scanned_n_to_world_pose_9d",
"best_to_world_pose_9d",
"combined_scanned_pts",
]:
collate_data[key] = [item[key] for item in batch]
return collate_data

View File

@@ -29,6 +29,7 @@ class NBVReconstructionPipeline(nn.Module):
self.eps = float(self.config["eps"])
self.enable_global_scanned_feat = self.config["global_scanned_feat"]
def forward(self, data):
mode = data["mode"]
@@ -54,7 +55,10 @@ class NBVReconstructionPipeline(nn.Module):
return perturbed_x, random_t, target_score, std
def forward_train(self, data):
start_time = time.time()
main_feat = self.get_main_feat(data)
end_time = time.time()
print("get_main_feat time: ", end_time - start_time)
""" get std """
best_to_world_pose_9d_batch = data["best_to_world_pose_9d"]
perturbed_x, random_t, target_score, std = self.pertube_data(
@@ -88,24 +92,23 @@ class NBVReconstructionPipeline(nn.Module):
scanned_n_to_world_pose_9d_batch = data[
"scanned_n_to_world_pose_9d"
] # List(B): Tensor(S x 9)
scanned_pts_batch = data[
"scanned_pts"
]
device = next(self.parameters()).device
embedding_list_batch = []
combined_scanned_pts_batch = data["combined_scanned_pts"] # Tensor(B x N x 3)
global_scanned_feat = self.pts_encoder.encode_points(
combined_scanned_pts_batch, require_per_point_feat=False
) # global_scanned_feat: Tensor(B x Dg)
for scanned_n_to_world_pose_9d in scanned_n_to_world_pose_9d_batch:
for scanned_n_to_world_pose_9d, scanned_pts in zip(scanned_n_to_world_pose_9d_batch, scanned_pts_batch):
scanned_n_to_world_pose_9d = scanned_n_to_world_pose_9d.to(device) # Tensor(S x 9)
scanned_pts = scanned_pts.to(device) # Tensor(S x N x 3)
pose_feat_seq = self.pose_encoder.encode_pose(scanned_n_to_world_pose_9d) # Tensor(S x Dp)
seq_embedding = pose_feat_seq
embedding_list_batch.append(seq_embedding) # List(B): Tensor(S x (Dp))
pts_feat_seq = self.pts_encoder.encode_points(scanned_pts, require_per_point_feat=False) # Tensor(S x Dl)
seq_embedding = torch.cat([pose_feat_seq, pts_feat_seq], dim=-1) # Tensor(S x (Dp+Dl))
embedding_list_batch.append(seq_embedding) # List(B): Tensor(S x (Dp+Dl))
seq_feat = self.seq_encoder.encode_sequence(embedding_list_batch) # Tensor(B x Ds)
main_feat = torch.cat([seq_feat, global_scanned_feat], dim=-1) # Tensor(B x (Ds+Dg))
main_feat = seq_feat # Tensor(B x Ds)
if torch.isnan(main_feat).any():
Log.error("nan in main_feat", True)