Compare commits
6 Commits
8a05b7883d
...
ab_global_
Author | SHA1 | Date | |
---|---|---|---|
26c3cb4c7a | |||
830d51fc80 | |||
e81d6c9bd1 | |||
b30e9d535a | |||
d8c95b6f0c | |||
ab31ba46a9 |
@@ -7,7 +7,7 @@ runner:
|
||||
parallel: False
|
||||
|
||||
experiment:
|
||||
name: train_ab_global_only
|
||||
name: overfit_ab_global_and_local
|
||||
root_dir: "experiments"
|
||||
use_checkpoint: False
|
||||
epoch: -1 # -1 stands for last epoch
|
||||
@@ -25,53 +25,53 @@ runner:
|
||||
test:
|
||||
frequency: 3 # test frequency
|
||||
dataset_list:
|
||||
- OmniObject3d_test
|
||||
#- OmniObject3d_test
|
||||
- OmniObject3d_val
|
||||
|
||||
pipeline: nbv_reconstruction_pipeline
|
||||
|
||||
dataset:
|
||||
OmniObject3d_train:
|
||||
root_dir: "/data/hofee/data/new_full_data"
|
||||
root_dir: "/data/hofee/nbv_rec_part2_preprocessed"
|
||||
model_dir: "../data/scaled_object_meshes"
|
||||
source: nbv_reconstruction_dataset
|
||||
split_file: "/data/hofee/data/new_full_data_list/OmniObject3d_train.txt"
|
||||
split_file: "/data/hofee/data/sample.txt"
|
||||
type: train
|
||||
cache: True
|
||||
ratio: 1
|
||||
batch_size: 80
|
||||
num_workers: 128
|
||||
batch_size: 32
|
||||
num_workers: 16
|
||||
pts_num: 8192
|
||||
load_from_preprocess: True
|
||||
|
||||
OmniObject3d_test:
|
||||
root_dir: "/data/hofee/data/new_full_data"
|
||||
root_dir: "/data/hofee/nbv_rec_part2_preprocessed"
|
||||
model_dir: "../data/scaled_object_meshes"
|
||||
source: nbv_reconstruction_dataset
|
||||
split_file: "/data/hofee/data/new_full_data_list/OmniObject3d_test.txt"
|
||||
split_file: "/data/hofee/data/sample.txt"
|
||||
type: test
|
||||
cache: True
|
||||
filter_degree: 75
|
||||
eval_list:
|
||||
- pose_diff
|
||||
ratio: 0.1
|
||||
batch_size: 80
|
||||
ratio: 1
|
||||
batch_size: 32
|
||||
num_workers: 12
|
||||
pts_num: 8192
|
||||
load_from_preprocess: True
|
||||
|
||||
OmniObject3d_val:
|
||||
root_dir: "/data/hofee/data/new_full_data"
|
||||
root_dir: "/data/hofee/nbv_rec_part2_preprocessed"
|
||||
model_dir: "../data/scaled_object_meshes"
|
||||
source: nbv_reconstruction_dataset
|
||||
split_file: "/data/hofee/data/new_full_data_list/OmniObject3d_train.txt"
|
||||
split_file: "/data/hofee/data/sample.txt"
|
||||
type: test
|
||||
cache: True
|
||||
filter_degree: 75
|
||||
eval_list:
|
||||
- pose_diff
|
||||
ratio: 0.01
|
||||
batch_size: 80
|
||||
ratio: 1
|
||||
batch_size: 32
|
||||
num_workers: 12
|
||||
pts_num: 8192
|
||||
load_from_preprocess: True
|
||||
@@ -92,21 +92,21 @@ module:
|
||||
|
||||
pointnet_encoder:
|
||||
in_dim: 3
|
||||
out_dim: 1024
|
||||
out_dim: 512
|
||||
global_feat: True
|
||||
feature_transform: False
|
||||
|
||||
transformer_seq_encoder:
|
||||
embed_dim: 256
|
||||
embed_dim: 768
|
||||
num_heads: 4
|
||||
ffn_dim: 256
|
||||
num_layers: 3
|
||||
output_dim: 1024
|
||||
output_dim: 2048
|
||||
|
||||
gf_view_finder:
|
||||
t_feat_dim: 128
|
||||
pose_feat_dim: 256
|
||||
main_feat_dim: 2048
|
||||
main_feat_dim: 2560
|
||||
regression_head: Rx_Ry_and_T
|
||||
pose_mode: rot_matrix
|
||||
per_point_feature: False
|
||||
|
@@ -206,9 +206,11 @@ class NBVReconstructionDataset(BaseDataset):
|
||||
collate_data["combined_scanned_pts"] = torch.stack(
|
||||
[torch.tensor(item["combined_scanned_pts"]) for item in batch]
|
||||
)
|
||||
|
||||
for key in batch[0].keys():
|
||||
if key not in [
|
||||
"scanned_pts",
|
||||
"scanned_pts_mask",
|
||||
"scanned_n_to_world_pose_9d",
|
||||
"best_to_world_pose_9d",
|
||||
"combined_scanned_pts",
|
||||
|
@@ -29,6 +29,7 @@ class NBVReconstructionPipeline(nn.Module):
|
||||
|
||||
|
||||
self.eps = float(self.config["eps"])
|
||||
self.enable_global_scanned_feat = self.config["global_scanned_feat"]
|
||||
|
||||
def forward(self, data):
|
||||
mode = data["mode"]
|
||||
@@ -54,7 +55,10 @@ class NBVReconstructionPipeline(nn.Module):
|
||||
return perturbed_x, random_t, target_score, std
|
||||
|
||||
def forward_train(self, data):
|
||||
start_time = time.time()
|
||||
main_feat = self.get_main_feat(data)
|
||||
end_time = time.time()
|
||||
print("get_main_feat time: ", end_time - start_time)
|
||||
""" get std """
|
||||
best_to_world_pose_9d_batch = data["best_to_world_pose_9d"]
|
||||
perturbed_x, random_t, target_score, std = self.pertube_data(
|
||||
@@ -88,7 +92,9 @@ class NBVReconstructionPipeline(nn.Module):
|
||||
scanned_n_to_world_pose_9d_batch = data[
|
||||
"scanned_n_to_world_pose_9d"
|
||||
] # List(B): Tensor(S x 9)
|
||||
|
||||
scanned_pts_batch = data[
|
||||
"scanned_pts"
|
||||
]
|
||||
device = next(self.parameters()).device
|
||||
|
||||
embedding_list_batch = []
|
||||
@@ -98,11 +104,13 @@ class NBVReconstructionPipeline(nn.Module):
|
||||
combined_scanned_pts_batch, require_per_point_feat=False
|
||||
) # global_scanned_feat: Tensor(B x Dg)
|
||||
|
||||
for scanned_n_to_world_pose_9d in scanned_n_to_world_pose_9d_batch:
|
||||
for scanned_n_to_world_pose_9d, scanned_pts in zip(scanned_n_to_world_pose_9d_batch, scanned_pts_batch):
|
||||
scanned_n_to_world_pose_9d = scanned_n_to_world_pose_9d.to(device) # Tensor(S x 9)
|
||||
scanned_pts = scanned_pts.to(device) # Tensor(S x N x 3)
|
||||
pose_feat_seq = self.pose_encoder.encode_pose(scanned_n_to_world_pose_9d) # Tensor(S x Dp)
|
||||
seq_embedding = pose_feat_seq
|
||||
embedding_list_batch.append(seq_embedding) # List(B): Tensor(S x (Dp))
|
||||
pts_feat_seq = self.pts_encoder.encode_points(scanned_pts, require_per_point_feat=False) # Tensor(S x Dl)
|
||||
seq_embedding = torch.cat([pose_feat_seq, pts_feat_seq], dim=-1) # Tensor(S x (Dp+Dl))
|
||||
embedding_list_batch.append(seq_embedding) # List(B): Tensor(S x (Dp+Dl))
|
||||
|
||||
seq_feat = self.seq_encoder.encode_sequence(embedding_list_batch) # Tensor(B x Ds)
|
||||
main_feat = torch.cat([seq_feat, global_scanned_feat], dim=-1) # Tensor(B x (Ds+Dg))
|
||||
|
Reference in New Issue
Block a user