Compare commits
3 Commits
865ae6d329
...
030bf55192
Author | SHA1 | Date | |
---|---|---|---|
030bf55192 | |||
ee74b825a6 | |||
43f22ad91b |
@ -5,4 +5,4 @@ from PytorchBoot.runners.trainer import DefaultTrainer
|
|||||||
class TrainApp:
|
class TrainApp:
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def start():
|
def start():
|
||||||
DefaultTrainer("configs/server/train_config.yaml").run()
|
DefaultTrainer("configs/server/server_train_config.yaml").run()
|
@ -9,8 +9,8 @@ runner:
|
|||||||
name: debug
|
name: debug
|
||||||
root_dir: "experiments"
|
root_dir: "experiments"
|
||||||
|
|
||||||
split:
|
split: #
|
||||||
root_dir: "../data/sample_for_training_preprocessed/sample_preprocessed_scenes"
|
root_dir: "/home/data/hofee/project/nbv_rec/data/nbv_rec_data_512_preproc_npy"
|
||||||
type: "unseen_instance" # "unseen_category"
|
type: "unseen_instance" # "unseen_category"
|
||||||
datasets:
|
datasets:
|
||||||
OmniObject3d_train:
|
OmniObject3d_train:
|
145
configs/server/server_train_config.yaml
Normal file
145
configs/server/server_train_config.yaml
Normal file
@ -0,0 +1,145 @@
|
|||||||
|
|
||||||
|
runner:
|
||||||
|
general:
|
||||||
|
seed: 0
|
||||||
|
device: cuda
|
||||||
|
cuda_visible_devices: "0"
|
||||||
|
parallel: False
|
||||||
|
|
||||||
|
experiment:
|
||||||
|
name: overfit_w_global_feat_wo_local_pts_feat_small
|
||||||
|
root_dir: "experiments"
|
||||||
|
use_checkpoint: False
|
||||||
|
epoch: -1 # -1 stands for last epoch
|
||||||
|
max_epochs: 5000
|
||||||
|
save_checkpoint_interval: 1
|
||||||
|
test_first: True
|
||||||
|
|
||||||
|
train:
|
||||||
|
optimizer:
|
||||||
|
type: Adam
|
||||||
|
lr: 0.0001
|
||||||
|
losses:
|
||||||
|
- gf_loss
|
||||||
|
dataset: OmniObject3d_train
|
||||||
|
test:
|
||||||
|
frequency: 3 # test frequency
|
||||||
|
dataset_list:
|
||||||
|
#- OmniObject3d_test
|
||||||
|
- OmniObject3d_val
|
||||||
|
|
||||||
|
pipeline: nbv_reconstruction_global_pts_pipeline
|
||||||
|
|
||||||
|
dataset:
|
||||||
|
OmniObject3d_train:
|
||||||
|
root_dir: "/home/data/hofee/project/nbv_rec/data/nbv_rec_data_512_preproc_npy"
|
||||||
|
model_dir: "../data/scaled_object_meshes"
|
||||||
|
source: nbv_reconstruction_dataset
|
||||||
|
split_file: "/home/data/hofee/project/nbv_rec/data/OmniObject3d_sample.txt"
|
||||||
|
type: train
|
||||||
|
cache: True
|
||||||
|
ratio: 1
|
||||||
|
batch_size: 160
|
||||||
|
num_workers: 16
|
||||||
|
pts_num: 4096
|
||||||
|
load_from_preprocess: True
|
||||||
|
|
||||||
|
OmniObject3d_test:
|
||||||
|
root_dir: "/home/data/hofee/project/nbv_rec/data/nbv_rec_data_512_preproc_npy"
|
||||||
|
model_dir: "../data/scaled_object_meshes"
|
||||||
|
source: nbv_reconstruction_dataset
|
||||||
|
split_file: "/home/data/hofee/project/nbv_rec/data/OmniObject3d_test.txt"
|
||||||
|
type: test
|
||||||
|
cache: True
|
||||||
|
filter_degree: 75
|
||||||
|
eval_list:
|
||||||
|
- pose_diff
|
||||||
|
ratio: 0.05
|
||||||
|
batch_size: 1
|
||||||
|
num_workers: 12
|
||||||
|
pts_num: 4096
|
||||||
|
load_from_preprocess: True
|
||||||
|
|
||||||
|
OmniObject3d_val:
|
||||||
|
root_dir: "/home/data/hofee/project/nbv_rec/data/nbv_rec_data_512_preproc_npy"
|
||||||
|
model_dir: "../data/scaled_object_meshes"
|
||||||
|
source: nbv_reconstruction_dataset
|
||||||
|
split_file: "/home/data/hofee/project/nbv_rec/data/OmniObject3d_sample.txt"
|
||||||
|
type: test
|
||||||
|
cache: True
|
||||||
|
filter_degree: 75
|
||||||
|
eval_list:
|
||||||
|
- pose_diff
|
||||||
|
ratio: 1
|
||||||
|
batch_size: 1
|
||||||
|
num_workers: 12
|
||||||
|
pts_num: 4096
|
||||||
|
load_from_preprocess: True
|
||||||
|
|
||||||
|
|
||||||
|
pipeline:
|
||||||
|
nbv_reconstruction_local_pts_pipeline:
|
||||||
|
modules:
|
||||||
|
pts_encoder: pointnet_encoder
|
||||||
|
seq_encoder: transformer_seq_encoder
|
||||||
|
pose_encoder: pose_encoder
|
||||||
|
view_finder: gf_view_finder
|
||||||
|
eps: 1e-5
|
||||||
|
global_scanned_feat: True
|
||||||
|
|
||||||
|
nbv_reconstruction_global_pts_pipeline:
|
||||||
|
modules:
|
||||||
|
pts_encoder: pointnet_encoder
|
||||||
|
pose_seq_encoder: transformer_pose_seq_encoder
|
||||||
|
pose_encoder: pose_encoder
|
||||||
|
view_finder: gf_view_finder
|
||||||
|
eps: 1e-5
|
||||||
|
global_scanned_feat: True
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
module:
|
||||||
|
|
||||||
|
pointnet_encoder:
|
||||||
|
in_dim: 3
|
||||||
|
out_dim: 1024
|
||||||
|
global_feat: True
|
||||||
|
feature_transform: False
|
||||||
|
|
||||||
|
transformer_seq_encoder:
|
||||||
|
pts_embed_dim: 1024
|
||||||
|
pose_embed_dim: 256
|
||||||
|
num_heads: 4
|
||||||
|
ffn_dim: 256
|
||||||
|
num_layers: 3
|
||||||
|
output_dim: 2048
|
||||||
|
|
||||||
|
transformer_pose_seq_encoder:
|
||||||
|
pose_embed_dim: 256
|
||||||
|
num_heads: 4
|
||||||
|
ffn_dim: 256
|
||||||
|
num_layers: 3
|
||||||
|
output_dim: 1024
|
||||||
|
|
||||||
|
gf_view_finder:
|
||||||
|
t_feat_dim: 128
|
||||||
|
pose_feat_dim: 256
|
||||||
|
main_feat_dim: 2048
|
||||||
|
regression_head: Rx_Ry_and_T
|
||||||
|
pose_mode: rot_matrix
|
||||||
|
per_point_feature: False
|
||||||
|
sample_mode: ode
|
||||||
|
sampling_steps: 500
|
||||||
|
sde_mode: ve
|
||||||
|
|
||||||
|
pose_encoder:
|
||||||
|
pose_dim: 9
|
||||||
|
out_dim: 256
|
||||||
|
|
||||||
|
loss_function:
|
||||||
|
gf_loss:
|
||||||
|
|
||||||
|
evaluation_method:
|
||||||
|
pose_diff:
|
||||||
|
coverage_rate_increase:
|
||||||
|
renderer_path: "../blender/data_renderer.py"
|
@ -1,106 +0,0 @@
|
|||||||
|
|
||||||
runner:
|
|
||||||
general:
|
|
||||||
seed: 0
|
|
||||||
device: cuda
|
|
||||||
cuda_visible_devices: "0,1,2,3,4,5,6,7"
|
|
||||||
parallel: False
|
|
||||||
|
|
||||||
experiment:
|
|
||||||
name: new_test_overfit_to_world_preprocessed
|
|
||||||
root_dir: "experiments"
|
|
||||||
use_checkpoint: False
|
|
||||||
epoch: -1 # -1 stands for last epoch
|
|
||||||
max_epochs: 5000
|
|
||||||
save_checkpoint_interval: 3
|
|
||||||
test_first: True
|
|
||||||
|
|
||||||
train:
|
|
||||||
optimizer:
|
|
||||||
type: Adam
|
|
||||||
lr: 0.0001
|
|
||||||
losses:
|
|
||||||
- gf_loss
|
|
||||||
dataset: OmniObject3d_train
|
|
||||||
test:
|
|
||||||
frequency: 3 # test frequency
|
|
||||||
dataset_list:
|
|
||||||
- OmniObject3d_test
|
|
||||||
|
|
||||||
pipeline: nbv_reconstruction_pipeline
|
|
||||||
|
|
||||||
dataset:
|
|
||||||
OmniObject3d_train:
|
|
||||||
root_dir: "../data/sample_for_training_preprocessed/sample_preprocessed_scenes"
|
|
||||||
model_dir: "../data/scaled_object_meshes"
|
|
||||||
source: nbv_reconstruction_dataset
|
|
||||||
split_file: "../data/sample_for_training_preprocessed/OmniObject3d_train.txt"
|
|
||||||
type: train
|
|
||||||
cache: True
|
|
||||||
ratio: 1
|
|
||||||
batch_size: 160
|
|
||||||
num_workers: 16
|
|
||||||
pts_num: 4096
|
|
||||||
load_from_preprocess: True
|
|
||||||
|
|
||||||
OmniObject3d_test:
|
|
||||||
root_dir: "../data/sample_for_training_preprocessed/sample_preprocessed_scenes"
|
|
||||||
model_dir: "../data/scaled_object_meshes"
|
|
||||||
source: nbv_reconstruction_dataset
|
|
||||||
split_file: "../data/sample_for_training_preprocessed/OmniObject3d_train.txt"
|
|
||||||
type: test
|
|
||||||
cache: True
|
|
||||||
filter_degree: 75
|
|
||||||
eval_list:
|
|
||||||
- pose_diff
|
|
||||||
ratio: 0.1
|
|
||||||
batch_size: 1
|
|
||||||
num_workers: 12
|
|
||||||
pts_num: 4096
|
|
||||||
load_from_preprocess: True
|
|
||||||
|
|
||||||
pipeline:
|
|
||||||
nbv_reconstruction_pipeline:
|
|
||||||
pts_encoder: pointnet_encoder
|
|
||||||
seq_encoder: transformer_seq_encoder
|
|
||||||
pose_encoder: pose_encoder
|
|
||||||
view_finder: gf_view_finder
|
|
||||||
|
|
||||||
module:
|
|
||||||
|
|
||||||
pointnet_encoder:
|
|
||||||
in_dim: 3
|
|
||||||
out_dim: 1024
|
|
||||||
global_feat: True
|
|
||||||
feature_transform: False
|
|
||||||
|
|
||||||
transformer_seq_encoder:
|
|
||||||
pts_embed_dim: 1024
|
|
||||||
pose_embed_dim: 256
|
|
||||||
num_heads: 4
|
|
||||||
ffn_dim: 256
|
|
||||||
num_layers: 3
|
|
||||||
output_dim: 2048
|
|
||||||
|
|
||||||
gf_view_finder:
|
|
||||||
t_feat_dim: 128
|
|
||||||
pose_feat_dim: 256
|
|
||||||
main_feat_dim: 2048
|
|
||||||
regression_head: Rx_Ry_and_T
|
|
||||||
pose_mode: rot_matrix
|
|
||||||
per_point_feature: False
|
|
||||||
sample_mode: ode
|
|
||||||
sampling_steps: 500
|
|
||||||
sde_mode: ve
|
|
||||||
|
|
||||||
pose_encoder:
|
|
||||||
pose_dim: 9
|
|
||||||
out_dim: 256
|
|
||||||
|
|
||||||
loss_function:
|
|
||||||
gf_loss:
|
|
||||||
|
|
||||||
evaluation_method:
|
|
||||||
pose_diff:
|
|
||||||
coverage_rate_increase:
|
|
||||||
renderer_path: "../blender/data_renderer.py"
|
|
95
core/global_pts_pipeline.py
Normal file
95
core/global_pts_pipeline.py
Normal file
@ -0,0 +1,95 @@
|
|||||||
|
import torch
|
||||||
|
from torch import nn
|
||||||
|
import PytorchBoot.namespace as namespace
|
||||||
|
import PytorchBoot.stereotype as stereotype
|
||||||
|
from PytorchBoot.factory.component_factory import ComponentFactory
|
||||||
|
from PytorchBoot.utils import Log
|
||||||
|
|
||||||
|
|
||||||
|
@stereotype.pipeline("nbv_reconstruction_global_pts_pipeline")
|
||||||
|
class NBVReconstructionGlobalPointsPipeline(nn.Module):
|
||||||
|
def __init__(self, config):
|
||||||
|
super(NBVReconstructionGlobalPointsPipeline, self).__init__()
|
||||||
|
self.config = config
|
||||||
|
self.module_config = config["modules"]
|
||||||
|
self.pts_encoder = ComponentFactory.create(namespace.Stereotype.MODULE, self.module_config["pts_encoder"])
|
||||||
|
self.pose_encoder = ComponentFactory.create(namespace.Stereotype.MODULE, self.module_config["pose_encoder"])
|
||||||
|
self.pose_seq_encoder = ComponentFactory.create(namespace.Stereotype.MODULE, self.module_config["pose_seq_encoder"])
|
||||||
|
self.view_finder = ComponentFactory.create(namespace.Stereotype.MODULE, self.module_config["view_finder"])
|
||||||
|
self.eps = float(self.config["eps"])
|
||||||
|
self.enable_global_scanned_feat = self.config["global_scanned_feat"]
|
||||||
|
|
||||||
|
def forward(self, data):
|
||||||
|
mode = data["mode"]
|
||||||
|
|
||||||
|
if mode == namespace.Mode.TRAIN:
|
||||||
|
return self.forward_train(data)
|
||||||
|
elif mode == namespace.Mode.TEST:
|
||||||
|
return self.forward_test(data)
|
||||||
|
else:
|
||||||
|
Log.error("Unknown mode: {}".format(mode), True)
|
||||||
|
|
||||||
|
def pertube_data(self, gt_delta_9d):
|
||||||
|
bs = gt_delta_9d.shape[0]
|
||||||
|
random_t = torch.rand(bs, device=gt_delta_9d.device) * (1. - self.eps) + self.eps
|
||||||
|
random_t = random_t.unsqueeze(-1)
|
||||||
|
mu, std = self.view_finder.marginal_prob(gt_delta_9d, random_t)
|
||||||
|
std = std.view(-1, 1)
|
||||||
|
z = torch.randn_like(gt_delta_9d)
|
||||||
|
perturbed_x = mu + z * std
|
||||||
|
target_score = - z * std / (std ** 2)
|
||||||
|
return perturbed_x, random_t, target_score, std
|
||||||
|
|
||||||
|
def forward_train(self, data):
|
||||||
|
main_feat = self.get_main_feat(data)
|
||||||
|
''' get std '''
|
||||||
|
best_to_world_pose_9d_batch = data["best_to_world_pose_9d"]
|
||||||
|
perturbed_x, random_t, target_score, std = self.pertube_data(best_to_world_pose_9d_batch)
|
||||||
|
input_data = {
|
||||||
|
"sampled_pose": perturbed_x,
|
||||||
|
"t": random_t,
|
||||||
|
"main_feat": main_feat,
|
||||||
|
}
|
||||||
|
estimated_score = self.view_finder(input_data)
|
||||||
|
output = {
|
||||||
|
"estimated_score": estimated_score,
|
||||||
|
"target_score": target_score,
|
||||||
|
"std": std
|
||||||
|
}
|
||||||
|
return output
|
||||||
|
|
||||||
|
def forward_test(self,data):
|
||||||
|
main_feat = self.get_main_feat(data)
|
||||||
|
estimated_delta_rot_9d, in_process_sample = self.view_finder.next_best_view(main_feat)
|
||||||
|
result = {
|
||||||
|
"pred_pose_9d": estimated_delta_rot_9d,
|
||||||
|
"in_process_sample": in_process_sample
|
||||||
|
}
|
||||||
|
return result
|
||||||
|
|
||||||
|
|
||||||
|
def get_main_feat(self, data):
|
||||||
|
scanned_n_to_world_pose_9d_batch = data['scanned_n_to_world_pose_9d']
|
||||||
|
|
||||||
|
device = next(self.parameters()).device
|
||||||
|
|
||||||
|
pts_feat_seq_list = []
|
||||||
|
pose_feat_seq_list = []
|
||||||
|
|
||||||
|
for scanned_n_to_world_pose_9d in scanned_n_to_world_pose_9d_batch:
|
||||||
|
scanned_n_to_world_pose_9d = scanned_n_to_world_pose_9d.to(device)
|
||||||
|
pose_feat_seq_list.append(self.pose_encoder.encode_pose(scanned_n_to_world_pose_9d))
|
||||||
|
|
||||||
|
main_feat = self.pose_seq_encoder.encode_sequence(pose_feat_seq_list)
|
||||||
|
|
||||||
|
if self.enable_global_scanned_feat:
|
||||||
|
combined_scanned_pts_batch = data['combined_scanned_pts']
|
||||||
|
global_scanned_feat = self.pts_encoder.encode_points(combined_scanned_pts_batch)
|
||||||
|
main_feat = torch.cat([main_feat, global_scanned_feat], dim=-1)
|
||||||
|
|
||||||
|
|
||||||
|
if torch.isnan(main_feat).any():
|
||||||
|
Log.error("nan in main_feat", True)
|
||||||
|
|
||||||
|
return main_feat
|
||||||
|
|
@ -5,16 +5,18 @@ import PytorchBoot.stereotype as stereotype
|
|||||||
from PytorchBoot.factory.component_factory import ComponentFactory
|
from PytorchBoot.factory.component_factory import ComponentFactory
|
||||||
from PytorchBoot.utils import Log
|
from PytorchBoot.utils import Log
|
||||||
|
|
||||||
@stereotype.pipeline("nbv_reconstruction_pipeline")
|
@stereotype.pipeline("nbv_reconstruction_local_pts_pipeline")
|
||||||
class NBVReconstructionPipeline(nn.Module):
|
class NBVReconstructionLocalPointsPipeline(nn.Module):
|
||||||
def __init__(self, config):
|
def __init__(self, config):
|
||||||
super(NBVReconstructionPipeline, self).__init__()
|
super(NBVReconstructionLocalPointsPipeline, self).__init__()
|
||||||
self.config = config
|
self.config = config
|
||||||
self.pts_encoder = ComponentFactory.create(namespace.Stereotype.MODULE, config["pts_encoder"])
|
self.module_config = config["modules"]
|
||||||
self.pose_encoder = ComponentFactory.create(namespace.Stereotype.MODULE, config["pose_encoder"])
|
self.pts_encoder = ComponentFactory.create(namespace.Stereotype.MODULE, self.module_config["pts_encoder"])
|
||||||
self.seq_encoder = ComponentFactory.create(namespace.Stereotype.MODULE, config["seq_encoder"])
|
self.pose_encoder = ComponentFactory.create(namespace.Stereotype.MODULE, self.module_config["pose_encoder"])
|
||||||
self.view_finder = ComponentFactory.create(namespace.Stereotype.MODULE, config["view_finder"])
|
self.seq_encoder = ComponentFactory.create(namespace.Stereotype.MODULE, self.module_config["seq_encoder"])
|
||||||
self.eps = 1e-5
|
self.view_finder = ComponentFactory.create(namespace.Stereotype.MODULE, self.module_config["view_finder"])
|
||||||
|
self.eps = float(self.config["eps"])
|
||||||
|
self.enable_global_scanned_feat = self.config["global_scanned_feat"]
|
||||||
|
|
||||||
def forward(self, data):
|
def forward(self, data):
|
||||||
mode = data["mode"]
|
mode = data["mode"]
|
||||||
@ -38,14 +40,14 @@ class NBVReconstructionPipeline(nn.Module):
|
|||||||
return perturbed_x, random_t, target_score, std
|
return perturbed_x, random_t, target_score, std
|
||||||
|
|
||||||
def forward_train(self, data):
|
def forward_train(self, data):
|
||||||
seq_feat = self.get_seq_feat(data)
|
main_feat = self.get_main_feat(data)
|
||||||
''' get std '''
|
''' get std '''
|
||||||
best_to_world_pose_9d_batch = data["best_to_world_pose_9d"]
|
best_to_world_pose_9d_batch = data["best_to_world_pose_9d"]
|
||||||
perturbed_x, random_t, target_score, std = self.pertube_data(best_to_world_pose_9d_batch)
|
perturbed_x, random_t, target_score, std = self.pertube_data(best_to_world_pose_9d_batch)
|
||||||
input_data = {
|
input_data = {
|
||||||
"sampled_pose": perturbed_x,
|
"sampled_pose": perturbed_x,
|
||||||
"t": random_t,
|
"t": random_t,
|
||||||
"seq_feat": seq_feat,
|
"main_feat": main_feat,
|
||||||
}
|
}
|
||||||
estimated_score = self.view_finder(input_data)
|
estimated_score = self.view_finder(input_data)
|
||||||
output = {
|
output = {
|
||||||
@ -56,29 +58,44 @@ class NBVReconstructionPipeline(nn.Module):
|
|||||||
return output
|
return output
|
||||||
|
|
||||||
def forward_test(self,data):
|
def forward_test(self,data):
|
||||||
seq_feat = self.get_seq_feat(data)
|
main_feat = self.get_main_feat(data)
|
||||||
estimated_delta_rot_9d, in_process_sample = self.view_finder.next_best_view(seq_feat)
|
estimated_delta_rot_9d, in_process_sample = self.view_finder.next_best_view(main_feat)
|
||||||
result = {
|
result = {
|
||||||
"pred_pose_9d": estimated_delta_rot_9d,
|
"pred_pose_9d": estimated_delta_rot_9d,
|
||||||
"in_process_sample": in_process_sample
|
"in_process_sample": in_process_sample
|
||||||
}
|
}
|
||||||
return result
|
return result
|
||||||
|
|
||||||
def get_seq_feat(self, data):
|
|
||||||
|
def get_main_feat(self, data):
|
||||||
scanned_pts_batch = data['scanned_pts']
|
scanned_pts_batch = data['scanned_pts']
|
||||||
scanned_n_to_world_pose_9d_batch = data['scanned_n_to_world_pose_9d']
|
scanned_n_to_world_pose_9d_batch = data['scanned_n_to_world_pose_9d']
|
||||||
|
|
||||||
|
|
||||||
|
device = next(self.parameters()).device
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
pts_feat_seq_list = []
|
pts_feat_seq_list = []
|
||||||
pose_feat_seq_list = []
|
pose_feat_seq_list = []
|
||||||
device = next(self.parameters()).device
|
|
||||||
for scanned_pts,scanned_n_to_world_pose_9d in zip(scanned_pts_batch,scanned_n_to_world_pose_9d_batch):
|
for scanned_pts,scanned_n_to_world_pose_9d in zip(scanned_pts_batch,scanned_n_to_world_pose_9d_batch):
|
||||||
|
|
||||||
scanned_pts = scanned_pts.to(device)
|
scanned_pts = scanned_pts.to(device)
|
||||||
scanned_n_to_world_pose_9d = scanned_n_to_world_pose_9d.to(device)
|
scanned_n_to_world_pose_9d = scanned_n_to_world_pose_9d.to(device)
|
||||||
pts_feat_seq_list.append(self.pts_encoder.encode_points(scanned_pts))
|
pts_feat_seq_list.append(self.pts_encoder.encode_points(scanned_pts))
|
||||||
pose_feat_seq_list.append(self.pose_encoder.encode_pose(scanned_n_to_world_pose_9d))
|
pose_feat_seq_list.append(self.pose_encoder.encode_pose(scanned_n_to_world_pose_9d))
|
||||||
|
|
||||||
|
main_feat = self.seq_encoder.encode_sequence(pts_feat_seq_list, pose_feat_seq_list)
|
||||||
|
|
||||||
seq_feat = self.seq_encoder.encode_sequence(pts_feat_seq_list, pose_feat_seq_list)
|
if self.enable_global_scanned_feat:
|
||||||
if torch.isnan(seq_feat).any():
|
combined_scanned_pts_batch = data['combined_scanned_pts']
|
||||||
Log.error("nan in seq_feat", True)
|
global_scanned_feat = self.pts_encoder.encode_points(combined_scanned_pts_batch)
|
||||||
return seq_feat
|
main_feat = torch.cat([main_feat, global_scanned_feat], dim=-1)
|
||||||
|
|
||||||
|
|
||||||
|
if torch.isnan(main_feat).any():
|
||||||
|
Log.error("nan in main_feat", True)
|
||||||
|
|
||||||
|
return main_feat
|
||||||
|
|
@ -7,12 +7,11 @@ from PytorchBoot.utils.log_util import Log
|
|||||||
import torch
|
import torch
|
||||||
import os
|
import os
|
||||||
import sys
|
import sys
|
||||||
sys.path.append(r"/media/hofee/data/project/python/nbv_reconstruction/nbv_reconstruction")
|
sys.path.append(r"/home/data/hofee/project/nbv_rec/nbv_reconstruction")
|
||||||
|
|
||||||
from utils.data_load import DataLoadUtil
|
from utils.data_load import DataLoadUtil
|
||||||
from utils.pose import PoseUtil
|
from utils.pose import PoseUtil
|
||||||
from utils.pts import PtsUtil
|
from utils.pts import PtsUtil
|
||||||
from utils.reconstruction import ReconstructionUtil
|
|
||||||
|
|
||||||
|
|
||||||
@stereotype.dataset("nbv_reconstruction_dataset")
|
@stereotype.dataset("nbv_reconstruction_dataset")
|
||||||
@ -35,7 +34,7 @@ class NBVReconstructionDataset(BaseDataset):
|
|||||||
self.model_dir = config["model_dir"]
|
self.model_dir = config["model_dir"]
|
||||||
self.filter_degree = config["filter_degree"]
|
self.filter_degree = config["filter_degree"]
|
||||||
if self.type == namespace.Mode.TRAIN:
|
if self.type == namespace.Mode.TRAIN:
|
||||||
scale_ratio = 1
|
scale_ratio = 100
|
||||||
self.datalist = self.datalist*scale_ratio
|
self.datalist = self.datalist*scale_ratio
|
||||||
if self.cache:
|
if self.cache:
|
||||||
expr_root = ConfigManager.get("runner", "experiment", "root_dir")
|
expr_root = ConfigManager.get("runner", "experiment", "root_dir")
|
||||||
@ -56,20 +55,35 @@ class NBVReconstructionDataset(BaseDataset):
|
|||||||
def get_datalist(self):
|
def get_datalist(self):
|
||||||
datalist = []
|
datalist = []
|
||||||
for scene_name in self.scene_name_list:
|
for scene_name in self.scene_name_list:
|
||||||
label_path = DataLoadUtil.get_label_path_old(self.root_dir, scene_name)
|
seq_num = DataLoadUtil.get_label_num(self.root_dir, scene_name)
|
||||||
label_data = DataLoadUtil.load_label(label_path)
|
scene_max_coverage_rate = 0
|
||||||
for data_pair in label_data["data_pairs"]:
|
max_coverage_rate_list = []
|
||||||
scanned_views = data_pair[0]
|
|
||||||
next_best_view = data_pair[1]
|
for seq_idx in range(seq_num):
|
||||||
|
label_path = DataLoadUtil.get_label_path(self.root_dir, scene_name, seq_idx)
|
||||||
|
label_data = DataLoadUtil.load_label(label_path)
|
||||||
max_coverage_rate = label_data["max_coverage_rate"]
|
max_coverage_rate = label_data["max_coverage_rate"]
|
||||||
datalist.append(
|
if max_coverage_rate > scene_max_coverage_rate:
|
||||||
{
|
scene_max_coverage_rate = max_coverage_rate
|
||||||
"scanned_views": scanned_views,
|
max_coverage_rate_list.append(max_coverage_rate)
|
||||||
"next_best_view": next_best_view,
|
mean_coverage_rate = np.mean(max_coverage_rate_list)
|
||||||
"max_coverage_rate": max_coverage_rate,
|
|
||||||
"scene_name": scene_name,
|
for seq_idx in range(seq_num):
|
||||||
}
|
label_path = DataLoadUtil.get_label_path(self.root_dir, scene_name, seq_idx)
|
||||||
)
|
label_data = DataLoadUtil.load_label(label_path)
|
||||||
|
if max_coverage_rate_list[seq_idx] > mean_coverage_rate - 0.1:
|
||||||
|
for data_pair in label_data["data_pairs"]:
|
||||||
|
scanned_views = data_pair[0]
|
||||||
|
next_best_view = data_pair[1]
|
||||||
|
datalist.append({
|
||||||
|
"scanned_views": scanned_views,
|
||||||
|
"next_best_view": next_best_view,
|
||||||
|
"seq_max_coverage_rate": max_coverage_rate,
|
||||||
|
"scene_name": scene_name,
|
||||||
|
"label_idx": seq_idx,
|
||||||
|
"scene_max_coverage_rate": scene_max_coverage_rate
|
||||||
|
})
|
||||||
|
break # TODO: for small version debug
|
||||||
return datalist
|
return datalist
|
||||||
|
|
||||||
def preprocess_cache(self):
|
def preprocess_cache(self):
|
||||||
@ -102,7 +116,7 @@ class NBVReconstructionDataset(BaseDataset):
|
|||||||
data_item_info = self.datalist[index]
|
data_item_info = self.datalist[index]
|
||||||
scanned_views = data_item_info["scanned_views"]
|
scanned_views = data_item_info["scanned_views"]
|
||||||
nbv = data_item_info["next_best_view"]
|
nbv = data_item_info["next_best_view"]
|
||||||
max_coverage_rate = data_item_info["max_coverage_rate"]
|
max_coverage_rate = data_item_info["seq_max_coverage_rate"]
|
||||||
scene_name = data_item_info["scene_name"]
|
scene_name = data_item_info["scene_name"]
|
||||||
scanned_views_pts, scanned_coverages_rate, scanned_n_to_world_pose = [], [], []
|
scanned_views_pts, scanned_coverages_rate, scanned_n_to_world_pose = [], [], []
|
||||||
|
|
||||||
@ -151,13 +165,18 @@ class NBVReconstructionDataset(BaseDataset):
|
|||||||
best_to_world_6d = PoseUtil.matrix_to_rotation_6d_numpy(np.asarray(best_frame_to_world[:3,:3]))
|
best_to_world_6d = PoseUtil.matrix_to_rotation_6d_numpy(np.asarray(best_frame_to_world[:3,:3]))
|
||||||
best_to_world_trans = best_frame_to_world[:3,3]
|
best_to_world_trans = best_frame_to_world[:3,3]
|
||||||
best_to_world_9d = np.concatenate([best_to_world_6d, best_to_world_trans], axis=0)
|
best_to_world_9d = np.concatenate([best_to_world_6d, best_to_world_trans], axis=0)
|
||||||
|
|
||||||
|
combined_scanned_views_pts = np.concatenate(scanned_views_pts, axis=0)
|
||||||
|
voxel_downsampled_combined_scanned_pts_np = PtsUtil.voxel_downsample_point_cloud(combined_scanned_views_pts, 0.002)
|
||||||
|
random_downsampled_combined_scanned_pts_np = PtsUtil.random_downsample_point_cloud(voxel_downsampled_combined_scanned_pts_np, self.pts_num)
|
||||||
data_item = {
|
data_item = {
|
||||||
"scanned_pts": np.asarray(scanned_views_pts,dtype=np.float32),
|
"scanned_pts": np.asarray(scanned_views_pts,dtype=np.float32),
|
||||||
|
"combined_scanned_pts": np.asarray(random_downsampled_combined_scanned_pts_np,dtype=np.float32),
|
||||||
"scanned_coverage_rate": scanned_coverages_rate,
|
"scanned_coverage_rate": scanned_coverages_rate,
|
||||||
"scanned_n_to_world_pose_9d": np.asarray(scanned_n_to_world_pose,dtype=np.float32),
|
"scanned_n_to_world_pose_9d": np.asarray(scanned_n_to_world_pose,dtype=np.float32),
|
||||||
"best_coverage_rate": nbv_coverage_rate,
|
"best_coverage_rate": nbv_coverage_rate,
|
||||||
"best_to_world_pose_9d": np.asarray(best_to_world_9d,dtype=np.float32),
|
"best_to_world_pose_9d": np.asarray(best_to_world_9d,dtype=np.float32),
|
||||||
"max_coverage_rate": max_coverage_rate,
|
"seq_max_coverage_rate": max_coverage_rate,
|
||||||
"scene_name": scene_name
|
"scene_name": scene_name
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -195,10 +214,11 @@ class NBVReconstructionDataset(BaseDataset):
|
|||||||
collate_data["scanned_pts"] = [torch.tensor(item['scanned_pts']) for item in batch]
|
collate_data["scanned_pts"] = [torch.tensor(item['scanned_pts']) for item in batch]
|
||||||
collate_data["scanned_n_to_world_pose_9d"] = [torch.tensor(item['scanned_n_to_world_pose_9d']) for item in batch]
|
collate_data["scanned_n_to_world_pose_9d"] = [torch.tensor(item['scanned_n_to_world_pose_9d']) for item in batch]
|
||||||
collate_data["best_to_world_pose_9d"] = torch.stack([torch.tensor(item['best_to_world_pose_9d']) for item in batch])
|
collate_data["best_to_world_pose_9d"] = torch.stack([torch.tensor(item['best_to_world_pose_9d']) for item in batch])
|
||||||
|
collate_data["combined_scanned_pts"] = torch.stack([torch.tensor(item['combined_scanned_pts']) for item in batch])
|
||||||
if "first_frame_to_world" in batch[0]:
|
if "first_frame_to_world" in batch[0]:
|
||||||
collate_data["first_frame_to_world"] = torch.stack([torch.tensor(item["first_frame_to_world"]) for item in batch])
|
collate_data["first_frame_to_world"] = torch.stack([torch.tensor(item["first_frame_to_world"]) for item in batch])
|
||||||
for key in batch[0].keys():
|
for key in batch[0].keys():
|
||||||
if key not in ["scanned_pts", "scanned_n_to_world_pose_9d", "best_to_world_pose_9d", "first_frame_to_world"]:
|
if key not in ["scanned_pts", "scanned_n_to_world_pose_9d", "best_to_world_pose_9d", "first_frame_to_world", "combined_scanned_pts"]:
|
||||||
collate_data[key] = [item[key] for item in batch]
|
collate_data[key] = [item[key] for item in batch]
|
||||||
return collate_data
|
return collate_data
|
||||||
return collate_fn
|
return collate_fn
|
||||||
@ -211,11 +231,11 @@ if __name__ == "__main__":
|
|||||||
torch.manual_seed(seed)
|
torch.manual_seed(seed)
|
||||||
np.random.seed(seed)
|
np.random.seed(seed)
|
||||||
config = {
|
config = {
|
||||||
"root_dir": "/media/hofee/repository/nbv_reconstruction_data_512",
|
"root_dir": "/home/data/hofee/project/nbv_rec/data/nbv_rec_data_512_preproc_npy",
|
||||||
"model_dir": "/media/hofee/data/data/scaled_object_meshes",
|
"model_dir": "/home/data/hofee/project/nbv_rec/data/scaled_object_meshes",
|
||||||
"source": "nbv_reconstruction_dataset",
|
"source": "nbv_reconstruction_dataset",
|
||||||
"split_file": "/media/hofee/data/project/python/nbv_reconstruction/sample_for_training/OmniObject3d_train.txt",
|
"split_file": "/home/data/hofee/project/nbv_rec/data/OmniObject3d_test.txt",
|
||||||
"load_from_preprocess": False,
|
"load_from_preprocess": True,
|
||||||
"ratio": 0.5,
|
"ratio": 0.5,
|
||||||
"batch_size": 2,
|
"batch_size": 2,
|
||||||
"filter_degree": 75,
|
"filter_degree": 75,
|
||||||
|
@ -32,7 +32,7 @@ def cond_ode_sampler(
|
|||||||
init_x=None,
|
init_x=None,
|
||||||
):
|
):
|
||||||
pose_dim = PoseUtil.get_pose_dim(pose_mode)
|
pose_dim = PoseUtil.get_pose_dim(pose_mode)
|
||||||
batch_size = data["seq_feat"].shape[0]
|
batch_size = data["main_feat"].shape[0]
|
||||||
init_x = (
|
init_x = (
|
||||||
prior((batch_size, pose_dim), T=T).to(device)
|
prior((batch_size, pose_dim), T=T).to(device)
|
||||||
if init_x is None
|
if init_x is None
|
||||||
|
@ -80,13 +80,13 @@ class GradientFieldViewFinder(nn.Module):
|
|||||||
"""
|
"""
|
||||||
Args:
|
Args:
|
||||||
data, dict {
|
data, dict {
|
||||||
'seq_feat': [bs, c]
|
'main_feat': [bs, c]
|
||||||
'pose_sample': [bs, pose_dim]
|
'pose_sample': [bs, pose_dim]
|
||||||
't': [bs, 1]
|
't': [bs, 1]
|
||||||
}
|
}
|
||||||
"""
|
"""
|
||||||
|
|
||||||
seq_feat = data['seq_feat']
|
main_feat = data['main_feat']
|
||||||
sampled_pose = data['sampled_pose']
|
sampled_pose = data['sampled_pose']
|
||||||
t = data['t']
|
t = data['t']
|
||||||
t_feat = self.t_encoder(t.squeeze(1))
|
t_feat = self.t_encoder(t.squeeze(1))
|
||||||
@ -95,7 +95,7 @@ class GradientFieldViewFinder(nn.Module):
|
|||||||
if self.per_point_feature:
|
if self.per_point_feature:
|
||||||
raise NotImplementedError
|
raise NotImplementedError
|
||||||
else:
|
else:
|
||||||
total_feat = torch.cat([seq_feat, t_feat, pose_feat], dim=-1)
|
total_feat = torch.cat([main_feat, t_feat, pose_feat], dim=-1)
|
||||||
_, std = self.marginal_prob_fn(total_feat, t)
|
_, std = self.marginal_prob_fn(total_feat, t)
|
||||||
|
|
||||||
if self.regression_head == 'Rx_Ry_and_T':
|
if self.regression_head == 'Rx_Ry_and_T':
|
||||||
@ -134,9 +134,9 @@ class GradientFieldViewFinder(nn.Module):
|
|||||||
|
|
||||||
return in_process_sample, res
|
return in_process_sample, res
|
||||||
|
|
||||||
def next_best_view(self, seq_feat):
|
def next_best_view(self, main_feat):
|
||||||
data = {
|
data = {
|
||||||
'seq_feat': seq_feat,
|
'main_feat': main_feat,
|
||||||
}
|
}
|
||||||
in_process_sample, res = self.sample(data)
|
in_process_sample, res = self.sample(data)
|
||||||
return res.to(dtype=torch.float32), in_process_sample
|
return res.to(dtype=torch.float32), in_process_sample
|
||||||
|
63
modules/transformer_pose_seq_encoder.py
Normal file
63
modules/transformer_pose_seq_encoder.py
Normal file
@ -0,0 +1,63 @@
|
|||||||
|
import torch
|
||||||
|
from torch import nn
|
||||||
|
from torch.nn.utils.rnn import pad_sequence
|
||||||
|
import PytorchBoot.stereotype as stereotype
|
||||||
|
|
||||||
|
|
||||||
|
@stereotype.module("transformer_pose_seq_encoder")
|
||||||
|
class TransformerPoseSequenceEncoder(nn.Module):
|
||||||
|
def __init__(self, config):
|
||||||
|
super(TransformerPoseSequenceEncoder, self).__init__()
|
||||||
|
self.config = config
|
||||||
|
embed_dim = config["pose_embed_dim"]
|
||||||
|
encoder_layer = nn.TransformerEncoderLayer(
|
||||||
|
d_model=embed_dim,
|
||||||
|
nhead=config["num_heads"],
|
||||||
|
dim_feedforward=config["ffn_dim"],
|
||||||
|
batch_first=True,
|
||||||
|
)
|
||||||
|
self.transformer_encoder = nn.TransformerEncoder(
|
||||||
|
encoder_layer, num_layers=config["num_layers"]
|
||||||
|
)
|
||||||
|
self.fc = nn.Linear(embed_dim, config["output_dim"])
|
||||||
|
|
||||||
|
def encode_sequence(self, pose_embedding_list_batch):
|
||||||
|
|
||||||
|
lengths = []
|
||||||
|
|
||||||
|
for pose_embedding_list in pose_embedding_list_batch:
|
||||||
|
lengths.append(len(pose_embedding_list))
|
||||||
|
|
||||||
|
combined_tensor = pad_sequence(pose_embedding_list_batch, batch_first=True) # Shape: [batch_size, max_seq_len, embed_dim]
|
||||||
|
|
||||||
|
max_len = max(lengths)
|
||||||
|
padding_mask = torch.tensor([([0] * length + [1] * (max_len - length)) for length in lengths], dtype=torch.bool).to(combined_tensor.device)
|
||||||
|
|
||||||
|
transformer_output = self.transformer_encoder(combined_tensor, src_key_padding_mask=padding_mask)
|
||||||
|
final_feature = transformer_output.mean(dim=1)
|
||||||
|
final_output = self.fc(final_feature)
|
||||||
|
|
||||||
|
return final_output
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
config = {
|
||||||
|
"pose_embed_dim": 256,
|
||||||
|
"num_heads": 4,
|
||||||
|
"ffn_dim": 256,
|
||||||
|
"num_layers": 3,
|
||||||
|
"output_dim": 1024,
|
||||||
|
}
|
||||||
|
|
||||||
|
encoder = TransformerPoseSequenceEncoder(config)
|
||||||
|
seq_len = [5, 8, 9, 4]
|
||||||
|
batch_size = 4
|
||||||
|
|
||||||
|
pose_embedding_list_batch = [
|
||||||
|
torch.randn(seq_len[idx], config["pose_embed_dim"]) for idx in range(batch_size)
|
||||||
|
]
|
||||||
|
output_feature = encoder.encode_sequence(
|
||||||
|
pose_embedding_list_batch
|
||||||
|
)
|
||||||
|
print("Encoded Feature:", output_feature)
|
||||||
|
print("Feature Shape:", output_feature.shape)
|
Loading…
x
Reference in New Issue
Block a user