Compare commits

...

3 Commits

12 changed files with 390 additions and 156 deletions

View File

@ -5,4 +5,4 @@ from PytorchBoot.runners.trainer import DefaultTrainer
class TrainApp: class TrainApp:
@staticmethod @staticmethod
def start(): def start():
DefaultTrainer("configs/server/train_config.yaml").run() DefaultTrainer("configs/server/server_train_config.yaml").run()

View File

@ -9,8 +9,8 @@ runner:
name: debug name: debug
root_dir: "experiments" root_dir: "experiments"
split: split: #
root_dir: "../data/sample_for_training_preprocessed/sample_preprocessed_scenes" root_dir: "/home/data/hofee/project/nbv_rec/data/nbv_rec_data_512_preproc_npy"
type: "unseen_instance" # "unseen_category" type: "unseen_instance" # "unseen_category"
datasets: datasets:
OmniObject3d_train: OmniObject3d_train:

View File

@ -0,0 +1,145 @@
runner:
general:
seed: 0
device: cuda
cuda_visible_devices: "0"
parallel: False
experiment:
name: overfit_w_global_feat_wo_local_pts_feat_small
root_dir: "experiments"
use_checkpoint: False
epoch: -1 # -1 stands for last epoch
max_epochs: 5000
save_checkpoint_interval: 1
test_first: True
train:
optimizer:
type: Adam
lr: 0.0001
losses:
- gf_loss
dataset: OmniObject3d_train
test:
frequency: 3 # test frequency
dataset_list:
#- OmniObject3d_test
- OmniObject3d_val
pipeline: nbv_reconstruction_global_pts_pipeline
dataset:
OmniObject3d_train:
root_dir: "/home/data/hofee/project/nbv_rec/data/nbv_rec_data_512_preproc_npy"
model_dir: "../data/scaled_object_meshes"
source: nbv_reconstruction_dataset
split_file: "/home/data/hofee/project/nbv_rec/data/OmniObject3d_sample.txt"
type: train
cache: True
ratio: 1
batch_size: 160
num_workers: 16
pts_num: 4096
load_from_preprocess: True
OmniObject3d_test:
root_dir: "/home/data/hofee/project/nbv_rec/data/nbv_rec_data_512_preproc_npy"
model_dir: "../data/scaled_object_meshes"
source: nbv_reconstruction_dataset
split_file: "/home/data/hofee/project/nbv_rec/data/OmniObject3d_test.txt"
type: test
cache: True
filter_degree: 75
eval_list:
- pose_diff
ratio: 0.05
batch_size: 1
num_workers: 12
pts_num: 4096
load_from_preprocess: True
OmniObject3d_val:
root_dir: "/home/data/hofee/project/nbv_rec/data/nbv_rec_data_512_preproc_npy"
model_dir: "../data/scaled_object_meshes"
source: nbv_reconstruction_dataset
split_file: "/home/data/hofee/project/nbv_rec/data/OmniObject3d_sample.txt"
type: test
cache: True
filter_degree: 75
eval_list:
- pose_diff
ratio: 1
batch_size: 1
num_workers: 12
pts_num: 4096
load_from_preprocess: True
pipeline:
nbv_reconstruction_local_pts_pipeline:
modules:
pts_encoder: pointnet_encoder
seq_encoder: transformer_seq_encoder
pose_encoder: pose_encoder
view_finder: gf_view_finder
eps: 1e-5
global_scanned_feat: True
nbv_reconstruction_global_pts_pipeline:
modules:
pts_encoder: pointnet_encoder
pose_seq_encoder: transformer_pose_seq_encoder
pose_encoder: pose_encoder
view_finder: gf_view_finder
eps: 1e-5
global_scanned_feat: True
module:
pointnet_encoder:
in_dim: 3
out_dim: 1024
global_feat: True
feature_transform: False
transformer_seq_encoder:
pts_embed_dim: 1024
pose_embed_dim: 256
num_heads: 4
ffn_dim: 256
num_layers: 3
output_dim: 2048
transformer_pose_seq_encoder:
pose_embed_dim: 256
num_heads: 4
ffn_dim: 256
num_layers: 3
output_dim: 1024
gf_view_finder:
t_feat_dim: 128
pose_feat_dim: 256
main_feat_dim: 2048
regression_head: Rx_Ry_and_T
pose_mode: rot_matrix
per_point_feature: False
sample_mode: ode
sampling_steps: 500
sde_mode: ve
pose_encoder:
pose_dim: 9
out_dim: 256
loss_function:
gf_loss:
evaluation_method:
pose_diff:
coverage_rate_increase:
renderer_path: "../blender/data_renderer.py"

View File

@ -1,106 +0,0 @@
runner:
general:
seed: 0
device: cuda
cuda_visible_devices: "0,1,2,3,4,5,6,7"
parallel: False
experiment:
name: new_test_overfit_to_world_preprocessed
root_dir: "experiments"
use_checkpoint: False
epoch: -1 # -1 stands for last epoch
max_epochs: 5000
save_checkpoint_interval: 3
test_first: True
train:
optimizer:
type: Adam
lr: 0.0001
losses:
- gf_loss
dataset: OmniObject3d_train
test:
frequency: 3 # test frequency
dataset_list:
- OmniObject3d_test
pipeline: nbv_reconstruction_pipeline
dataset:
OmniObject3d_train:
root_dir: "../data/sample_for_training_preprocessed/sample_preprocessed_scenes"
model_dir: "../data/scaled_object_meshes"
source: nbv_reconstruction_dataset
split_file: "../data/sample_for_training_preprocessed/OmniObject3d_train.txt"
type: train
cache: True
ratio: 1
batch_size: 160
num_workers: 16
pts_num: 4096
load_from_preprocess: True
OmniObject3d_test:
root_dir: "../data/sample_for_training_preprocessed/sample_preprocessed_scenes"
model_dir: "../data/scaled_object_meshes"
source: nbv_reconstruction_dataset
split_file: "../data/sample_for_training_preprocessed/OmniObject3d_train.txt"
type: test
cache: True
filter_degree: 75
eval_list:
- pose_diff
ratio: 0.1
batch_size: 1
num_workers: 12
pts_num: 4096
load_from_preprocess: True
pipeline:
nbv_reconstruction_pipeline:
pts_encoder: pointnet_encoder
seq_encoder: transformer_seq_encoder
pose_encoder: pose_encoder
view_finder: gf_view_finder
module:
pointnet_encoder:
in_dim: 3
out_dim: 1024
global_feat: True
feature_transform: False
transformer_seq_encoder:
pts_embed_dim: 1024
pose_embed_dim: 256
num_heads: 4
ffn_dim: 256
num_layers: 3
output_dim: 2048
gf_view_finder:
t_feat_dim: 128
pose_feat_dim: 256
main_feat_dim: 2048
regression_head: Rx_Ry_and_T
pose_mode: rot_matrix
per_point_feature: False
sample_mode: ode
sampling_steps: 500
sde_mode: ve
pose_encoder:
pose_dim: 9
out_dim: 256
loss_function:
gf_loss:
evaluation_method:
pose_diff:
coverage_rate_increase:
renderer_path: "../blender/data_renderer.py"

View File

@ -0,0 +1,95 @@
import torch
from torch import nn
import PytorchBoot.namespace as namespace
import PytorchBoot.stereotype as stereotype
from PytorchBoot.factory.component_factory import ComponentFactory
from PytorchBoot.utils import Log
@stereotype.pipeline("nbv_reconstruction_global_pts_pipeline")
class NBVReconstructionGlobalPointsPipeline(nn.Module):
def __init__(self, config):
super(NBVReconstructionGlobalPointsPipeline, self).__init__()
self.config = config
self.module_config = config["modules"]
self.pts_encoder = ComponentFactory.create(namespace.Stereotype.MODULE, self.module_config["pts_encoder"])
self.pose_encoder = ComponentFactory.create(namespace.Stereotype.MODULE, self.module_config["pose_encoder"])
self.pose_seq_encoder = ComponentFactory.create(namespace.Stereotype.MODULE, self.module_config["pose_seq_encoder"])
self.view_finder = ComponentFactory.create(namespace.Stereotype.MODULE, self.module_config["view_finder"])
self.eps = float(self.config["eps"])
self.enable_global_scanned_feat = self.config["global_scanned_feat"]
def forward(self, data):
mode = data["mode"]
if mode == namespace.Mode.TRAIN:
return self.forward_train(data)
elif mode == namespace.Mode.TEST:
return self.forward_test(data)
else:
Log.error("Unknown mode: {}".format(mode), True)
def pertube_data(self, gt_delta_9d):
bs = gt_delta_9d.shape[0]
random_t = torch.rand(bs, device=gt_delta_9d.device) * (1. - self.eps) + self.eps
random_t = random_t.unsqueeze(-1)
mu, std = self.view_finder.marginal_prob(gt_delta_9d, random_t)
std = std.view(-1, 1)
z = torch.randn_like(gt_delta_9d)
perturbed_x = mu + z * std
target_score = - z * std / (std ** 2)
return perturbed_x, random_t, target_score, std
def forward_train(self, data):
main_feat = self.get_main_feat(data)
''' get std '''
best_to_world_pose_9d_batch = data["best_to_world_pose_9d"]
perturbed_x, random_t, target_score, std = self.pertube_data(best_to_world_pose_9d_batch)
input_data = {
"sampled_pose": perturbed_x,
"t": random_t,
"main_feat": main_feat,
}
estimated_score = self.view_finder(input_data)
output = {
"estimated_score": estimated_score,
"target_score": target_score,
"std": std
}
return output
def forward_test(self,data):
main_feat = self.get_main_feat(data)
estimated_delta_rot_9d, in_process_sample = self.view_finder.next_best_view(main_feat)
result = {
"pred_pose_9d": estimated_delta_rot_9d,
"in_process_sample": in_process_sample
}
return result
def get_main_feat(self, data):
scanned_n_to_world_pose_9d_batch = data['scanned_n_to_world_pose_9d']
device = next(self.parameters()).device
pts_feat_seq_list = []
pose_feat_seq_list = []
for scanned_n_to_world_pose_9d in scanned_n_to_world_pose_9d_batch:
scanned_n_to_world_pose_9d = scanned_n_to_world_pose_9d.to(device)
pose_feat_seq_list.append(self.pose_encoder.encode_pose(scanned_n_to_world_pose_9d))
main_feat = self.pose_seq_encoder.encode_sequence(pose_feat_seq_list)
if self.enable_global_scanned_feat:
combined_scanned_pts_batch = data['combined_scanned_pts']
global_scanned_feat = self.pts_encoder.encode_points(combined_scanned_pts_batch)
main_feat = torch.cat([main_feat, global_scanned_feat], dim=-1)
if torch.isnan(main_feat).any():
Log.error("nan in main_feat", True)
return main_feat

View File

@ -5,16 +5,18 @@ import PytorchBoot.stereotype as stereotype
from PytorchBoot.factory.component_factory import ComponentFactory from PytorchBoot.factory.component_factory import ComponentFactory
from PytorchBoot.utils import Log from PytorchBoot.utils import Log
@stereotype.pipeline("nbv_reconstruction_pipeline") @stereotype.pipeline("nbv_reconstruction_local_pts_pipeline")
class NBVReconstructionPipeline(nn.Module): class NBVReconstructionLocalPointsPipeline(nn.Module):
def __init__(self, config): def __init__(self, config):
super(NBVReconstructionPipeline, self).__init__() super(NBVReconstructionLocalPointsPipeline, self).__init__()
self.config = config self.config = config
self.pts_encoder = ComponentFactory.create(namespace.Stereotype.MODULE, config["pts_encoder"]) self.module_config = config["modules"]
self.pose_encoder = ComponentFactory.create(namespace.Stereotype.MODULE, config["pose_encoder"]) self.pts_encoder = ComponentFactory.create(namespace.Stereotype.MODULE, self.module_config["pts_encoder"])
self.seq_encoder = ComponentFactory.create(namespace.Stereotype.MODULE, config["seq_encoder"]) self.pose_encoder = ComponentFactory.create(namespace.Stereotype.MODULE, self.module_config["pose_encoder"])
self.view_finder = ComponentFactory.create(namespace.Stereotype.MODULE, config["view_finder"]) self.seq_encoder = ComponentFactory.create(namespace.Stereotype.MODULE, self.module_config["seq_encoder"])
self.eps = 1e-5 self.view_finder = ComponentFactory.create(namespace.Stereotype.MODULE, self.module_config["view_finder"])
self.eps = float(self.config["eps"])
self.enable_global_scanned_feat = self.config["global_scanned_feat"]
def forward(self, data): def forward(self, data):
mode = data["mode"] mode = data["mode"]
@ -38,14 +40,14 @@ class NBVReconstructionPipeline(nn.Module):
return perturbed_x, random_t, target_score, std return perturbed_x, random_t, target_score, std
def forward_train(self, data): def forward_train(self, data):
seq_feat = self.get_seq_feat(data) main_feat = self.get_main_feat(data)
''' get std ''' ''' get std '''
best_to_world_pose_9d_batch = data["best_to_world_pose_9d"] best_to_world_pose_9d_batch = data["best_to_world_pose_9d"]
perturbed_x, random_t, target_score, std = self.pertube_data(best_to_world_pose_9d_batch) perturbed_x, random_t, target_score, std = self.pertube_data(best_to_world_pose_9d_batch)
input_data = { input_data = {
"sampled_pose": perturbed_x, "sampled_pose": perturbed_x,
"t": random_t, "t": random_t,
"seq_feat": seq_feat, "main_feat": main_feat,
} }
estimated_score = self.view_finder(input_data) estimated_score = self.view_finder(input_data)
output = { output = {
@ -56,20 +58,27 @@ class NBVReconstructionPipeline(nn.Module):
return output return output
def forward_test(self,data): def forward_test(self,data):
seq_feat = self.get_seq_feat(data) main_feat = self.get_main_feat(data)
estimated_delta_rot_9d, in_process_sample = self.view_finder.next_best_view(seq_feat) estimated_delta_rot_9d, in_process_sample = self.view_finder.next_best_view(main_feat)
result = { result = {
"pred_pose_9d": estimated_delta_rot_9d, "pred_pose_9d": estimated_delta_rot_9d,
"in_process_sample": in_process_sample "in_process_sample": in_process_sample
} }
return result return result
def get_seq_feat(self, data):
def get_main_feat(self, data):
scanned_pts_batch = data['scanned_pts'] scanned_pts_batch = data['scanned_pts']
scanned_n_to_world_pose_9d_batch = data['scanned_n_to_world_pose_9d'] scanned_n_to_world_pose_9d_batch = data['scanned_n_to_world_pose_9d']
device = next(self.parameters()).device
pts_feat_seq_list = [] pts_feat_seq_list = []
pose_feat_seq_list = [] pose_feat_seq_list = []
device = next(self.parameters()).device
for scanned_pts,scanned_n_to_world_pose_9d in zip(scanned_pts_batch,scanned_n_to_world_pose_9d_batch): for scanned_pts,scanned_n_to_world_pose_9d in zip(scanned_pts_batch,scanned_n_to_world_pose_9d_batch):
scanned_pts = scanned_pts.to(device) scanned_pts = scanned_pts.to(device)
@ -77,8 +86,16 @@ class NBVReconstructionPipeline(nn.Module):
pts_feat_seq_list.append(self.pts_encoder.encode_points(scanned_pts)) pts_feat_seq_list.append(self.pts_encoder.encode_points(scanned_pts))
pose_feat_seq_list.append(self.pose_encoder.encode_pose(scanned_n_to_world_pose_9d)) pose_feat_seq_list.append(self.pose_encoder.encode_pose(scanned_n_to_world_pose_9d))
seq_feat = self.seq_encoder.encode_sequence(pts_feat_seq_list, pose_feat_seq_list) main_feat = self.seq_encoder.encode_sequence(pts_feat_seq_list, pose_feat_seq_list)
if torch.isnan(seq_feat).any():
Log.error("nan in seq_feat", True) if self.enable_global_scanned_feat:
return seq_feat combined_scanned_pts_batch = data['combined_scanned_pts']
global_scanned_feat = self.pts_encoder.encode_points(combined_scanned_pts_batch)
main_feat = torch.cat([main_feat, global_scanned_feat], dim=-1)
if torch.isnan(main_feat).any():
Log.error("nan in main_feat", True)
return main_feat

View File

@ -7,12 +7,11 @@ from PytorchBoot.utils.log_util import Log
import torch import torch
import os import os
import sys import sys
sys.path.append(r"/media/hofee/data/project/python/nbv_reconstruction/nbv_reconstruction") sys.path.append(r"/home/data/hofee/project/nbv_rec/nbv_reconstruction")
from utils.data_load import DataLoadUtil from utils.data_load import DataLoadUtil
from utils.pose import PoseUtil from utils.pose import PoseUtil
from utils.pts import PtsUtil from utils.pts import PtsUtil
from utils.reconstruction import ReconstructionUtil
@stereotype.dataset("nbv_reconstruction_dataset") @stereotype.dataset("nbv_reconstruction_dataset")
@ -35,7 +34,7 @@ class NBVReconstructionDataset(BaseDataset):
self.model_dir = config["model_dir"] self.model_dir = config["model_dir"]
self.filter_degree = config["filter_degree"] self.filter_degree = config["filter_degree"]
if self.type == namespace.Mode.TRAIN: if self.type == namespace.Mode.TRAIN:
scale_ratio = 1 scale_ratio = 100
self.datalist = self.datalist*scale_ratio self.datalist = self.datalist*scale_ratio
if self.cache: if self.cache:
expr_root = ConfigManager.get("runner", "experiment", "root_dir") expr_root = ConfigManager.get("runner", "experiment", "root_dir")
@ -56,20 +55,35 @@ class NBVReconstructionDataset(BaseDataset):
def get_datalist(self): def get_datalist(self):
datalist = [] datalist = []
for scene_name in self.scene_name_list: for scene_name in self.scene_name_list:
label_path = DataLoadUtil.get_label_path_old(self.root_dir, scene_name) seq_num = DataLoadUtil.get_label_num(self.root_dir, scene_name)
scene_max_coverage_rate = 0
max_coverage_rate_list = []
for seq_idx in range(seq_num):
label_path = DataLoadUtil.get_label_path(self.root_dir, scene_name, seq_idx)
label_data = DataLoadUtil.load_label(label_path) label_data = DataLoadUtil.load_label(label_path)
max_coverage_rate = label_data["max_coverage_rate"]
if max_coverage_rate > scene_max_coverage_rate:
scene_max_coverage_rate = max_coverage_rate
max_coverage_rate_list.append(max_coverage_rate)
mean_coverage_rate = np.mean(max_coverage_rate_list)
for seq_idx in range(seq_num):
label_path = DataLoadUtil.get_label_path(self.root_dir, scene_name, seq_idx)
label_data = DataLoadUtil.load_label(label_path)
if max_coverage_rate_list[seq_idx] > mean_coverage_rate - 0.1:
for data_pair in label_data["data_pairs"]: for data_pair in label_data["data_pairs"]:
scanned_views = data_pair[0] scanned_views = data_pair[0]
next_best_view = data_pair[1] next_best_view = data_pair[1]
max_coverage_rate = label_data["max_coverage_rate"] datalist.append({
datalist.append(
{
"scanned_views": scanned_views, "scanned_views": scanned_views,
"next_best_view": next_best_view, "next_best_view": next_best_view,
"max_coverage_rate": max_coverage_rate, "seq_max_coverage_rate": max_coverage_rate,
"scene_name": scene_name, "scene_name": scene_name,
} "label_idx": seq_idx,
) "scene_max_coverage_rate": scene_max_coverage_rate
})
break # TODO: for small version debug
return datalist return datalist
def preprocess_cache(self): def preprocess_cache(self):
@ -102,7 +116,7 @@ class NBVReconstructionDataset(BaseDataset):
data_item_info = self.datalist[index] data_item_info = self.datalist[index]
scanned_views = data_item_info["scanned_views"] scanned_views = data_item_info["scanned_views"]
nbv = data_item_info["next_best_view"] nbv = data_item_info["next_best_view"]
max_coverage_rate = data_item_info["max_coverage_rate"] max_coverage_rate = data_item_info["seq_max_coverage_rate"]
scene_name = data_item_info["scene_name"] scene_name = data_item_info["scene_name"]
scanned_views_pts, scanned_coverages_rate, scanned_n_to_world_pose = [], [], [] scanned_views_pts, scanned_coverages_rate, scanned_n_to_world_pose = [], [], []
@ -151,13 +165,18 @@ class NBVReconstructionDataset(BaseDataset):
best_to_world_6d = PoseUtil.matrix_to_rotation_6d_numpy(np.asarray(best_frame_to_world[:3,:3])) best_to_world_6d = PoseUtil.matrix_to_rotation_6d_numpy(np.asarray(best_frame_to_world[:3,:3]))
best_to_world_trans = best_frame_to_world[:3,3] best_to_world_trans = best_frame_to_world[:3,3]
best_to_world_9d = np.concatenate([best_to_world_6d, best_to_world_trans], axis=0) best_to_world_9d = np.concatenate([best_to_world_6d, best_to_world_trans], axis=0)
combined_scanned_views_pts = np.concatenate(scanned_views_pts, axis=0)
voxel_downsampled_combined_scanned_pts_np = PtsUtil.voxel_downsample_point_cloud(combined_scanned_views_pts, 0.002)
random_downsampled_combined_scanned_pts_np = PtsUtil.random_downsample_point_cloud(voxel_downsampled_combined_scanned_pts_np, self.pts_num)
data_item = { data_item = {
"scanned_pts": np.asarray(scanned_views_pts,dtype=np.float32), "scanned_pts": np.asarray(scanned_views_pts,dtype=np.float32),
"combined_scanned_pts": np.asarray(random_downsampled_combined_scanned_pts_np,dtype=np.float32),
"scanned_coverage_rate": scanned_coverages_rate, "scanned_coverage_rate": scanned_coverages_rate,
"scanned_n_to_world_pose_9d": np.asarray(scanned_n_to_world_pose,dtype=np.float32), "scanned_n_to_world_pose_9d": np.asarray(scanned_n_to_world_pose,dtype=np.float32),
"best_coverage_rate": nbv_coverage_rate, "best_coverage_rate": nbv_coverage_rate,
"best_to_world_pose_9d": np.asarray(best_to_world_9d,dtype=np.float32), "best_to_world_pose_9d": np.asarray(best_to_world_9d,dtype=np.float32),
"max_coverage_rate": max_coverage_rate, "seq_max_coverage_rate": max_coverage_rate,
"scene_name": scene_name "scene_name": scene_name
} }
@ -195,10 +214,11 @@ class NBVReconstructionDataset(BaseDataset):
collate_data["scanned_pts"] = [torch.tensor(item['scanned_pts']) for item in batch] collate_data["scanned_pts"] = [torch.tensor(item['scanned_pts']) for item in batch]
collate_data["scanned_n_to_world_pose_9d"] = [torch.tensor(item['scanned_n_to_world_pose_9d']) for item in batch] collate_data["scanned_n_to_world_pose_9d"] = [torch.tensor(item['scanned_n_to_world_pose_9d']) for item in batch]
collate_data["best_to_world_pose_9d"] = torch.stack([torch.tensor(item['best_to_world_pose_9d']) for item in batch]) collate_data["best_to_world_pose_9d"] = torch.stack([torch.tensor(item['best_to_world_pose_9d']) for item in batch])
collate_data["combined_scanned_pts"] = torch.stack([torch.tensor(item['combined_scanned_pts']) for item in batch])
if "first_frame_to_world" in batch[0]: if "first_frame_to_world" in batch[0]:
collate_data["first_frame_to_world"] = torch.stack([torch.tensor(item["first_frame_to_world"]) for item in batch]) collate_data["first_frame_to_world"] = torch.stack([torch.tensor(item["first_frame_to_world"]) for item in batch])
for key in batch[0].keys(): for key in batch[0].keys():
if key not in ["scanned_pts", "scanned_n_to_world_pose_9d", "best_to_world_pose_9d", "first_frame_to_world"]: if key not in ["scanned_pts", "scanned_n_to_world_pose_9d", "best_to_world_pose_9d", "first_frame_to_world", "combined_scanned_pts"]:
collate_data[key] = [item[key] for item in batch] collate_data[key] = [item[key] for item in batch]
return collate_data return collate_data
return collate_fn return collate_fn
@ -211,11 +231,11 @@ if __name__ == "__main__":
torch.manual_seed(seed) torch.manual_seed(seed)
np.random.seed(seed) np.random.seed(seed)
config = { config = {
"root_dir": "/media/hofee/repository/nbv_reconstruction_data_512", "root_dir": "/home/data/hofee/project/nbv_rec/data/nbv_rec_data_512_preproc_npy",
"model_dir": "/media/hofee/data/data/scaled_object_meshes", "model_dir": "/home/data/hofee/project/nbv_rec/data/scaled_object_meshes",
"source": "nbv_reconstruction_dataset", "source": "nbv_reconstruction_dataset",
"split_file": "/media/hofee/data/project/python/nbv_reconstruction/sample_for_training/OmniObject3d_train.txt", "split_file": "/home/data/hofee/project/nbv_rec/data/OmniObject3d_test.txt",
"load_from_preprocess": False, "load_from_preprocess": True,
"ratio": 0.5, "ratio": 0.5,
"batch_size": 2, "batch_size": 2,
"filter_degree": 75, "filter_degree": 75,

View File

@ -32,7 +32,7 @@ def cond_ode_sampler(
init_x=None, init_x=None,
): ):
pose_dim = PoseUtil.get_pose_dim(pose_mode) pose_dim = PoseUtil.get_pose_dim(pose_mode)
batch_size = data["seq_feat"].shape[0] batch_size = data["main_feat"].shape[0]
init_x = ( init_x = (
prior((batch_size, pose_dim), T=T).to(device) prior((batch_size, pose_dim), T=T).to(device)
if init_x is None if init_x is None

View File

@ -80,13 +80,13 @@ class GradientFieldViewFinder(nn.Module):
""" """
Args: Args:
data, dict { data, dict {
'seq_feat': [bs, c] 'main_feat': [bs, c]
'pose_sample': [bs, pose_dim] 'pose_sample': [bs, pose_dim]
't': [bs, 1] 't': [bs, 1]
} }
""" """
seq_feat = data['seq_feat'] main_feat = data['main_feat']
sampled_pose = data['sampled_pose'] sampled_pose = data['sampled_pose']
t = data['t'] t = data['t']
t_feat = self.t_encoder(t.squeeze(1)) t_feat = self.t_encoder(t.squeeze(1))
@ -95,7 +95,7 @@ class GradientFieldViewFinder(nn.Module):
if self.per_point_feature: if self.per_point_feature:
raise NotImplementedError raise NotImplementedError
else: else:
total_feat = torch.cat([seq_feat, t_feat, pose_feat], dim=-1) total_feat = torch.cat([main_feat, t_feat, pose_feat], dim=-1)
_, std = self.marginal_prob_fn(total_feat, t) _, std = self.marginal_prob_fn(total_feat, t)
if self.regression_head == 'Rx_Ry_and_T': if self.regression_head == 'Rx_Ry_and_T':
@ -134,9 +134,9 @@ class GradientFieldViewFinder(nn.Module):
return in_process_sample, res return in_process_sample, res
def next_best_view(self, seq_feat): def next_best_view(self, main_feat):
data = { data = {
'seq_feat': seq_feat, 'main_feat': main_feat,
} }
in_process_sample, res = self.sample(data) in_process_sample, res = self.sample(data)
return res.to(dtype=torch.float32), in_process_sample return res.to(dtype=torch.float32), in_process_sample

View File

@ -0,0 +1,63 @@
import torch
from torch import nn
from torch.nn.utils.rnn import pad_sequence
import PytorchBoot.stereotype as stereotype
@stereotype.module("transformer_pose_seq_encoder")
class TransformerPoseSequenceEncoder(nn.Module):
def __init__(self, config):
super(TransformerPoseSequenceEncoder, self).__init__()
self.config = config
embed_dim = config["pose_embed_dim"]
encoder_layer = nn.TransformerEncoderLayer(
d_model=embed_dim,
nhead=config["num_heads"],
dim_feedforward=config["ffn_dim"],
batch_first=True,
)
self.transformer_encoder = nn.TransformerEncoder(
encoder_layer, num_layers=config["num_layers"]
)
self.fc = nn.Linear(embed_dim, config["output_dim"])
def encode_sequence(self, pose_embedding_list_batch):
lengths = []
for pose_embedding_list in pose_embedding_list_batch:
lengths.append(len(pose_embedding_list))
combined_tensor = pad_sequence(pose_embedding_list_batch, batch_first=True) # Shape: [batch_size, max_seq_len, embed_dim]
max_len = max(lengths)
padding_mask = torch.tensor([([0] * length + [1] * (max_len - length)) for length in lengths], dtype=torch.bool).to(combined_tensor.device)
transformer_output = self.transformer_encoder(combined_tensor, src_key_padding_mask=padding_mask)
final_feature = transformer_output.mean(dim=1)
final_output = self.fc(final_feature)
return final_output
if __name__ == "__main__":
config = {
"pose_embed_dim": 256,
"num_heads": 4,
"ffn_dim": 256,
"num_layers": 3,
"output_dim": 1024,
}
encoder = TransformerPoseSequenceEncoder(config)
seq_len = [5, 8, 9, 4]
batch_size = 4
pose_embedding_list_batch = [
torch.randn(seq_len[idx], config["pose_embed_dim"]) for idx in range(batch_size)
]
output_feature = encoder.encode_sequence(
pose_embedding_list_batch
)
print("Encoded Feature:", output_feature)
print("Feature Shape:", output_feature.shape)