Compare commits
2 Commits
2fcc650eb7
...
hemisphere
Author | SHA1 | Date | |
---|---|---|---|
a40712af22 | |||
be835aded4 |
8
app_heuristic.py
Normal file
8
app_heuristic.py
Normal file
@@ -0,0 +1,8 @@
|
|||||||
|
from PytorchBoot.application import PytorchBootApplication
|
||||||
|
from runners.heuristic import Heuristic
|
||||||
|
|
||||||
|
@PytorchBootApplication("exp_heuristic")
|
||||||
|
class ExpHeuristic:
|
||||||
|
@staticmethod
|
||||||
|
def start():
|
||||||
|
Heuristic("configs/local/heuristic_exp_config.yaml").run()
|
71
configs/local/heuristic_exp_config.yaml
Normal file
71
configs/local/heuristic_exp_config.yaml
Normal file
@@ -0,0 +1,71 @@
|
|||||||
|
|
||||||
|
runner:
|
||||||
|
general:
|
||||||
|
seed: 0
|
||||||
|
device: cuda
|
||||||
|
cuda_visible_devices: "0,1,2,3,4,5,6,7"
|
||||||
|
|
||||||
|
experiment:
|
||||||
|
name: exp_hemisphere_circle_trajectory
|
||||||
|
root_dir: "experiments"
|
||||||
|
epoch: -1 # -1 stands for last epoch
|
||||||
|
|
||||||
|
test:
|
||||||
|
dataset_list:
|
||||||
|
- OmniObject3d_test
|
||||||
|
|
||||||
|
blender_script_path: "/media/hofee/data/project/python/nbv_reconstruction/blender/data_renderer.py"
|
||||||
|
output_dir: "/media/hofee/data/results/nbv_rec_inference/hemisphere_random_241202"
|
||||||
|
voxel_size: 0.003
|
||||||
|
min_new_area: 1.0
|
||||||
|
heuristic_method: hemisphere_random
|
||||||
|
|
||||||
|
dataset:
|
||||||
|
# OmniObject3d_train:
|
||||||
|
# root_dir: "C:\\Document\\Datasets\\inference_test1"
|
||||||
|
# model_dir: "C:\\Document\\Datasets\\scaled_object_meshes"
|
||||||
|
# source: seq_reconstruction_dataset_preprocessed
|
||||||
|
# split_file: "C:\\Document\\Datasets\\data_list\\sample.txt"
|
||||||
|
# type: test
|
||||||
|
# filter_degree: 75
|
||||||
|
# ratio: 1
|
||||||
|
# batch_size: 1
|
||||||
|
# num_workers: 12
|
||||||
|
# pts_num: 8192
|
||||||
|
# load_from_preprocess: True
|
||||||
|
|
||||||
|
OmniObject3d_test:
|
||||||
|
root_dir: "/media/hofee/data/data/new_testset_output"
|
||||||
|
model_dir: "/media/hofee/data/data/scaled_object_meshes"
|
||||||
|
source: seq_reconstruction_dataset_preprocessed
|
||||||
|
# split_file: "C:\\Document\\Datasets\\data_list\\OmniObject3d_test.txt"
|
||||||
|
type: test
|
||||||
|
filter_degree: 75
|
||||||
|
eval_list:
|
||||||
|
- pose_diff
|
||||||
|
- coverage_rate_increase
|
||||||
|
ratio: 0.1
|
||||||
|
batch_size: 1
|
||||||
|
num_workers: 12
|
||||||
|
pts_num: 8192
|
||||||
|
load_from_preprocess: True
|
||||||
|
|
||||||
|
heuristic_methods:
|
||||||
|
hemisphere_random:
|
||||||
|
center: [0, 0, 0]
|
||||||
|
radius_fixed: True
|
||||||
|
fixed_radius: 0.6
|
||||||
|
min_radius: 0.4
|
||||||
|
max_radius: 0.8
|
||||||
|
|
||||||
|
hemisphere_circle_trajectory:
|
||||||
|
center: [0, 0, 0]
|
||||||
|
radius_fixed: False
|
||||||
|
fixed_radius: 0.6
|
||||||
|
min_radius: 0.4
|
||||||
|
max_radius: 0.8
|
||||||
|
phi_list: [15, 45, 75]
|
||||||
|
circle_times: 12
|
||||||
|
|
||||||
|
|
||||||
|
|
@@ -6,7 +6,7 @@ runner:
|
|||||||
cuda_visible_devices: "0,1,2,3,4,5,6,7"
|
cuda_visible_devices: "0,1,2,3,4,5,6,7"
|
||||||
|
|
||||||
experiment:
|
experiment:
|
||||||
name: train_ab_global_only
|
name: train_ab_partial
|
||||||
root_dir: "experiments"
|
root_dir: "experiments"
|
||||||
epoch: -1 # -1 stands for last epoch
|
epoch: -1 # -1 stands for last epoch
|
||||||
|
|
||||||
@@ -15,7 +15,7 @@ runner:
|
|||||||
- OmniObject3d_test
|
- OmniObject3d_test
|
||||||
|
|
||||||
blender_script_path: "/media/hofee/data/project/python/nbv_reconstruction/blender/data_renderer.py"
|
blender_script_path: "/media/hofee/data/project/python/nbv_reconstruction/blender/data_renderer.py"
|
||||||
output_dir: "/media/hofee/data/data/new_inference_test_output"
|
output_dir: "/media/hofee/data/results/nbv_rec_inference/partial_241202"
|
||||||
pipeline: nbv_reconstruction_pipeline
|
pipeline: nbv_reconstruction_pipeline
|
||||||
voxel_size: 0.003
|
voxel_size: 0.003
|
||||||
min_new_area: 1.0
|
min_new_area: 1.0
|
||||||
@@ -66,7 +66,7 @@ module:
|
|||||||
global_feat: True
|
global_feat: True
|
||||||
feature_transform: False
|
feature_transform: False
|
||||||
transformer_seq_encoder:
|
transformer_seq_encoder:
|
||||||
embed_dim: 256
|
embed_dim: 320
|
||||||
num_heads: 4
|
num_heads: 4
|
||||||
ffn_dim: 256
|
ffn_dim: 256
|
||||||
num_layers: 3
|
num_layers: 3
|
||||||
|
@@ -88,26 +88,49 @@ class NBVReconstructionPipeline(nn.Module):
|
|||||||
scanned_n_to_world_pose_9d_batch = data[
|
scanned_n_to_world_pose_9d_batch = data[
|
||||||
"scanned_n_to_world_pose_9d"
|
"scanned_n_to_world_pose_9d"
|
||||||
] # List(B): Tensor(S x 9)
|
] # List(B): Tensor(S x 9)
|
||||||
|
scanned_pts_mask_batch = data["scanned_pts_mask"] # List(B): Tensor(S x N)
|
||||||
|
|
||||||
device = next(self.parameters()).device
|
device = next(self.parameters()).device
|
||||||
|
|
||||||
embedding_list_batch = []
|
embedding_list_batch = []
|
||||||
|
|
||||||
combined_scanned_pts_batch = data["combined_scanned_pts"] # Tensor(B x N x 3)
|
combined_scanned_pts_batch = data["combined_scanned_pts"] # Tensor(B x N x 3)
|
||||||
global_scanned_feat = self.pts_encoder.encode_points(
|
global_scanned_feat, per_point_feat_batch = self.pts_encoder.encode_points(
|
||||||
combined_scanned_pts_batch, require_per_point_feat=False
|
combined_scanned_pts_batch, require_per_point_feat=True
|
||||||
) # global_scanned_feat: Tensor(B x Dg)
|
) # global_scanned_feat: Tensor(B x Dg)
|
||||||
|
batch_size = len(scanned_n_to_world_pose_9d_batch)
|
||||||
for scanned_n_to_world_pose_9d in scanned_n_to_world_pose_9d_batch:
|
for i in range(batch_size):
|
||||||
scanned_n_to_world_pose_9d = scanned_n_to_world_pose_9d.to(device) # Tensor(S x 9)
|
seq_len = len(scanned_n_to_world_pose_9d_batch[i])
|
||||||
|
scanned_n_to_world_pose_9d = scanned_n_to_world_pose_9d_batch[i].to(device) # Tensor(S x 9)
|
||||||
|
scanned_pts_mask = scanned_pts_mask_batch[i] # Tensor(S x N)
|
||||||
|
per_point_feat = per_point_feat_batch[i] # Tensor(N x Dp)
|
||||||
|
partial_point_feat_seq = []
|
||||||
|
for j in range(seq_len):
|
||||||
|
partial_per_point_feat = per_point_feat[scanned_pts_mask[j]]
|
||||||
|
if partial_per_point_feat.shape[0] == 0:
|
||||||
|
partial_point_feat = torch.zeros(per_point_feat.shape[1], device=device)
|
||||||
|
else:
|
||||||
|
partial_point_feat = torch.mean(partial_per_point_feat, dim=0) # Tensor(Dp)
|
||||||
|
partial_point_feat_seq.append(partial_point_feat)
|
||||||
|
partial_point_feat_seq = torch.stack(partial_point_feat_seq, dim=0) # Tensor(S x Dp)
|
||||||
|
|
||||||
pose_feat_seq = self.pose_encoder.encode_pose(scanned_n_to_world_pose_9d) # Tensor(S x Dp)
|
pose_feat_seq = self.pose_encoder.encode_pose(scanned_n_to_world_pose_9d) # Tensor(S x Dp)
|
||||||
seq_embedding = pose_feat_seq
|
|
||||||
|
seq_embedding = torch.cat([partial_point_feat_seq, pose_feat_seq], dim=-1)
|
||||||
|
|
||||||
embedding_list_batch.append(seq_embedding) # List(B): Tensor(S x (Dp))
|
embedding_list_batch.append(seq_embedding) # List(B): Tensor(S x (Dp))
|
||||||
|
|
||||||
seq_feat = self.seq_encoder.encode_sequence(embedding_list_batch) # Tensor(B x Ds)
|
seq_feat = self.seq_encoder.encode_sequence(embedding_list_batch) # Tensor(B x Ds)
|
||||||
main_feat = torch.cat([seq_feat, global_scanned_feat], dim=-1) # Tensor(B x (Ds+Dg))
|
main_feat = torch.cat([seq_feat, global_scanned_feat], dim=-1) # Tensor(B x (Ds+Dg))
|
||||||
|
|
||||||
if torch.isnan(main_feat).any():
|
if torch.isnan(main_feat).any():
|
||||||
|
for i in range(len(main_feat)):
|
||||||
|
if torch.isnan(main_feat[i]).any():
|
||||||
|
scanned_pts_mask = scanned_pts_mask_batch[i]
|
||||||
|
Log.info(f"scanned_pts_mask shape: {scanned_pts_mask.shape}")
|
||||||
|
Log.info(f"scanned_pts_mask sum: {scanned_pts_mask.sum()}")
|
||||||
|
import ipdb
|
||||||
|
ipdb.set_trace()
|
||||||
Log.error("nan in main_feat", True)
|
Log.error("nan in main_feat", True)
|
||||||
|
|
||||||
return main_feat
|
return main_feat
|
425
runners/heuristic.py
Normal file
425
runners/heuristic.py
Normal file
@@ -0,0 +1,425 @@
|
|||||||
|
import os
|
||||||
|
import json
|
||||||
|
from utils.render import RenderUtil
|
||||||
|
from utils.pose import PoseUtil
|
||||||
|
from utils.pts import PtsUtil
|
||||||
|
from utils.reconstruction import ReconstructionUtil
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from tqdm import tqdm
|
||||||
|
import numpy as np
|
||||||
|
import pickle
|
||||||
|
|
||||||
|
from PytorchBoot.config import ConfigManager
|
||||||
|
import PytorchBoot.namespace as namespace
|
||||||
|
import PytorchBoot.stereotype as stereotype
|
||||||
|
from PytorchBoot.factory import ComponentFactory
|
||||||
|
|
||||||
|
from PytorchBoot.dataset import BaseDataset
|
||||||
|
from PytorchBoot.runners.runner import Runner
|
||||||
|
from PytorchBoot.utils import Log
|
||||||
|
from PytorchBoot.status import status_manager
|
||||||
|
from utils.data_load import DataLoadUtil
|
||||||
|
|
||||||
|
@stereotype.runner("heuristic")
|
||||||
|
class Heuristic(Runner):
|
||||||
|
def __init__(self, config_path):
|
||||||
|
|
||||||
|
super().__init__(config_path)
|
||||||
|
|
||||||
|
self.script_path = ConfigManager.get(namespace.Stereotype.RUNNER, "blender_script_path")
|
||||||
|
self.output_dir = ConfigManager.get(namespace.Stereotype.RUNNER, "output_dir")
|
||||||
|
self.voxel_size = ConfigManager.get(namespace.Stereotype.RUNNER, "voxel_size")
|
||||||
|
self.min_new_area = ConfigManager.get(namespace.Stereotype.RUNNER, "min_new_area")
|
||||||
|
self.heuristic_method = ConfigManager.get(namespace.Stereotype.RUNNER, "heuristic_method")
|
||||||
|
self.heuristic_method_config = ConfigManager.get("heuristic_methods", self.heuristic_method)
|
||||||
|
CM = 0.01
|
||||||
|
self.min_new_pts_num = self.min_new_area * (CM / self.voxel_size) **2
|
||||||
|
|
||||||
|
''' Experiment '''
|
||||||
|
self.load_experiment("nbv_evaluator")
|
||||||
|
self.stat_result_path = os.path.join(self.output_dir, "stat.json")
|
||||||
|
if os.path.exists(self.stat_result_path):
|
||||||
|
with open(self.stat_result_path, "r") as f:
|
||||||
|
self.stat_result = json.load(f)
|
||||||
|
else:
|
||||||
|
self.stat_result = {}
|
||||||
|
|
||||||
|
''' Test '''
|
||||||
|
self.test_config = ConfigManager.get(namespace.Stereotype.RUNNER, namespace.Mode.TEST)
|
||||||
|
self.test_dataset_name_list = self.test_config["dataset_list"]
|
||||||
|
self.test_set_list = []
|
||||||
|
self.test_writer_list = []
|
||||||
|
seen_name = set()
|
||||||
|
for test_dataset_name in self.test_dataset_name_list:
|
||||||
|
if test_dataset_name not in seen_name:
|
||||||
|
seen_name.add(test_dataset_name)
|
||||||
|
else:
|
||||||
|
raise ValueError("Duplicate test dataset name: {}".format(test_dataset_name))
|
||||||
|
test_set: BaseDataset = ComponentFactory.create(namespace.Stereotype.DATASET, test_dataset_name)
|
||||||
|
self.test_set_list.append(test_set)
|
||||||
|
self.print_info()
|
||||||
|
|
||||||
|
|
||||||
|
def run(self):
|
||||||
|
Log.info("Loading from epoch {}.".format(self.current_epoch))
|
||||||
|
self.run_heuristic()
|
||||||
|
Log.success("Inference finished.")
|
||||||
|
|
||||||
|
|
||||||
|
def run_heuristic(self):
|
||||||
|
|
||||||
|
test_set: BaseDataset
|
||||||
|
for dataset_idx, test_set in enumerate(self.test_set_list):
|
||||||
|
status_manager.set_progress("heuristic", "heuristic", f"dataset", dataset_idx, len(self.test_set_list))
|
||||||
|
test_set_name = test_set.get_name()
|
||||||
|
|
||||||
|
total=int(len(test_set))
|
||||||
|
for i in tqdm(range(total), desc=f"Processing {test_set_name}", ncols=100):
|
||||||
|
try:
|
||||||
|
data = test_set.__getitem__(i)
|
||||||
|
scene_name = data["scene_name"]
|
||||||
|
inference_result_path = os.path.join(self.output_dir, test_set_name, f"{scene_name}.pkl")
|
||||||
|
if os.path.exists(inference_result_path):
|
||||||
|
Log.info(f"Inference result already exists for scene: {scene_name}")
|
||||||
|
continue
|
||||||
|
|
||||||
|
status_manager.set_progress("heuristic", "heuristic", f"Batch[{test_set_name}]", i+1, total)
|
||||||
|
output = self.predict_sequence(data)
|
||||||
|
self.save_inference_result(test_set_name, data["scene_name"], output)
|
||||||
|
except Exception as e:
|
||||||
|
print(e)
|
||||||
|
Log.error(f"Error, {e}")
|
||||||
|
continue
|
||||||
|
|
||||||
|
status_manager.set_progress("heuristic", "heuristic", f"dataset", len(self.test_set_list), len(self.test_set_list))
|
||||||
|
|
||||||
|
def predict_sequence(self, data, cr_increase_threshold=0, overlap_area_threshold=25, scan_points_threshold=10, max_iter=5000, max_retry=5000, max_success=5000):
|
||||||
|
scene_name = data["scene_name"]
|
||||||
|
Log.info(f"Processing scene: {scene_name}")
|
||||||
|
status_manager.set_status("heuristic", "heuristic", "scene", scene_name)
|
||||||
|
|
||||||
|
''' data for rendering '''
|
||||||
|
scene_path = data["scene_path"]
|
||||||
|
O_to_L_pose = data["O_to_L_pose"]
|
||||||
|
voxel_threshold = self.voxel_size
|
||||||
|
filter_degree = 75
|
||||||
|
down_sampled_model_pts = data["gt_pts"]
|
||||||
|
|
||||||
|
first_frame_to_world_9d = data["first_scanned_n_to_world_pose_9d"][0]
|
||||||
|
first_frame_to_world = np.eye(4)
|
||||||
|
first_frame_to_world[:3,:3] = PoseUtil.rotation_6d_to_matrix_numpy(first_frame_to_world_9d[:6])
|
||||||
|
first_frame_to_world[:3,3] = first_frame_to_world_9d[6:]
|
||||||
|
|
||||||
|
# 获取扫描点
|
||||||
|
root = os.path.dirname(scene_path)
|
||||||
|
display_table_info = DataLoadUtil.get_display_table_info(root, scene_name)
|
||||||
|
radius = display_table_info["radius"]
|
||||||
|
scan_points = np.asarray(ReconstructionUtil.generate_scan_points(display_table_top=0,display_table_radius=radius))
|
||||||
|
|
||||||
|
# 生成位姿序列
|
||||||
|
if self.heuristic_method == "hemisphere_random":
|
||||||
|
pose_sequence = self.generate_hemisphere_random_sequence(
|
||||||
|
max_iter,
|
||||||
|
self.heuristic_method_config
|
||||||
|
)
|
||||||
|
elif self.heuristic_method == "hemisphere_circle_trajectory":
|
||||||
|
pose_sequence = self.generate_hemisphere_circle_sequence(
|
||||||
|
self.heuristic_method_config
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
raise ValueError(f"Unknown heuristic method: {self.heuristic_method}")
|
||||||
|
|
||||||
|
# 执行第一帧
|
||||||
|
first_frame_target_pts, _, first_frame_scan_points_indices = RenderUtil.render_pts(
|
||||||
|
first_frame_to_world, scene_path, self.script_path, scan_points,
|
||||||
|
voxel_threshold=voxel_threshold, filter_degree=filter_degree, nO_to_nL_pose=O_to_L_pose
|
||||||
|
)
|
||||||
|
|
||||||
|
# 初始化结果存储
|
||||||
|
scanned_view_pts = [first_frame_target_pts]
|
||||||
|
history_indices = [first_frame_scan_points_indices]
|
||||||
|
pred_cr_seq = []
|
||||||
|
retry_duplication_pose = []
|
||||||
|
retry_no_pts_pose = []
|
||||||
|
retry_overlap_pose = []
|
||||||
|
pose_9d_seq = [first_frame_to_world_9d]
|
||||||
|
|
||||||
|
last_pred_cr, _ = self.compute_coverage_rate(scanned_view_pts, None, down_sampled_model_pts, threshold=voxel_threshold)
|
||||||
|
pred_cr_seq.append(last_pred_cr)
|
||||||
|
last_pts_num = PtsUtil.voxel_downsample_point_cloud(first_frame_target_pts, voxel_threshold).shape[0]
|
||||||
|
|
||||||
|
# 执行序列
|
||||||
|
retry = 0
|
||||||
|
success = 0
|
||||||
|
#import ipdb; ipdb.set_trace()
|
||||||
|
combined_scanned_pts_tensor = torch.tensor([0,0,0])
|
||||||
|
cnt = 0
|
||||||
|
for pred_pose in pose_sequence:
|
||||||
|
cnt += 1
|
||||||
|
if retry >= max_retry or success >= max_success:
|
||||||
|
break
|
||||||
|
|
||||||
|
Log.green(f"迭代: {cnt}/{len(pose_sequence)}, 重试: {retry}/{max_retry}, 成功: {success}/{max_success}")
|
||||||
|
|
||||||
|
try:
|
||||||
|
new_target_pts, _, new_scan_points_indices = RenderUtil.render_pts(
|
||||||
|
pred_pose, scene_path, self.script_path, scan_points,
|
||||||
|
voxel_threshold=voxel_threshold, filter_degree=filter_degree, nO_to_nL_pose=O_to_L_pose
|
||||||
|
)
|
||||||
|
|
||||||
|
# 检查扫描点重叠
|
||||||
|
if not ReconstructionUtil.check_scan_points_overlap(history_indices, new_scan_points_indices, scan_points_threshold):
|
||||||
|
curr_overlap_area_threshold = overlap_area_threshold
|
||||||
|
else:
|
||||||
|
curr_overlap_area_threshold = overlap_area_threshold * 0.5
|
||||||
|
|
||||||
|
# 检查点云重叠
|
||||||
|
downsampled_new_target_pts = PtsUtil.voxel_downsample_point_cloud(new_target_pts, voxel_threshold)
|
||||||
|
overlap, _ = ReconstructionUtil.check_overlap(
|
||||||
|
downsampled_new_target_pts, down_sampled_model_pts,
|
||||||
|
overlap_area_threshold=curr_overlap_area_threshold,
|
||||||
|
voxel_size=voxel_threshold,
|
||||||
|
require_new_added_pts_num=True
|
||||||
|
)
|
||||||
|
|
||||||
|
if not overlap:
|
||||||
|
Log.yellow("no overlap!")
|
||||||
|
retry += 1
|
||||||
|
retry_overlap_pose.append(pred_pose.tolist())
|
||||||
|
continue
|
||||||
|
|
||||||
|
if new_target_pts.shape[0] == 0:
|
||||||
|
Log.red("新视角无点云")
|
||||||
|
retry_no_pts_pose.append(pred_pose.tolist())
|
||||||
|
retry += 1
|
||||||
|
continue
|
||||||
|
|
||||||
|
history_indices.append(new_scan_points_indices)
|
||||||
|
|
||||||
|
# 计算覆盖率
|
||||||
|
pred_cr, _ = self.compute_coverage_rate(scanned_view_pts, new_target_pts, down_sampled_model_pts, threshold=voxel_threshold)
|
||||||
|
Log.yellow(f"覆盖率: {pred_cr}, 上一次: {last_pred_cr}, 最大: {data['seq_max_coverage_rate']}")
|
||||||
|
|
||||||
|
# 更新结果
|
||||||
|
pred_cr_seq.append(pred_cr)
|
||||||
|
scanned_view_pts.append(new_target_pts)
|
||||||
|
pose_6d = PoseUtil.matrix_to_rotation_6d_numpy(pred_pose[:3,:3])
|
||||||
|
pose_9d = np.concatenate([
|
||||||
|
pose_6d,
|
||||||
|
pred_pose[:3,3]
|
||||||
|
])
|
||||||
|
pose_9d_seq.append(pose_9d)
|
||||||
|
# 处理点云数据用于combined_scanned_pts
|
||||||
|
combined_scanned_pts = np.vstack(scanned_view_pts)
|
||||||
|
voxel_downsampled_pts, _ = self.voxel_downsample_with_mapping(combined_scanned_pts, voxel_threshold)
|
||||||
|
random_downsampled_pts, _ = PtsUtil.random_downsample_point_cloud(voxel_downsampled_pts, 8192, require_idx=True)
|
||||||
|
combined_scanned_pts_tensor = torch.tensor(random_downsampled_pts, dtype=torch.float32)
|
||||||
|
|
||||||
|
|
||||||
|
# 检查点数增量
|
||||||
|
pts_num = voxel_downsampled_pts.shape[0]
|
||||||
|
Log.info(f"点数增量: {pts_num - last_pts_num}, 当前: {pts_num}, 上一次: {last_pts_num}")
|
||||||
|
|
||||||
|
if pts_num - last_pts_num < self.min_new_pts_num:
|
||||||
|
if pred_cr <= data["seq_max_coverage_rate"] - 1e-2:
|
||||||
|
retry += 1
|
||||||
|
retry_duplication_pose.append(pred_pose.tolist())
|
||||||
|
Log.red(f"点数增量过小 < {self.min_new_pts_num}")
|
||||||
|
else:
|
||||||
|
success += 1
|
||||||
|
Log.success(f"达到目标覆盖率")
|
||||||
|
|
||||||
|
last_pts_num = pts_num
|
||||||
|
last_pred_cr = pred_cr
|
||||||
|
|
||||||
|
if pred_cr >= data["seq_max_coverage_rate"] - 1e-3:
|
||||||
|
Log.success(f"达到最大覆盖率: {pred_cr}")
|
||||||
|
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
import traceback
|
||||||
|
traceback.print_exc()
|
||||||
|
Log.error(f"场景 {scene_path} 处理出错: {e}")
|
||||||
|
retry_no_pts_pose.append(pred_pose.tolist())
|
||||||
|
retry += 1
|
||||||
|
continue
|
||||||
|
|
||||||
|
# 返回结果
|
||||||
|
result = {
|
||||||
|
"pred_pose_9d_seq": pose_9d_seq,
|
||||||
|
"combined_scanned_pts_tensor": combined_scanned_pts_tensor,
|
||||||
|
"target_pts_seq": scanned_view_pts,
|
||||||
|
"coverage_rate_seq": pred_cr_seq,
|
||||||
|
"max_coverage_rate": data["seq_max_coverage_rate"],
|
||||||
|
"pred_max_coverage_rate": max(pred_cr_seq),
|
||||||
|
"scene_name": scene_name,
|
||||||
|
"retry_no_pts_pose": retry_no_pts_pose,
|
||||||
|
"retry_duplication_pose": retry_duplication_pose,
|
||||||
|
"retry_overlap_pose": retry_overlap_pose,
|
||||||
|
"best_seq_len": data["best_seq_len"],
|
||||||
|
}
|
||||||
|
|
||||||
|
self.stat_result[scene_name] = {
|
||||||
|
"coverage_rate_seq": pred_cr_seq,
|
||||||
|
"pred_max_coverage_rate": max(pred_cr_seq),
|
||||||
|
"pred_seq_len": len(pred_cr_seq),
|
||||||
|
}
|
||||||
|
print('success rate: ', max(pred_cr_seq))
|
||||||
|
|
||||||
|
return result
|
||||||
|
|
||||||
|
def voxel_downsample_with_mapping(self, point_cloud, voxel_size=0.003):
|
||||||
|
voxel_indices = np.floor(point_cloud / voxel_size).astype(np.int32)
|
||||||
|
unique_voxels, inverse, counts = np.unique(voxel_indices, axis=0, return_inverse=True, return_counts=True)
|
||||||
|
idx_sort = np.argsort(inverse)
|
||||||
|
idx_unique = idx_sort[np.cumsum(counts)-counts]
|
||||||
|
downsampled_points = point_cloud[idx_unique]
|
||||||
|
return downsampled_points, inverse
|
||||||
|
|
||||||
|
def compute_coverage_rate(self, scanned_view_pts, new_pts, model_pts, threshold=0.005):
|
||||||
|
if new_pts is not None:
|
||||||
|
new_scanned_view_pts = scanned_view_pts + [new_pts]
|
||||||
|
else:
|
||||||
|
new_scanned_view_pts = scanned_view_pts
|
||||||
|
combined_point_cloud = np.vstack(new_scanned_view_pts)
|
||||||
|
down_sampled_combined_point_cloud = PtsUtil.voxel_downsample_point_cloud(combined_point_cloud,threshold)
|
||||||
|
return ReconstructionUtil.compute_coverage_rate(model_pts, down_sampled_combined_point_cloud, threshold)
|
||||||
|
|
||||||
|
|
||||||
|
def save_inference_result(self, dataset_name, scene_name, output):
|
||||||
|
dataset_dir = os.path.join(self.output_dir, dataset_name)
|
||||||
|
if not os.path.exists(dataset_dir):
|
||||||
|
os.makedirs(dataset_dir)
|
||||||
|
output_path = os.path.join(dataset_dir, f"{scene_name}.pkl")
|
||||||
|
pickle.dump(output, open(output_path, "wb"))
|
||||||
|
with open(self.stat_result_path, "w") as f:
|
||||||
|
json.dump(self.stat_result, f)
|
||||||
|
|
||||||
|
|
||||||
|
def get_checkpoint_path(self, is_last=False):
|
||||||
|
return os.path.join(self.experiment_path, namespace.Direcotry.CHECKPOINT_DIR_NAME,
|
||||||
|
"Epoch_{}.pth".format(
|
||||||
|
self.current_epoch if self.current_epoch != -1 and not is_last else "last"))
|
||||||
|
|
||||||
|
def load_checkpoint(self, is_last=False):
|
||||||
|
self.load(self.get_checkpoint_path(is_last))
|
||||||
|
Log.success(f"Loaded checkpoint from {self.get_checkpoint_path(is_last)}")
|
||||||
|
if is_last:
|
||||||
|
checkpoint_root = os.path.join(self.experiment_path, namespace.Direcotry.CHECKPOINT_DIR_NAME)
|
||||||
|
meta_path = os.path.join(checkpoint_root, "meta.json")
|
||||||
|
if not os.path.exists(meta_path):
|
||||||
|
raise FileNotFoundError(
|
||||||
|
"No checkpoint meta.json file in the experiment {}".format(self.experiments_config["name"]))
|
||||||
|
file_path = os.path.join(checkpoint_root, "meta.json")
|
||||||
|
with open(file_path, "r") as f:
|
||||||
|
meta = json.load(f)
|
||||||
|
self.current_epoch = meta["last_epoch"]
|
||||||
|
self.current_iter = meta["last_iter"]
|
||||||
|
|
||||||
|
def load_experiment(self, backup_name=None):
|
||||||
|
super().load_experiment(backup_name)
|
||||||
|
self.current_epoch = self.experiments_config["epoch"]
|
||||||
|
|
||||||
|
def create_experiment(self, backup_name=None):
|
||||||
|
super().create_experiment(backup_name)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
def print_info(self):
|
||||||
|
def print_dataset(dataset: BaseDataset):
|
||||||
|
config = dataset.get_config()
|
||||||
|
name = dataset.get_name()
|
||||||
|
Log.blue(f"Dataset: {name}")
|
||||||
|
for k,v in config.items():
|
||||||
|
Log.blue(f"\t{k}: {v}")
|
||||||
|
|
||||||
|
super().print_info()
|
||||||
|
table_size = 70
|
||||||
|
Log.blue(f"{'+' + '-' * (table_size // 2)} Datasets {'-' * (table_size // 2)}" + '+')
|
||||||
|
for i, test_set in enumerate(self.test_set_list):
|
||||||
|
Log.blue(f"test dataset {i}: ")
|
||||||
|
print_dataset(test_set)
|
||||||
|
|
||||||
|
Log.blue(f"{'+' + '-' * (table_size // 2)}----------{'-' * (table_size // 2)}" + '+')
|
||||||
|
|
||||||
|
def generate_hemisphere_random_sequence(self, max_iter, config):
|
||||||
|
"""Generate a random hemisphere sampling sequence"""
|
||||||
|
radius_fixed = config["radius_fixed"]
|
||||||
|
fixed_radius = config["fixed_radius"]
|
||||||
|
min_radius = config["min_radius"]
|
||||||
|
max_radius = config["max_radius"]
|
||||||
|
poses = []
|
||||||
|
center = np.array(config["center"])
|
||||||
|
|
||||||
|
for _ in range(max_iter):
|
||||||
|
# 随机采样方向
|
||||||
|
direction = np.random.randn(3)
|
||||||
|
direction[2] = abs(direction[2]) # 确保在上半球
|
||||||
|
direction = direction / np.linalg.norm(direction)
|
||||||
|
|
||||||
|
# 确定半径
|
||||||
|
if radius_fixed:
|
||||||
|
radius = fixed_radius
|
||||||
|
else:
|
||||||
|
radius = np.random.uniform(min_radius, max_radius)
|
||||||
|
|
||||||
|
# 计算位置和朝向
|
||||||
|
position = center + direction * radius
|
||||||
|
z_axis = -direction
|
||||||
|
y_axis = np.array([0, 0, 1])
|
||||||
|
x_axis = np.cross(y_axis, z_axis)
|
||||||
|
x_axis = x_axis / np.linalg.norm(x_axis)
|
||||||
|
y_axis = np.cross(z_axis, x_axis)
|
||||||
|
|
||||||
|
pose = np.eye(4)
|
||||||
|
pose[:3,:3] = np.stack([x_axis, y_axis, z_axis], axis=1)
|
||||||
|
pose[:3,3] = position
|
||||||
|
poses.append(pose)
|
||||||
|
|
||||||
|
return poses
|
||||||
|
|
||||||
|
def generate_hemisphere_circle_sequence(self, config):
|
||||||
|
"""Generate a circular trajectory sampling sequence"""
|
||||||
|
radius_fixed = config["radius_fixed"]
|
||||||
|
fixed_radius = config["fixed_radius"]
|
||||||
|
min_radius = config["min_radius"]
|
||||||
|
max_radius = config["max_radius"]
|
||||||
|
phi_list = config["phi_list"]
|
||||||
|
circle_times = config["circle_times"]
|
||||||
|
|
||||||
|
poses = []
|
||||||
|
center = np.array(config["center"])
|
||||||
|
|
||||||
|
for phi in phi_list: # 仰角
|
||||||
|
phi_rad = np.deg2rad(phi)
|
||||||
|
for i in range(circle_times): # 方位角
|
||||||
|
theta = i * (2 * np.pi / circle_times)
|
||||||
|
|
||||||
|
# 确定半径
|
||||||
|
if radius_fixed:
|
||||||
|
radius = fixed_radius
|
||||||
|
else:
|
||||||
|
radius = np.random.uniform(min_radius, max_radius)
|
||||||
|
|
||||||
|
# 球坐标转笛卡尔坐标
|
||||||
|
x = radius * np.cos(theta) * np.sin(phi_rad)
|
||||||
|
y = radius * np.sin(theta) * np.sin(phi_rad)
|
||||||
|
z = radius * np.cos(phi_rad)
|
||||||
|
position = center + np.array([x, y, z])
|
||||||
|
|
||||||
|
# 计算朝向
|
||||||
|
direction = (center - position) / np.linalg.norm(center - position)
|
||||||
|
z_axis = direction
|
||||||
|
y_axis = np.array([0, 0, 1])
|
||||||
|
x_axis = np.cross(y_axis, z_axis)
|
||||||
|
x_axis = x_axis / np.linalg.norm(x_axis)
|
||||||
|
y_axis = np.cross(z_axis, x_axis)
|
||||||
|
|
||||||
|
pose = np.eye(4)
|
||||||
|
pose[:3,:3] = np.stack([x_axis, y_axis, z_axis], axis=1)
|
||||||
|
pose[:3,3] = position
|
||||||
|
poses.append(pose)
|
||||||
|
|
||||||
|
return poses
|
||||||
|
|
@@ -90,7 +90,8 @@ class Inferencer(Runner):
|
|||||||
output = self.predict_sequence(data)
|
output = self.predict_sequence(data)
|
||||||
self.save_inference_result(test_set_name, data["scene_name"], output)
|
self.save_inference_result(test_set_name, data["scene_name"], output)
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
Log.error(f"Error in scene {scene_name}, {e}")
|
print(e)
|
||||||
|
Log.error(f"Error, {e}")
|
||||||
continue
|
continue
|
||||||
|
|
||||||
status_manager.set_progress("inference", "inferencer", f"dataset", len(self.test_set_list), len(self.test_set_list))
|
status_manager.set_progress("inference", "inferencer", f"dataset", len(self.test_set_list), len(self.test_set_list))
|
||||||
@@ -114,7 +115,9 @@ class Inferencer(Runner):
|
|||||||
|
|
||||||
''' data for inference '''
|
''' data for inference '''
|
||||||
input_data = {}
|
input_data = {}
|
||||||
|
|
||||||
input_data["combined_scanned_pts"] = torch.tensor(data["first_scanned_pts"][0], dtype=torch.float32).to(self.device).unsqueeze(0)
|
input_data["combined_scanned_pts"] = torch.tensor(data["first_scanned_pts"][0], dtype=torch.float32).to(self.device).unsqueeze(0)
|
||||||
|
input_data["scanned_pts_mask"] = [torch.zeros(input_data["combined_scanned_pts"].shape[1], dtype=torch.bool).to(self.device).unsqueeze(0)]
|
||||||
input_data["scanned_n_to_world_pose_9d"] = [torch.tensor(data["first_scanned_n_to_world_pose_9d"], dtype=torch.float32).to(self.device)]
|
input_data["scanned_n_to_world_pose_9d"] = [torch.tensor(data["first_scanned_n_to_world_pose_9d"], dtype=torch.float32).to(self.device)]
|
||||||
input_data["mode"] = namespace.Mode.TEST
|
input_data["mode"] = namespace.Mode.TEST
|
||||||
input_pts_N = input_data["combined_scanned_pts"].shape[1]
|
input_pts_N = input_data["combined_scanned_pts"].shape[1]
|
||||||
@@ -138,6 +141,8 @@ class Inferencer(Runner):
|
|||||||
import time
|
import time
|
||||||
while len(pred_cr_seq) < max_iter and retry < max_retry and success < max_success:
|
while len(pred_cr_seq) < max_iter and retry < max_retry and success < max_success:
|
||||||
Log.green(f"iter: {len(pred_cr_seq)}, retry: {retry}/{max_retry}, success: {success}/{max_success}")
|
Log.green(f"iter: {len(pred_cr_seq)}, retry: {retry}/{max_retry}, success: {success}/{max_success}")
|
||||||
|
combined_scanned_pts = np.vstack(scanned_view_pts)
|
||||||
|
voxel_downsampled_combined_scanned_pts_np, inverse = self.voxel_downsample_with_mapping(combined_scanned_pts, voxel_threshold)
|
||||||
output = self.pipeline(input_data)
|
output = self.pipeline(input_data)
|
||||||
pred_pose_9d = output["pred_pose_9d"]
|
pred_pose_9d = output["pred_pose_9d"]
|
||||||
pred_pose = torch.eye(4, device=pred_pose_9d.device)
|
pred_pose = torch.eye(4, device=pred_pose_9d.device)
|
||||||
@@ -154,7 +159,7 @@ class Inferencer(Runner):
|
|||||||
curr_overlap_area_threshold = overlap_area_threshold * 0.5
|
curr_overlap_area_threshold = overlap_area_threshold * 0.5
|
||||||
|
|
||||||
downsampled_new_target_pts = PtsUtil.voxel_downsample_point_cloud(new_target_pts, voxel_threshold)
|
downsampled_new_target_pts = PtsUtil.voxel_downsample_point_cloud(new_target_pts, voxel_threshold)
|
||||||
overlap, _ = ReconstructionUtil.check_overlap(downsampled_new_target_pts, down_sampled_model_pts, overlap_area_threshold = curr_overlap_area_threshold, voxel_size=voxel_threshold, require_new_added_pts_num = True)
|
overlap, _ = ReconstructionUtil.check_overlap(downsampled_new_target_pts, voxel_downsampled_combined_scanned_pts_np, overlap_area_threshold = curr_overlap_area_threshold, voxel_size=voxel_threshold, require_new_added_pts_num = True)
|
||||||
if not overlap:
|
if not overlap:
|
||||||
Log.yellow("no overlap!")
|
Log.yellow("no overlap!")
|
||||||
retry += 1
|
retry += 1
|
||||||
@@ -187,11 +192,30 @@ class Inferencer(Runner):
|
|||||||
scanned_view_pts.append(new_target_pts)
|
scanned_view_pts.append(new_target_pts)
|
||||||
|
|
||||||
input_data["scanned_n_to_world_pose_9d"] = [torch.cat([input_data["scanned_n_to_world_pose_9d"][0], pred_pose_9d], dim=0)]
|
input_data["scanned_n_to_world_pose_9d"] = [torch.cat([input_data["scanned_n_to_world_pose_9d"][0], pred_pose_9d], dim=0)]
|
||||||
|
start_indices = [0]
|
||||||
|
total_points = 0
|
||||||
|
for pts in scanned_view_pts:
|
||||||
|
total_points += pts.shape[0]
|
||||||
|
start_indices.append(total_points)
|
||||||
combined_scanned_pts = np.vstack(scanned_view_pts)
|
combined_scanned_pts = np.vstack(scanned_view_pts)
|
||||||
voxel_downsampled_combined_scanned_pts_np = PtsUtil.voxel_downsample_point_cloud(combined_scanned_pts, voxel_threshold)
|
voxel_downsampled_combined_scanned_pts_np, inverse = self.voxel_downsample_with_mapping(combined_scanned_pts, voxel_threshold)
|
||||||
random_downsampled_combined_scanned_pts_np = PtsUtil.random_downsample_point_cloud(voxel_downsampled_combined_scanned_pts_np, input_pts_N)
|
random_downsampled_combined_scanned_pts_np, random_downsample_idx = PtsUtil.random_downsample_point_cloud(voxel_downsampled_combined_scanned_pts_np, input_pts_N, require_idx=True)
|
||||||
|
all_idx_unique = np.arange(len(voxel_downsampled_combined_scanned_pts_np))
|
||||||
|
all_random_downsample_idx = all_idx_unique[random_downsample_idx]
|
||||||
|
scanned_pts_mask = []
|
||||||
|
for idx, start_idx in enumerate(start_indices):
|
||||||
|
if idx == len(start_indices) - 1:
|
||||||
|
break
|
||||||
|
end_idx = start_indices[idx+1]
|
||||||
|
view_inverse = inverse[start_idx:end_idx]
|
||||||
|
view_unique_downsampled_idx = np.unique(view_inverse)
|
||||||
|
view_unique_downsampled_idx_set = set(view_unique_downsampled_idx)
|
||||||
|
mask = np.array([idx in view_unique_downsampled_idx_set for idx in all_random_downsample_idx])
|
||||||
|
scanned_pts_mask.append(mask)
|
||||||
|
|
||||||
input_data["combined_scanned_pts"] = torch.tensor(random_downsampled_combined_scanned_pts_np, dtype=torch.float32).unsqueeze(0).to(self.device)
|
input_data["combined_scanned_pts"] = torch.tensor(random_downsampled_combined_scanned_pts_np, dtype=torch.float32).unsqueeze(0).to(self.device)
|
||||||
|
#import ipdb; ipdb.set_trace()
|
||||||
|
input_data["scanned_pts_mask"] = [torch.tensor(scanned_pts_mask, dtype=torch.bool)]
|
||||||
|
|
||||||
|
|
||||||
last_pred_cr = pred_cr
|
last_pred_cr = pred_cr
|
||||||
@@ -232,6 +256,14 @@ class Inferencer(Runner):
|
|||||||
|
|
||||||
return result
|
return result
|
||||||
|
|
||||||
|
def voxel_downsample_with_mapping(self, point_cloud, voxel_size=0.003):
|
||||||
|
voxel_indices = np.floor(point_cloud / voxel_size).astype(np.int32)
|
||||||
|
unique_voxels, inverse, counts = np.unique(voxel_indices, axis=0, return_inverse=True, return_counts=True)
|
||||||
|
idx_sort = np.argsort(inverse)
|
||||||
|
idx_unique = idx_sort[np.cumsum(counts)-counts]
|
||||||
|
downsampled_points = point_cloud[idx_unique]
|
||||||
|
return downsampled_points, inverse
|
||||||
|
|
||||||
def compute_coverage_rate(self, scanned_view_pts, new_pts, model_pts, threshold=0.005):
|
def compute_coverage_rate(self, scanned_view_pts, new_pts, model_pts, threshold=0.005):
|
||||||
if new_pts is not None:
|
if new_pts is not None:
|
||||||
new_scanned_view_pts = scanned_view_pts + [new_pts]
|
new_scanned_view_pts = scanned_view_pts + [new_pts]
|
||||||
|
@@ -174,6 +174,9 @@ class visualizeUtil:
|
|||||||
visualized_nrm = np.array(visualized_nrm)
|
visualized_nrm = np.array(visualized_nrm)
|
||||||
np.savetxt(os.path.join(output_dir, "nrm.txt"), visualized_nrm)
|
np.savetxt(os.path.join(output_dir, "nrm.txt"), visualized_nrm)
|
||||||
np.savetxt(os.path.join(output_dir, "pts.txt"), pts_world)
|
np.savetxt(os.path.join(output_dir, "pts.txt"), pts_world)
|
||||||
|
|
||||||
|
# @staticmethod
|
||||||
|
# def save_
|
||||||
|
|
||||||
# ------ Debug ------
|
# ------ Debug ------
|
||||||
|
|
||||||
|
Reference in New Issue
Block a user