1 Commits

Author SHA1 Message Date
2cd811c1b7 upd 2024-11-07 19:33:18 +08:00
10 changed files with 78 additions and 85 deletions

View File

@@ -18,7 +18,7 @@ runner:
output_dir: "/media/hofee/data/data/new_inference_test_output"
pipeline: nbv_reconstruction_pipeline
voxel_size: 0.003
min_new_area: 1.0
dataset:
# OmniObject3d_train:
# root_dir: "C:\\Document\\Datasets\\inference_test1"

View File

@@ -7,17 +7,19 @@ runner:
name: debug
root_dir: experiments
generate:
port: 5002
from: 1
to: 50 # -1 means all
object_dir: C:\\Document\\Datasets\\scaled_object_meshes
table_model_path: C:\\Document\\Datasets\\table.obj
output_dir: C:\\Document\\Datasets\\debug_generate_view
port: 5000
from: 0
to: -1 # -1 means all
object_dir: /media/hofee/data/data/scaled_object_meshes
table_model_path: "/media/hofee/data/data/others/table.obj"
output_dir: /media/hofee/data/data/new_testset
object_list_path: /media/hofee/data/data/OmniObject3d_test.txt
use_list: True
binocular_vision: true
plane_size: 10
max_views: 512
min_views: 128
random_view_ratio: 0.02
random_view_ratio: 0.01
min_cam_table_included_degree: 20
max_diag: 0.7
min_diag: 0.01

View File

@@ -47,9 +47,8 @@ class SeqReconstructionDataset(BaseDataset):
with open(self.split_file_path, "r") as f:
for line in f:
scene_name = line.strip()
if not os.path.exists(os.path.join(self.root_dir, scene_name)):
continue
scene_name_list.append(scene_name)
if os.path.exists(os.path.join(self.root_dir, scene_name)):
scene_name_list.append(scene_name)
return scene_name_list
def get_scene_name_list(self):
@@ -169,6 +168,7 @@ class SeqReconstructionDataset(BaseDataset):
# -------------- Debug ---------------- #
if __name__ == "__main__":
#import ipdb; ipdb.set_trace()
import torch
from tqdm import tqdm
import pickle
@@ -199,6 +199,6 @@ if __name__ == "__main__":
for key, value in item.items():
if isinstance(value, np.ndarray):
item[key] = value.tolist()
#import ipdb; ipdb.set_trace()
import ipdb; ipdb.set_trace()
with open(output_path, "wb") as f:
pickle.dump(item, f)
pickle.dump(item, f)

View File

@@ -15,6 +15,7 @@ from utils.data_load import DataLoadUtil
from utils.pose import PoseUtil
from utils.pts import PtsUtil
@stereotype.dataset("seq_reconstruction_dataset_preprocessed")
class SeqReconstructionDatasetPreprocessed(BaseDataset):
def __init__(self, config):
@@ -41,6 +42,7 @@ class SeqReconstructionDatasetPreprocessed(BaseDataset):
def __len__(self):
return len(self.item_list)
# -------------- Debug ---------------- #
if __name__ == "__main__":
import torch

View File

@@ -29,8 +29,8 @@ def pack_all_scenes(root, scene_list, output_dir):
pack_scene_data(root, scene, output_dir)
if __name__ == "__main__":
root = r"H:\AI\Datasets\nbv_rec_part2"
output_dir = r"H:\AI\Datasets\upload_part2"
root = r"/media/hofee/repository/data_part_1"
output_dir = r"/media/hofee/repository/upload_part1"
scene_list = os.listdir(root)
from_idx = 0
to_idx = len(scene_list)

View File

@@ -164,10 +164,10 @@ def save_scene_data(root, scene, scene_idx=0, scene_total=1,file_type="txt"):
if __name__ == "__main__":
#root = "/media/hofee/repository/new_data_with_normal"
root = r"H:\AI\Datasets\nbv_rec_part2"
root = "/media/hofee/data/data/new_testset"
scene_list = os.listdir(root)
from_idx = 0 # 1000
to_idx = 600 # 1500
to_idx = len(scene_list) # 1500
cnt = 0
@@ -179,7 +179,11 @@ if __name__ == "__main__":
print(f"Scene {scene} has been processed")
cnt+=1
continue
save_scene_data(root, scene, cnt, total, file_type="npy")
try:
save_scene_data(root, scene, cnt, total, file_type="npy")
except Exception as e:
print(f"Error occurred when processing scene {scene}")
print(e)
cnt+=1
end = time.time()
print(f"Time cost: {end-start}")

View File

@@ -25,7 +25,6 @@ class InferencerServer(Runner):
self.pipeline:torch.nn.Module = ComponentFactory.create(namespace.Stereotype.PIPELINE, self.pipeline_name)
self.pipeline = self.pipeline.to(self.device)
self.pts_num = 8192
self.voxel_size = 0.002
''' Experiment '''
self.load_experiment("inferencer_server")
@@ -35,14 +34,20 @@ class InferencerServer(Runner):
scanned_pts = data["scanned_pts"]
scanned_n_to_world_pose_9d = data["scanned_n_to_world_pose_9d"]
combined_scanned_views_pts = np.concatenate(scanned_pts, axis=0)
voxel_downsampled_combined_scanned_pts = PtsUtil.voxel_downsample_point_cloud(
combined_scanned_views_pts, self.voxel_size
)
fps_downsampled_combined_scanned_pts, fps_idx = PtsUtil.fps_downsample_point_cloud(
voxel_downsampled_combined_scanned_pts, self.pts_num, require_idx=True
combined_scanned_views_pts, self.pts_num, require_idx=True
)
# combined_scanned_views_pts_mask = np.zeros(len(scanned_pts), dtype=np.uint8)
# start_idx = 0
# for i in range(len(scanned_pts)):
# end_idx = start_idx + len(scanned_pts[i])
# combined_scanned_views_pts_mask[start_idx:end_idx] = i
# start_idx = end_idx
# fps_downsampled_combined_scanned_pts_mask = combined_scanned_views_pts_mask[fps_idx]
input_data["scanned_pts"] = scanned_pts
# input_data["scanned_pts_mask"] = np.asarray(fps_downsampled_combined_scanned_pts_mask, dtype=np.uint8)
input_data["scanned_n_to_world_pose_9d"] = np.asarray(scanned_n_to_world_pose_9d, dtype=np.float32)
input_data["combined_scanned_pts"] = np.asarray(fps_downsampled_combined_scanned_pts, dtype=np.float32)
return input_data

View File

@@ -23,15 +23,11 @@ from utils.data_load import DataLoadUtil
@stereotype.runner("inferencer")
class Inferencer(Runner):
def __init__(self, config_path):
super().__init__(config_path)
self.script_path = ConfigManager.get(namespace.Stereotype.RUNNER, "blender_script_path")
self.output_dir = ConfigManager.get(namespace.Stereotype.RUNNER, "output_dir")
self.voxel_size = ConfigManager.get(namespace.Stereotype.RUNNER, "voxel_size")
self.min_new_area = ConfigManager.get(namespace.Stereotype.RUNNER, "min_new_area")
CM = 0.01
self.min_new_pts_num = self.min_new_area * (CM / self.voxel_size) **2
''' Pipeline '''
self.pipeline_name = self.config[namespace.Stereotype.PIPELINE]
self.pipeline:torch.nn.Module = ComponentFactory.create(namespace.Stereotype.PIPELINE, self.pipeline_name)
@@ -78,24 +74,22 @@ class Inferencer(Runner):
total=int(len(test_set))
for i in tqdm(range(total), desc=f"Processing {test_set_name}", ncols=100):
try:
data = test_set.__getitem__(i)
scene_name = data["scene_name"]
inference_result_path = os.path.join(self.output_dir, test_set_name, f"{scene_name}.pkl")
if os.path.exists(inference_result_path):
Log.info(f"Inference result already exists for scene: {scene_name}")
continue
status_manager.set_progress("inference", "inferencer", f"Batch[{test_set_name}]", i+1, total)
output = self.predict_sequence(data)
self.save_inference_result(test_set_name, data["scene_name"], output)
except Exception as e:
Log.error(f"Error in scene {scene_name}, {e}")
data = test_set.__getitem__(i)
scene_name = data["scene_name"]
if scene_name != "omniobject3d-book_004":
continue
inference_result_path = os.path.join(self.output_dir, test_set_name, f"{scene_name}.pkl")
if os.path.exists(inference_result_path):
Log.info(f"Inference result already exists for scene: {scene_name}")
continue
status_manager.set_progress("inference", "inferencer", f"Batch[{test_set_name}]", i+1, total)
output = self.predict_sequence(data)
self.save_inference_result(test_set_name, data["scene_name"], output)
status_manager.set_progress("inference", "inferencer", f"dataset", len(self.test_set_list), len(self.test_set_list))
def predict_sequence(self, data, cr_increase_threshold=0, overlap_area_threshold=25, scan_points_threshold=10, max_iter=50, max_retry = 10, max_success=3):
def predict_sequence(self, data, cr_increase_threshold=0, overlap_area_threshold=25, scan_points_threshold=10, max_iter=50, max_retry = 5):
scene_name = data["scene_name"]
Log.info(f"Processing scene: {scene_name}")
status_manager.set_status("inference", "inferencer", "scene", scene_name)
@@ -120,6 +114,7 @@ class Inferencer(Runner):
input_pts_N = input_data["combined_scanned_pts"].shape[1]
root = os.path.dirname(scene_path)
display_table_info = DataLoadUtil.get_display_table_info(root, scene_name)
radius = display_table_info["radius"]
scan_points = np.asarray(ReconstructionUtil.generate_scan_points(display_table_top=0,display_table_radius=radius))
@@ -134,11 +129,13 @@ class Inferencer(Runner):
retry = 0
pred_cr_seq = [last_pred_cr]
success = 0
last_pts_num = PtsUtil.voxel_downsample_point_cloud(data["first_scanned_pts"][0], voxel_threshold).shape[0]
last_pts_num = PtsUtil.voxel_downsample_point_cloud(data["first_scanned_pts"][0], 0.002).shape[0]
import time
while len(pred_cr_seq) < max_iter and retry < max_retry and success < max_success:
Log.green(f"iter: {len(pred_cr_seq)}, retry: {retry}/{max_retry}, success: {success}/{max_success}")
while len(pred_cr_seq) < max_iter and retry < max_retry:
start_time = time.time()
output = self.pipeline(input_data)
end_time = time.time()
print(f"Time taken for inference: {end_time - start_time} seconds")
pred_pose_9d = output["pred_pose_9d"]
pred_pose = torch.eye(4, device=pred_pose_9d.device)
@@ -146,6 +143,7 @@ class Inferencer(Runner):
pred_pose[:3,3] = pred_pose_9d[0,6:]
try:
start_time = time.time()
new_target_pts, new_target_normals, new_scan_points_indices = RenderUtil.render_pts(pred_pose, scene_path, self.script_path, scan_points, voxel_threshold=voxel_threshold, filter_degree=filter_degree, nO_to_nL_pose=O_to_L_pose)
#import ipdb; ipdb.set_trace()
if not ReconstructionUtil.check_scan_points_overlap(history_indices, new_scan_points_indices, scan_points_threshold):
@@ -156,14 +154,15 @@ class Inferencer(Runner):
downsampled_new_target_pts = PtsUtil.voxel_downsample_point_cloud(new_target_pts, voxel_threshold)
overlap, _ = ReconstructionUtil.check_overlap(downsampled_new_target_pts, down_sampled_model_pts, overlap_area_threshold = curr_overlap_area_threshold, voxel_size=voxel_threshold, require_new_added_pts_num = True)
if not overlap:
Log.yellow("no overlap!")
retry += 1
retry_overlap_pose.append(pred_pose.cpu().numpy().tolist())
continue
history_indices.append(new_scan_points_indices)
end_time = time.time()
print(f"Time taken for rendering: {end_time - start_time} seconds")
except Exception as e:
Log.error(f"Error in scene {scene_path}, {e}")
Log.warning(f"Error in scene {scene_path}, {e}")
print("current pose: ", pred_pose)
print("curr_pred_cr: ", last_pred_cr)
retry_no_pts_pose.append(pred_pose.cpu().numpy().tolist())
@@ -171,66 +170,41 @@ class Inferencer(Runner):
continue
if new_target_pts.shape[0] == 0:
Log.red("no pts in new target")
print("no pts in new target")
retry_no_pts_pose.append(pred_pose.cpu().numpy().tolist())
retry += 1
continue
start_time = time.time()
pred_cr, _ = self.compute_coverage_rate(scanned_view_pts, new_target_pts, down_sampled_model_pts, threshold=voxel_threshold)
Log.yellow(f"{pred_cr}, {last_pred_cr}, max: , {data['seq_max_coverage_rate']}")
end_time = time.time()
print(f"Time taken for coverage rate computation: {end_time - start_time} seconds")
print(pred_cr, last_pred_cr, " max: ", data["seq_max_coverage_rate"])
if pred_cr >= data["seq_max_coverage_rate"] - 1e-3:
print("max coverage rate reached!: ", pred_cr)
success += 1
retry = 0
pred_cr_seq.append(pred_cr)
scanned_view_pts.append(new_target_pts)
input_data["scanned_n_to_world_pose_9d"] = [torch.cat([input_data["scanned_n_to_world_pose_9d"][0], pred_pose_9d], dim=0)]
combined_scanned_pts = np.vstack(scanned_view_pts)
voxel_downsampled_combined_scanned_pts_np = PtsUtil.voxel_downsample_point_cloud(combined_scanned_pts, voxel_threshold)
voxel_downsampled_combined_scanned_pts_np = PtsUtil.voxel_downsample_point_cloud(combined_scanned_pts, 0.002)
random_downsampled_combined_scanned_pts_np = PtsUtil.random_downsample_point_cloud(voxel_downsampled_combined_scanned_pts_np, input_pts_N)
input_data["combined_scanned_pts"] = torch.tensor(random_downsampled_combined_scanned_pts_np, dtype=torch.float32).unsqueeze(0).to(self.device)
if success > 3:
break
last_pred_cr = pred_cr
pts_num = voxel_downsampled_combined_scanned_pts_np.shape[0]
Log.info(f"delta pts num:,{pts_num - last_pts_num },{pts_num}, {last_pts_num}")
if pts_num - last_pts_num < self.min_new_pts_num and pred_cr <= data["seq_max_coverage_rate"] - 1e-2:
if pts_num - last_pts_num < 10 and pred_cr < data["seq_max_coverage_rate"] - 1e-3:
retry += 1
retry_duplication_pose.append(pred_pose.cpu().numpy().tolist())
Log.red(f"delta pts num < {self.min_new_pts_num}:, {pts_num}, {last_pts_num}")
elif pts_num - last_pts_num < self.min_new_pts_num and pred_cr > data["seq_max_coverage_rate"] - 1e-2:
success += 1
Log.success(f"delta pts num < {self.min_new_pts_num}:, {pts_num}, {last_pts_num}")
print("delta pts num < 10:", pts_num, last_pts_num)
last_pts_num = pts_num
input_data["scanned_n_to_world_pose_9d"] = input_data["scanned_n_to_world_pose_9d"][0].cpu().numpy().tolist()
result = {
"pred_pose_9d_seq": input_data["scanned_n_to_world_pose_9d"],
"combined_scanned_pts": input_data["combined_scanned_pts"],
"target_pts_seq": scanned_view_pts,
"coverage_rate_seq": pred_cr_seq,
"max_coverage_rate": data["seq_max_coverage_rate"],
"pred_max_coverage_rate": max(pred_cr_seq),
"scene_name": scene_name,
"retry_no_pts_pose": retry_no_pts_pose,
"retry_duplication_pose": retry_duplication_pose,
"retry_overlap_pose": retry_overlap_pose,
"best_seq_len": data["best_seq_len"],
}
self.stat_result[scene_name] = {
"coverage_rate_seq": pred_cr_seq,
"pred_max_coverage_rate": max(pred_cr_seq),
"pred_seq_len": len(pred_cr_seq),
}
print('success rate: ', max(pred_cr_seq))
return result
def compute_coverage_rate(self, scanned_view_pts, new_pts, model_pts, threshold=0.005):
if new_pts is not None:

View File

@@ -9,7 +9,7 @@ class ViewGenerator(Runner):
self.config_path = config_path
def run(self):
result = subprocess.run(['blender', '-b', '-P', '../blender/run_blender.py', '--', self.config_path])
result = subprocess.run(['/home/hofee/blender-4.0.2-linux-x64/blender', '-b', '-P', '../blender/run_blender.py', '--', self.config_path])
print()
def create_experiment(self, backup_name=None):

View File

@@ -84,10 +84,13 @@ class RenderUtil:
params_data_path = os.path.join(temp_dir, "params.json")
with open(params_data_path, 'w') as f:
json.dump(params, f)
start_time = time.time()
result = subprocess.run([
'/home/hofee/blender-4.0.2-linux-x64/blender', '-b', '-P', script_path, '--', temp_dir
], capture_output=True, text=True)
# print(result)
end_time = time.time()
print(f"-- Time taken for blender: {end_time - start_time} seconds")
path = os.path.join(temp_dir, "tmp")
cam_info = DataLoadUtil.load_cam_info(path, binocular=True)
depth_L, depth_R = DataLoadUtil.load_depth(
@@ -95,6 +98,7 @@ class RenderUtil:
cam_info["far_plane"],
binocular=True
)
start_time = time.time()
mask_L, mask_R = DataLoadUtil.load_seg(path, binocular=True)
normal_L = DataLoadUtil.load_normal(path, binocular=True, left_only=True)
''' target points '''
@@ -131,5 +135,7 @@ class RenderUtil:
if not has_points:
target_points = np.zeros((0, 3))
target_normals = np.zeros((0, 3))
end_time = time.time()
print(f"-- Time taken for processing: {end_time - start_time} seconds")
#import ipdb; ipdb.set_trace()
return target_points, target_normals, scan_points_indices