Compare commits
20 Commits
1c443e533d
...
ab_local_o
Author | SHA1 | Date | |
---|---|---|---|
1862dce077 | |||
420e9c97bd | |||
b3a7650d3e | |||
8d7299b482 | |||
234c8bccc3 | |||
b30e9d535a | |||
d8c95b6f0c | |||
ab31ba46a9 | |||
f533104e4a | |||
a21538c90a | |||
872405e239 | |||
b13e45bafc | |||
63a246c0c8 | |||
9e39c6c6c9 | |||
3c9e2c8d12 | |||
a883a31968 | |||
49bcf203a8 | |||
bd27226f0f | |||
0f61e1d64d | |||
9ca0851bf7 |
@@ -5,5 +5,5 @@ from runners.data_spliter import DataSpliter
|
|||||||
class DataSplitApp:
|
class DataSplitApp:
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def start():
|
def start():
|
||||||
DataSpliter("configs/server/split_dataset_config.yaml").run()
|
DataSpliter("configs/server/server_split_dataset_config.yaml").run()
|
||||||
|
|
@@ -12,7 +12,7 @@ runner:
|
|||||||
|
|
||||||
generate:
|
generate:
|
||||||
voxel_threshold: 0.003
|
voxel_threshold: 0.003
|
||||||
overlap_area_threshold: 25
|
overlap_area_threshold: 30
|
||||||
compute_with_normal: False
|
compute_with_normal: False
|
||||||
scan_points_threshold: 10
|
scan_points_threshold: 10
|
||||||
overwrite: False
|
overwrite: False
|
||||||
@@ -22,8 +22,6 @@ runner:
|
|||||||
|
|
||||||
datasets:
|
datasets:
|
||||||
OmniObject3d:
|
OmniObject3d:
|
||||||
root_dir: H:\\AI\\Datasets\\nbv_rec_part2
|
root_dir: /data/hofee/nbv_rec_part2_preprocessed
|
||||||
from: 0
|
from: 155
|
||||||
to: 300 # -1 means end
|
to: 165 # ..-1 means end
|
||||||
|
|
||||||
|
|
||||||
|
@@ -84,7 +84,7 @@ module:
|
|||||||
gf_view_finder:
|
gf_view_finder:
|
||||||
t_feat_dim: 128
|
t_feat_dim: 128
|
||||||
pose_feat_dim: 256
|
pose_feat_dim: 256
|
||||||
main_feat_dim: 2048
|
main_feat_dim: 3072
|
||||||
regression_head: Rx_Ry_and_T
|
regression_head: Rx_Ry_and_T
|
||||||
pose_mode: rot_matrix
|
pose_mode: rot_matrix
|
||||||
per_point_feature: False
|
per_point_feature: False
|
||||||
|
22
configs/server/server_split_dataset_config.yaml
Normal file
22
configs/server/server_split_dataset_config.yaml
Normal file
@@ -0,0 +1,22 @@
|
|||||||
|
|
||||||
|
runner:
|
||||||
|
general:
|
||||||
|
seed: 0
|
||||||
|
device: cpu
|
||||||
|
cuda_visible_devices: "0,1,2,3,4,5,6,7"
|
||||||
|
|
||||||
|
experiment:
|
||||||
|
name: debug
|
||||||
|
root_dir: "experiments"
|
||||||
|
|
||||||
|
split: #
|
||||||
|
root_dir: "/data/hofee/data/packed_preprocessed_data"
|
||||||
|
type: "unseen_instance" # "unseen_category"
|
||||||
|
datasets:
|
||||||
|
OmniObject3d_train:
|
||||||
|
path: "/data/hofee/data/OmniObject3d_train.txt"
|
||||||
|
ratio: 0.9
|
||||||
|
|
||||||
|
OmniObject3d_test:
|
||||||
|
path: "/data/hofee/data/OmniObject3d_test.txt"
|
||||||
|
ratio: 0.1
|
@@ -7,13 +7,13 @@ runner:
|
|||||||
parallel: False
|
parallel: False
|
||||||
|
|
||||||
experiment:
|
experiment:
|
||||||
name: full_w_global_feat_wo_local_pts_feat
|
name: overfit_ab_local_only
|
||||||
root_dir: "experiments"
|
root_dir: "experiments"
|
||||||
use_checkpoint: False
|
use_checkpoint: False
|
||||||
epoch: -1 # -1 stands for last epoch
|
epoch: -1 # -1 stands for last epoch
|
||||||
max_epochs: 5000
|
max_epochs: 5000
|
||||||
save_checkpoint_interval: 1
|
save_checkpoint_interval: 1
|
||||||
test_first: True
|
test_first: False
|
||||||
|
|
||||||
train:
|
train:
|
||||||
optimizer:
|
optimizer:
|
||||||
@@ -25,60 +25,60 @@ runner:
|
|||||||
test:
|
test:
|
||||||
frequency: 3 # test frequency
|
frequency: 3 # test frequency
|
||||||
dataset_list:
|
dataset_list:
|
||||||
- OmniObject3d_test
|
#- OmniObject3d_test
|
||||||
- OmniObject3d_val
|
- OmniObject3d_val
|
||||||
|
|
||||||
pipeline: nbv_reconstruction_global_pts_pipeline
|
pipeline: nbv_reconstruction_pipeline
|
||||||
|
|
||||||
dataset:
|
dataset:
|
||||||
OmniObject3d_train:
|
OmniObject3d_train:
|
||||||
root_dir: "/home/data/hofee/project/nbv_rec/data/nbv_rec_data_512_preproc_npy"
|
root_dir: "/data/hofee/nbv_rec_part2_preprocessed"
|
||||||
model_dir: "../data/scaled_object_meshes"
|
model_dir: "../data/scaled_object_meshes"
|
||||||
source: nbv_reconstruction_dataset
|
source: nbv_reconstruction_dataset
|
||||||
split_file: "/home/data/hofee/project/nbv_rec/data/OmniObject3d_train.txt"
|
split_file: "/data/hofee/data/sample.txt"
|
||||||
type: train
|
type: train
|
||||||
cache: True
|
cache: True
|
||||||
ratio: 1
|
ratio: 1
|
||||||
batch_size: 160
|
batch_size: 32
|
||||||
num_workers: 16
|
num_workers: 16
|
||||||
pts_num: 4096
|
pts_num: 8192
|
||||||
load_from_preprocess: True
|
load_from_preprocess: True
|
||||||
|
|
||||||
OmniObject3d_test:
|
OmniObject3d_test:
|
||||||
root_dir: "/home/data/hofee/project/nbv_rec/data/nbv_rec_data_512_preproc_npy"
|
root_dir: "/data/hofee/nbv_rec_part2_preprocessed"
|
||||||
model_dir: "../data/scaled_object_meshes"
|
model_dir: "../data/scaled_object_meshes"
|
||||||
source: nbv_reconstruction_dataset
|
source: nbv_reconstruction_dataset
|
||||||
split_file: "/home/data/hofee/project/nbv_rec/data/OmniObject3d_test.txt"
|
split_file: "/data/hofee/data/sample.txt"
|
||||||
type: test
|
type: test
|
||||||
cache: True
|
cache: True
|
||||||
filter_degree: 75
|
filter_degree: 75
|
||||||
eval_list:
|
eval_list:
|
||||||
- pose_diff
|
- pose_diff
|
||||||
ratio: 0.05
|
ratio: 1
|
||||||
batch_size: 160
|
batch_size: 32
|
||||||
num_workers: 12
|
num_workers: 12
|
||||||
pts_num: 4096
|
pts_num: 8192
|
||||||
load_from_preprocess: True
|
load_from_preprocess: True
|
||||||
|
|
||||||
OmniObject3d_val:
|
OmniObject3d_val:
|
||||||
root_dir: "/home/data/hofee/project/nbv_rec/data/nbv_rec_data_512_preproc_npy"
|
root_dir: "/data/hofee/nbv_rec_part2_preprocessed"
|
||||||
model_dir: "../data/scaled_object_meshes"
|
model_dir: "../data/scaled_object_meshes"
|
||||||
source: nbv_reconstruction_dataset
|
source: nbv_reconstruction_dataset
|
||||||
split_file: "/home/data/hofee/project/nbv_rec/data/OmniObject3d_train.txt"
|
split_file: "/data/hofee/data/sample.txt"
|
||||||
type: test
|
type: test
|
||||||
cache: True
|
cache: True
|
||||||
filter_degree: 75
|
filter_degree: 75
|
||||||
eval_list:
|
eval_list:
|
||||||
- pose_diff
|
- pose_diff
|
||||||
ratio: 0.005
|
ratio: 1
|
||||||
batch_size: 160
|
batch_size: 32
|
||||||
num_workers: 12
|
num_workers: 12
|
||||||
pts_num: 4096
|
pts_num: 8192
|
||||||
load_from_preprocess: True
|
load_from_preprocess: True
|
||||||
|
|
||||||
|
|
||||||
pipeline:
|
pipeline:
|
||||||
nbv_reconstruction_local_pts_pipeline:
|
nbv_reconstruction_pipeline:
|
||||||
modules:
|
modules:
|
||||||
pts_encoder: pointnet_encoder
|
pts_encoder: pointnet_encoder
|
||||||
seq_encoder: transformer_seq_encoder
|
seq_encoder: transformer_seq_encoder
|
||||||
@@ -87,27 +87,17 @@ pipeline:
|
|||||||
eps: 1e-5
|
eps: 1e-5
|
||||||
global_scanned_feat: True
|
global_scanned_feat: True
|
||||||
|
|
||||||
nbv_reconstruction_global_pts_pipeline:
|
|
||||||
modules:
|
|
||||||
pts_encoder: pointnet_encoder
|
|
||||||
pose_seq_encoder: transformer_seq_encoder
|
|
||||||
pose_encoder: pose_encoder
|
|
||||||
view_finder: gf_view_finder
|
|
||||||
eps: 1e-5
|
|
||||||
global_scanned_feat: True
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
module:
|
module:
|
||||||
|
|
||||||
pointnet_encoder:
|
pointnet_encoder:
|
||||||
in_dim: 3
|
in_dim: 3
|
||||||
out_dim: 1024
|
out_dim: 512
|
||||||
global_feat: True
|
global_feat: True
|
||||||
feature_transform: False
|
feature_transform: False
|
||||||
|
|
||||||
transformer_seq_encoder:
|
transformer_seq_encoder:
|
||||||
embed_dim: 1344
|
embed_dim: 768
|
||||||
num_heads: 4
|
num_heads: 4
|
||||||
ffn_dim: 256
|
ffn_dim: 256
|
||||||
num_layers: 3
|
num_layers: 3
|
||||||
@@ -128,6 +118,9 @@ module:
|
|||||||
pose_dim: 9
|
pose_dim: 9
|
||||||
out_dim: 256
|
out_dim: 256
|
||||||
|
|
||||||
|
pts_num_encoder:
|
||||||
|
out_dim: 64
|
||||||
|
|
||||||
loss_function:
|
loss_function:
|
||||||
gf_loss:
|
gf_loss:
|
||||||
|
|
||||||
|
@@ -8,7 +8,7 @@ import torch
|
|||||||
import os
|
import os
|
||||||
import sys
|
import sys
|
||||||
|
|
||||||
sys.path.append(r"/home/data/hofee/project/nbv_rec/nbv_reconstruction")
|
sys.path.append(r"/data/hofee/project/nbv_rec/nbv_reconstruction")
|
||||||
|
|
||||||
from utils.data_load import DataLoadUtil
|
from utils.data_load import DataLoadUtil
|
||||||
from utils.pose import PoseUtil
|
from utils.pose import PoseUtil
|
||||||
@@ -31,10 +31,10 @@ class NBVReconstructionDataset(BaseDataset):
|
|||||||
self.load_from_preprocess = config.get("load_from_preprocess", False)
|
self.load_from_preprocess = config.get("load_from_preprocess", False)
|
||||||
|
|
||||||
if self.type == namespace.Mode.TEST:
|
if self.type == namespace.Mode.TEST:
|
||||||
self.model_dir = config["model_dir"]
|
#self.model_dir = config["model_dir"]
|
||||||
self.filter_degree = config["filter_degree"]
|
self.filter_degree = config["filter_degree"]
|
||||||
if self.type == namespace.Mode.TRAIN:
|
if self.type == namespace.Mode.TRAIN:
|
||||||
scale_ratio = 1
|
scale_ratio = 50
|
||||||
self.datalist = self.datalist*scale_ratio
|
self.datalist = self.datalist*scale_ratio
|
||||||
if self.cache:
|
if self.cache:
|
||||||
expr_root = ConfigManager.get("runner", "experiment", "root_dir")
|
expr_root = ConfigManager.get("runner", "experiment", "root_dir")
|
||||||
@@ -66,7 +66,9 @@ class NBVReconstructionDataset(BaseDataset):
|
|||||||
if max_coverage_rate > scene_max_coverage_rate:
|
if max_coverage_rate > scene_max_coverage_rate:
|
||||||
scene_max_coverage_rate = max_coverage_rate
|
scene_max_coverage_rate = max_coverage_rate
|
||||||
max_coverage_rate_list.append(max_coverage_rate)
|
max_coverage_rate_list.append(max_coverage_rate)
|
||||||
mean_coverage_rate = np.mean(max_coverage_rate_list)
|
|
||||||
|
if max_coverage_rate_list:
|
||||||
|
mean_coverage_rate = np.mean(max_coverage_rate_list)
|
||||||
|
|
||||||
for seq_idx in range(seq_num):
|
for seq_idx in range(seq_num):
|
||||||
label_path = DataLoadUtil.get_label_path(
|
label_path = DataLoadUtil.get_label_path(
|
||||||
@@ -112,6 +114,10 @@ class NBVReconstructionDataset(BaseDataset):
|
|||||||
except Exception as e:
|
except Exception as e:
|
||||||
Log.error(f"Save cache failed: {e}")
|
Log.error(f"Save cache failed: {e}")
|
||||||
|
|
||||||
|
def voxel_downsample_with_mask(self, pts, voxel_size):
|
||||||
|
pass
|
||||||
|
|
||||||
|
|
||||||
def __getitem__(self, index):
|
def __getitem__(self, index):
|
||||||
data_item_info = self.datalist[index]
|
data_item_info = self.datalist[index]
|
||||||
scanned_views = data_item_info["scanned_views"]
|
scanned_views = data_item_info["scanned_views"]
|
||||||
@@ -122,7 +128,7 @@ class NBVReconstructionDataset(BaseDataset):
|
|||||||
scanned_views_pts,
|
scanned_views_pts,
|
||||||
scanned_coverages_rate,
|
scanned_coverages_rate,
|
||||||
scanned_n_to_world_pose,
|
scanned_n_to_world_pose,
|
||||||
) = ([], [], [], [])
|
) = ([], [], [])
|
||||||
for view in scanned_views:
|
for view in scanned_views:
|
||||||
frame_idx = view[0]
|
frame_idx = view[0]
|
||||||
coverage_rate = view[1]
|
coverage_rate = view[1]
|
||||||
@@ -159,28 +165,8 @@ class NBVReconstructionDataset(BaseDataset):
|
|||||||
[best_to_world_6d, best_to_world_trans], axis=0
|
[best_to_world_6d, best_to_world_trans], axis=0
|
||||||
)
|
)
|
||||||
|
|
||||||
combined_scanned_views_pts = np.concatenate(scanned_views_pts, axis=0)
|
|
||||||
fps_downsampled_combined_scanned_pts, fps_idx = PtsUtil.fps_downsample_point_cloud(
|
|
||||||
combined_scanned_views_pts, self.pts_num, require_idx=True
|
|
||||||
)
|
|
||||||
|
|
||||||
combined_scanned_views_pts_mask = np.zeros(len(scanned_views_pts), dtype=np.uint8)
|
|
||||||
|
|
||||||
start_idx = 0
|
|
||||||
for i in range(len(scanned_views_pts)):
|
|
||||||
end_idx = start_idx + len(scanned_views_pts[i])
|
|
||||||
combined_scanned_views_pts_mask[start_idx:end_idx] = i
|
|
||||||
start_idx = end_idx
|
|
||||||
|
|
||||||
fps_downsampled_combined_scanned_pts_mask = combined_scanned_views_pts_mask[fps_idx]
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
data_item = {
|
data_item = {
|
||||||
"scanned_pts": np.asarray(scanned_views_pts, dtype=np.float32), # Ndarray(S x Nv x 3)
|
"scanned_pts": np.asarray(scanned_views_pts, dtype=np.float32), # Ndarray(S x Nv x 3)
|
||||||
"scanned_pts_mask": np.asarray(fps_downsampled_combined_scanned_pts_mask,dtype=np.uint8), # Ndarray(N), range(0, S)
|
|
||||||
"combined_scanned_pts": np.asarray(fps_downsampled_combined_scanned_pts, dtype=np.float32), # Ndarray(N x 3)
|
|
||||||
"scanned_coverage_rate": scanned_coverages_rate, # List(S): Float, range(0, 1)
|
"scanned_coverage_rate": scanned_coverages_rate, # List(S): Float, range(0, 1)
|
||||||
"scanned_n_to_world_pose_9d": np.asarray(scanned_n_to_world_pose, dtype=np.float32), # Ndarray(S x 9)
|
"scanned_n_to_world_pose_9d": np.asarray(scanned_n_to_world_pose, dtype=np.float32), # Ndarray(S x 9)
|
||||||
"best_coverage_rate": nbv_coverage_rate, # Float, range(0, 1)
|
"best_coverage_rate": nbv_coverage_rate, # Float, range(0, 1)
|
||||||
@@ -212,12 +198,6 @@ class NBVReconstructionDataset(BaseDataset):
|
|||||||
collate_data["best_to_world_pose_9d"] = torch.stack(
|
collate_data["best_to_world_pose_9d"] = torch.stack(
|
||||||
[torch.tensor(item["best_to_world_pose_9d"]) for item in batch]
|
[torch.tensor(item["best_to_world_pose_9d"]) for item in batch]
|
||||||
)
|
)
|
||||||
collate_data["combined_scanned_pts"] = torch.stack(
|
|
||||||
[torch.tensor(item["combined_scanned_pts"]) for item in batch]
|
|
||||||
)
|
|
||||||
collate_data["scanned_pts_mask"] = torch.stack(
|
|
||||||
[torch.tensor(item["scanned_pts_mask"]) for item in batch]
|
|
||||||
)
|
|
||||||
|
|
||||||
for key in batch[0].keys():
|
for key in batch[0].keys():
|
||||||
if key not in [
|
if key not in [
|
||||||
@@ -225,7 +205,6 @@ class NBVReconstructionDataset(BaseDataset):
|
|||||||
"scanned_pts_mask",
|
"scanned_pts_mask",
|
||||||
"scanned_n_to_world_pose_9d",
|
"scanned_n_to_world_pose_9d",
|
||||||
"best_to_world_pose_9d",
|
"best_to_world_pose_9d",
|
||||||
"combined_scanned_pts",
|
|
||||||
]:
|
]:
|
||||||
collate_data[key] = [item[key] for item in batch]
|
collate_data[key] = [item[key] for item in batch]
|
||||||
return collate_data
|
return collate_data
|
||||||
@@ -241,10 +220,9 @@ if __name__ == "__main__":
|
|||||||
torch.manual_seed(seed)
|
torch.manual_seed(seed)
|
||||||
np.random.seed(seed)
|
np.random.seed(seed)
|
||||||
config = {
|
config = {
|
||||||
"root_dir": "/home/data/hofee/project/nbv_rec/data/nbv_rec_data_512_preproc_npy",
|
"root_dir": "/data/hofee/data/packed_preprocessed_data",
|
||||||
"model_dir": "/home/data/hofee/project/nbv_rec/data/scaled_object_meshes",
|
|
||||||
"source": "nbv_reconstruction_dataset",
|
"source": "nbv_reconstruction_dataset",
|
||||||
"split_file": "/home/data/hofee/project/nbv_rec/data/OmniObject3d_test.txt",
|
"split_file": "/data/hofee/data/OmniObject3d_train.txt",
|
||||||
"load_from_preprocess": True,
|
"load_from_preprocess": True,
|
||||||
"ratio": 0.5,
|
"ratio": 0.5,
|
||||||
"batch_size": 2,
|
"batch_size": 2,
|
||||||
|
@@ -1,4 +1,5 @@
|
|||||||
import torch
|
import torch
|
||||||
|
import time
|
||||||
from torch import nn
|
from torch import nn
|
||||||
import PytorchBoot.namespace as namespace
|
import PytorchBoot.namespace as namespace
|
||||||
import PytorchBoot.stereotype as stereotype
|
import PytorchBoot.stereotype as stereotype
|
||||||
@@ -6,10 +7,10 @@ from PytorchBoot.factory.component_factory import ComponentFactory
|
|||||||
from PytorchBoot.utils import Log
|
from PytorchBoot.utils import Log
|
||||||
|
|
||||||
|
|
||||||
@stereotype.pipeline("nbv_reconstruction_global_pts_n_num_pipeline")
|
@stereotype.pipeline("nbv_reconstruction_pipeline")
|
||||||
class NBVReconstructionGlobalPointsPipeline(nn.Module):
|
class NBVReconstructionPipeline(nn.Module):
|
||||||
def __init__(self, config):
|
def __init__(self, config):
|
||||||
super(NBVReconstructionGlobalPointsPipeline, self).__init__()
|
super(NBVReconstructionPipeline, self).__init__()
|
||||||
self.config = config
|
self.config = config
|
||||||
self.module_config = config["modules"]
|
self.module_config = config["modules"]
|
||||||
|
|
||||||
@@ -19,12 +20,8 @@ class NBVReconstructionGlobalPointsPipeline(nn.Module):
|
|||||||
self.pose_encoder = ComponentFactory.create(
|
self.pose_encoder = ComponentFactory.create(
|
||||||
namespace.Stereotype.MODULE, self.module_config["pose_encoder"]
|
namespace.Stereotype.MODULE, self.module_config["pose_encoder"]
|
||||||
)
|
)
|
||||||
self.pts_num_encoder = ComponentFactory.create(
|
self.seq_encoder = ComponentFactory.create(
|
||||||
namespace.Stereotype.MODULE, self.module_config["pts_num_encoder"]
|
namespace.Stereotype.MODULE, self.module_config["seq_encoder"]
|
||||||
)
|
|
||||||
|
|
||||||
self.transformer_seq_encoder = ComponentFactory.create(
|
|
||||||
namespace.Stereotype.MODULE, self.module_config["transformer_seq_encoder"]
|
|
||||||
)
|
)
|
||||||
self.view_finder = ComponentFactory.create(
|
self.view_finder = ComponentFactory.create(
|
||||||
namespace.Stereotype.MODULE, self.module_config["view_finder"]
|
namespace.Stereotype.MODULE, self.module_config["view_finder"]
|
||||||
@@ -58,7 +55,10 @@ class NBVReconstructionGlobalPointsPipeline(nn.Module):
|
|||||||
return perturbed_x, random_t, target_score, std
|
return perturbed_x, random_t, target_score, std
|
||||||
|
|
||||||
def forward_train(self, data):
|
def forward_train(self, data):
|
||||||
|
start_time = time.time()
|
||||||
main_feat = self.get_main_feat(data)
|
main_feat = self.get_main_feat(data)
|
||||||
|
end_time = time.time()
|
||||||
|
print("get_main_feat time: ", end_time - start_time)
|
||||||
""" get std """
|
""" get std """
|
||||||
best_to_world_pose_9d_batch = data["best_to_world_pose_9d"]
|
best_to_world_pose_9d_batch = data["best_to_world_pose_9d"]
|
||||||
perturbed_x, random_t, target_score, std = self.pertube_data(
|
perturbed_x, random_t, target_score, std = self.pertube_data(
|
||||||
@@ -92,48 +92,23 @@ class NBVReconstructionGlobalPointsPipeline(nn.Module):
|
|||||||
scanned_n_to_world_pose_9d_batch = data[
|
scanned_n_to_world_pose_9d_batch = data[
|
||||||
"scanned_n_to_world_pose_9d"
|
"scanned_n_to_world_pose_9d"
|
||||||
] # List(B): Tensor(S x 9)
|
] # List(B): Tensor(S x 9)
|
||||||
scanned_pts_mask_batch = data[
|
scanned_pts_batch = data[
|
||||||
"scanned_pts_mask"
|
"scanned_pts"
|
||||||
] # Tensor(B x N)
|
]
|
||||||
|
|
||||||
device = next(self.parameters()).device
|
device = next(self.parameters()).device
|
||||||
|
|
||||||
embedding_list_batch = []
|
embedding_list_batch = []
|
||||||
|
|
||||||
combined_scanned_pts_batch = data["combined_scanned_pts"] # Tensor(B x N x 3)
|
for scanned_n_to_world_pose_9d, scanned_pts in zip(scanned_n_to_world_pose_9d_batch, scanned_pts_batch):
|
||||||
global_scanned_feat, perpoint_scanned_feat_batch = self.pts_encoder.encode_points(
|
|
||||||
combined_scanned_pts_batch, require_per_point_feat=True
|
|
||||||
) # global_scanned_feat: Tensor(B x Dg), perpoint_scanned_feat: Tensor(B x N x Dl)
|
|
||||||
|
|
||||||
for scanned_n_to_world_pose_9d, scanned_mask, perpoint_scanned_feat in zip(
|
|
||||||
scanned_n_to_world_pose_9d_batch,
|
|
||||||
scanned_pts_mask_batch,
|
|
||||||
perpoint_scanned_feat_batch,
|
|
||||||
):
|
|
||||||
scanned_target_pts_num = [] # List(S): Int
|
|
||||||
partial_feat_seq = []
|
|
||||||
|
|
||||||
seq_len = len(scanned_n_to_world_pose_9d)
|
|
||||||
for seq_idx in range(seq_len):
|
|
||||||
partial_idx_in_combined_pts = scanned_mask == seq_idx # Ndarray(V), N->V idx mask
|
|
||||||
partial_perpoint_feat = perpoint_scanned_feat[partial_idx_in_combined_pts] # Ndarray(V x Dl)
|
|
||||||
partial_feat = torch.mean(partial_perpoint_feat, dim=0)[0] # Tensor(Dl)
|
|
||||||
partial_feat_seq.append(partial_feat)
|
|
||||||
scanned_target_pts_num.append(partial_perpoint_feat.shape[0])
|
|
||||||
|
|
||||||
scanned_target_pts_num = torch.tensor(scanned_target_pts_num, dtype=torch.int32).to(device) # Tensor(S)
|
|
||||||
scanned_n_to_world_pose_9d = scanned_n_to_world_pose_9d.to(device) # Tensor(S x 9)
|
scanned_n_to_world_pose_9d = scanned_n_to_world_pose_9d.to(device) # Tensor(S x 9)
|
||||||
|
scanned_pts = scanned_pts.to(device) # Tensor(S x N x 3)
|
||||||
pose_feat_seq = self.pose_encoder.encode_pose(scanned_n_to_world_pose_9d) # Tensor(S x Dp)
|
pose_feat_seq = self.pose_encoder.encode_pose(scanned_n_to_world_pose_9d) # Tensor(S x Dp)
|
||||||
pts_num_feat_seq = self.pts_num_encoder.encode_pts_num(scanned_target_pts_num) # Tensor(S x Dn)
|
pts_feat_seq = self.pts_encoder.encode_points(scanned_pts, require_per_point_feat=False) # Tensor(S x Dl)
|
||||||
partial_feat_seq = torch.stack(partial_feat_seq) # Tensor(S x Dl)
|
seq_embedding = torch.cat([pose_feat_seq, pts_feat_seq], dim=-1) # Tensor(S x (Dp+Dl))
|
||||||
|
embedding_list_batch.append(seq_embedding) # List(B): Tensor(S x (Dp+Dl))
|
||||||
seq_embedding = torch.cat([pose_feat_seq, pts_num_feat_seq, partial_feat_seq], dim=-1) # Tensor(S x (Dp+Dn+Dl))
|
|
||||||
embedding_list_batch.append(seq_embedding) # List(B): Tensor(S x (Dp+Dn+Dl))
|
seq_feat = self.seq_encoder.encode_sequence(embedding_list_batch) # Tensor(B x Ds)
|
||||||
|
main_feat = seq_feat # Tensor(B x Ds)
|
||||||
seq_feat = self.transformer_seq_encoder.encode_sequence(embedding_list_batch) # Tensor(B x Ds)
|
|
||||||
|
|
||||||
main_feat = torch.cat([seq_feat, global_scanned_feat], dim=-1) # Tensor(B x (Ds+Dg))
|
|
||||||
|
|
||||||
if torch.isnan(main_feat).any():
|
if torch.isnan(main_feat).any():
|
||||||
Log.error("nan in main_feat", True)
|
Log.error("nan in main_feat", True)
|
@@ -85,14 +85,16 @@ class StrategyGenerator(Runner):
|
|||||||
pts_path = os.path.join(root,scene_name, "pts", f"{frame_idx}.npy")
|
pts_path = os.path.join(root,scene_name, "pts", f"{frame_idx}.npy")
|
||||||
nrm_path = os.path.join(root,scene_name, "nrm", f"{frame_idx}.npy")
|
nrm_path = os.path.join(root,scene_name, "nrm", f"{frame_idx}.npy")
|
||||||
idx_path = os.path.join(root,scene_name, "scan_points_indices", f"{frame_idx}.npy")
|
idx_path = os.path.join(root,scene_name, "scan_points_indices", f"{frame_idx}.npy")
|
||||||
|
|
||||||
pts = np.load(pts_path)
|
pts = np.load(pts_path)
|
||||||
if pts.shape[0] == 0:
|
if self.compute_with_normal:
|
||||||
nrm = np.zeros((0,3))
|
if pts.shape[0] == 0:
|
||||||
else:
|
nrm = np.zeros((0,3))
|
||||||
nrm = np.load(nrm_path)
|
else:
|
||||||
indices = np.load(idx_path)
|
nrm = np.load(nrm_path)
|
||||||
|
nrm_list.append(nrm)
|
||||||
pts_list.append(pts)
|
pts_list.append(pts)
|
||||||
nrm_list.append(nrm)
|
indices = np.load(idx_path)
|
||||||
scan_points_indices_list.append(indices)
|
scan_points_indices_list.append(indices)
|
||||||
if pts.shape[0] > 0:
|
if pts.shape[0] > 0:
|
||||||
non_zero_cnt += 1
|
non_zero_cnt += 1
|
||||||
|
@@ -53,6 +53,8 @@ class DataLoadUtil:
|
|||||||
@staticmethod
|
@staticmethod
|
||||||
def get_label_num(root, scene_name):
|
def get_label_num(root, scene_name):
|
||||||
label_dir = os.path.join(root, scene_name, "label")
|
label_dir = os.path.join(root, scene_name, "label")
|
||||||
|
if not os.path.exists(label_dir):
|
||||||
|
return 0
|
||||||
return len(os.listdir(label_dir))
|
return len(os.listdir(label_dir))
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
|
@@ -62,7 +62,7 @@ class ReconstructionUtil:
|
|||||||
|
|
||||||
max_rec_pts = np.vstack(point_cloud_list)
|
max_rec_pts = np.vstack(point_cloud_list)
|
||||||
downsampled_max_rec_pts = PtsUtil.voxel_downsample_point_cloud(max_rec_pts, threshold)
|
downsampled_max_rec_pts = PtsUtil.voxel_downsample_point_cloud(max_rec_pts, threshold)
|
||||||
|
combined_point_cloud = PtsUtil.voxel_downsample_point_cloud(combined_point_cloud, threshold)
|
||||||
max_rec_pts_num = downsampled_max_rec_pts.shape[0]
|
max_rec_pts_num = downsampled_max_rec_pts.shape[0]
|
||||||
max_real_rec_pts_coverage, _ = ReconstructionUtil.compute_coverage_rate(target_point_cloud, downsampled_max_rec_pts, threshold)
|
max_real_rec_pts_coverage, _ = ReconstructionUtil.compute_coverage_rate(target_point_cloud, downsampled_max_rec_pts, threshold)
|
||||||
|
|
||||||
@@ -75,6 +75,7 @@ class ReconstructionUtil:
|
|||||||
cnt_processed_view = 0
|
cnt_processed_view = 0
|
||||||
remaining_views.remove(init_view)
|
remaining_views.remove(init_view)
|
||||||
curr_rec_pts_num = combined_point_cloud.shape[0]
|
curr_rec_pts_num = combined_point_cloud.shape[0]
|
||||||
|
drop_output_ratio = 0.4
|
||||||
|
|
||||||
import time
|
import time
|
||||||
while remaining_views:
|
while remaining_views:
|
||||||
@@ -84,6 +85,8 @@ class ReconstructionUtil:
|
|||||||
best_covered_num = 0
|
best_covered_num = 0
|
||||||
|
|
||||||
for view_index in remaining_views:
|
for view_index in remaining_views:
|
||||||
|
if np.random.rand() < drop_output_ratio:
|
||||||
|
continue
|
||||||
if point_cloud_list[view_index].shape[0] == 0:
|
if point_cloud_list[view_index].shape[0] == 0:
|
||||||
continue
|
continue
|
||||||
if selected_views:
|
if selected_views:
|
||||||
|
Reference in New Issue
Block a user