update fps algo and fps mask

This commit is contained in:
hofee
2024-10-06 13:48:54 +08:00
parent 276f45dcc3
commit fa69f9f879
3 changed files with 115 additions and 84 deletions

View File

@@ -122,7 +122,6 @@ class NBVReconstructionDataset(BaseDataset):
scanned_views_pts,
scanned_coverages_rate,
scanned_n_to_world_pose,
scanned_target_pts_num,
) = ([], [], [], [])
for view in scanned_views:
frame_idx = view[0]
@@ -134,7 +133,6 @@ class NBVReconstructionDataset(BaseDataset):
target_point_cloud = (
DataLoadUtil.load_from_preprocessed_pts(view_path)
)
target_pts_num = target_point_cloud.shape[0]
downsampled_target_point_cloud = PtsUtil.random_downsample_point_cloud(
target_point_cloud, self.pts_num
)
@@ -146,7 +144,7 @@ class NBVReconstructionDataset(BaseDataset):
n_to_world_trans = n_to_world_pose[:3, 3]
n_to_world_9d = np.concatenate([n_to_world_6d, n_to_world_trans], axis=0)
scanned_n_to_world_pose.append(n_to_world_9d)
scanned_target_pts_num.append(target_pts_num)
nbv_idx, nbv_coverage_rate = nbv[0], nbv[1]
nbv_path = DataLoadUtil.get_path(self.root_dir, scene_name, nbv_idx)
@@ -162,35 +160,33 @@ class NBVReconstructionDataset(BaseDataset):
)
combined_scanned_views_pts = np.concatenate(scanned_views_pts, axis=0)
fps_downsampled_combined_scanned_pts, fps_mask = PtsUtil.fps_downsample_point_cloud(
combined_scanned_views_pts, self.pts_num, require_mask=True
fps_downsampled_combined_scanned_pts, fps_idx = PtsUtil.fps_downsample_point_cloud(
combined_scanned_views_pts, self.pts_num, require_idx=True
)
view_start_indices = np.cumsum([0] + [pts.shape[0] for pts in scanned_views_pts[:-1]])
scanned_pts_mask = []
for i, start_idx in enumerate(view_start_indices[:-1]):
end_idx = view_start_indices[i + 1]
view_mask = fps_mask[start_idx:end_idx]
scanned_pts_mask.append(view_mask)
combined_scanned_views_pts_mask = np.zeros(len(scanned_views_pts), dtype=np.uint8)
start_idx = 0
for i in range(len(scanned_views_pts)):
end_idx = start_idx + len(scanned_views_pts[i])
combined_scanned_views_pts_mask[start_idx:end_idx] = i
start_idx = end_idx
fps_downsampled_combined_scanned_pts_mask = combined_scanned_views_pts_mask[fps_idx]
data_item = {
"scanned_pts": np.asarray(scanned_views_pts, dtype=np.float32),
"scanned_pts_mask": np.asarray(scanned_pts_mask, dtype=np.uint8),
"combined_scanned_pts": np.asarray(
fps_downsampled_combined_scanned_pts, dtype=np.float32
),
"scanned_coverage_rate": scanned_coverages_rate,
"scanned_n_to_world_pose_9d": np.asarray(
scanned_n_to_world_pose, dtype=np.float32
),
"best_coverage_rate": nbv_coverage_rate,
"best_to_world_pose_9d": np.asarray(best_to_world_9d, dtype=np.float32),
"seq_max_coverage_rate": max_coverage_rate,
"scene_name": scene_name,
"scanned_target_points_num": np.asarray(
scanned_target_pts_num, dtype=np.int32
),
"scanned_pts": np.asarray(scanned_views_pts, dtype=np.float32), # Ndarray(S x Nv x 3)
"scanned_pts_mask": np.asarray(fps_downsampled_combined_scanned_pts_mask,dtype=np.uint8), # Ndarray(N), range(0, S)
"combined_scanned_pts": np.asarray(fps_downsampled_combined_scanned_pts, dtype=np.float32), # Ndarray(N x 3)
"scanned_coverage_rate": scanned_coverages_rate, # List(S): Float, range(0, 1)
"scanned_n_to_world_pose_9d": np.asarray(scanned_n_to_world_pose, dtype=np.float32), # Ndarray(S x 9)
"best_coverage_rate": nbv_coverage_rate, # Float, range(0, 1)
"best_to_world_pose_9d": np.asarray(best_to_world_9d, dtype=np.float32), # Ndarray(9)
"seq_max_coverage_rate": max_coverage_rate, # Float, range(0, 1)
"scene_name": scene_name, # String
}
return data_item
@@ -201,37 +197,35 @@ class NBVReconstructionDataset(BaseDataset):
def get_collate_fn(self):
def collate_fn(batch):
collate_data = {}
''' ------ Varialbe Length ------ '''
collate_data["scanned_pts"] = [
torch.tensor(item["scanned_pts"]) for item in batch
]
collate_data["scanned_pts_mask"] = [
torch.tensor(item["scanned_pts_mask"]) for item in batch
]
collate_data["scanned_n_to_world_pose_9d"] = [
torch.tensor(item["scanned_n_to_world_pose_9d"]) for item in batch
]
collate_data["scanned_target_points_num"] = [
torch.tensor(item["scanned_target_points_num"]) for item in batch
]
''' ------ Fixed Length ------ '''
collate_data["best_to_world_pose_9d"] = torch.stack(
[torch.tensor(item["best_to_world_pose_9d"]) for item in batch]
)
collate_data["combined_scanned_pts"] = torch.stack(
[torch.tensor(item["combined_scanned_pts"]) for item in batch]
)
if "first_frame_to_world" in batch[0]:
collate_data["first_frame_to_world"] = torch.stack(
[torch.tensor(item["first_frame_to_world"]) for item in batch]
)
collate_data["scanned_pts_mask"] = torch.stack(
[torch.tensor(item["scanned_pts_mask"]) for item in batch]
)
for key in batch[0].keys():
if key not in [
"scanned_pts",
"scanned_pts_mask",
"scanned_n_to_world_pose_9d",
"best_to_world_pose_9d",
"first_frame_to_world",
"combined_scanned_pts",
"scanned_target_points_num",
]:
collate_data[key] = [item[key] for item in batch]
return collate_data