update gf_view_finder
This commit is contained in:
parent
2fcfcd1966
commit
e0fb9a7617
@ -13,13 +13,13 @@ runner:
|
||||
generate:
|
||||
voxel_threshold: 0.005
|
||||
overlap_threshold: 0.5
|
||||
save_points: True
|
||||
save_points: False
|
||||
dataset_list:
|
||||
- OmniObject3d
|
||||
|
||||
datasets:
|
||||
OmniObject3d:
|
||||
model_dir: "/media/hofee/data/data/scaled_object_meshes"
|
||||
root_dir: "/media/hofee/data/data/nbv_rec/sample"
|
||||
model_dir: "H:\\AI\\Datasets\\scaled_object_meshes"
|
||||
root_dir: "C:\\Document\\Local Project\\nbv_rec\\data\\sample"
|
||||
|
||||
|
||||
|
@ -89,7 +89,7 @@ def cond_ode_sampler(
|
||||
|
||||
num_steps = xs.shape[0]
|
||||
xs = xs.reshape(batch_size*num_steps, -1)
|
||||
xs = PoseUtil.normalize_rotation(xs, pose_mode)
|
||||
xs[:, :-3] = PoseUtil.normalize_rotation(xs[:, :-3], pose_mode)
|
||||
xs = xs.reshape(num_steps, batch_size, -1)
|
||||
x = PoseUtil.normalize_rotation(x, pose_mode)
|
||||
x[:, :-3] = PoseUtil.normalize_rotation(x[:, :-3], pose_mode)
|
||||
return xs.permute(1, 0, 2), x
|
||||
|
@ -2,6 +2,9 @@ import torch
|
||||
import torch.nn as nn
|
||||
import PytorchBoot.stereotype as stereotype
|
||||
|
||||
import sys
|
||||
sys.path.append(r"C:\Document\Local Project\nbv_rec\nbv_reconstruction")
|
||||
|
||||
from utils.pose import PoseUtil
|
||||
import modules.module_lib as mlib
|
||||
import modules.func_lib as flib
|
||||
@ -47,7 +50,7 @@ class GradientFieldViewFinder(nn.Module):
|
||||
)
|
||||
|
||||
''' fusion tail '''
|
||||
if self.regression_head == 'Rx_Ry':
|
||||
if self.regression_head == 'Rx_Ry_and_T':
|
||||
if self.pose_mode != 'rot_matrix':
|
||||
raise NotImplementedError
|
||||
if not self.per_point_feature:
|
||||
@ -62,6 +65,12 @@ class GradientFieldViewFinder(nn.Module):
|
||||
self.act,
|
||||
zero_module(nn.Linear(256, 3)),
|
||||
)
|
||||
''' tranalation regress head '''
|
||||
self.fusion_tail_trans = nn.Sequential(
|
||||
nn.Linear(128 + 256 + 2048, 256),
|
||||
self.act,
|
||||
zero_module(nn.Linear(256, 3)),
|
||||
)
|
||||
else:
|
||||
raise NotImplementedError
|
||||
else:
|
||||
@ -89,10 +98,11 @@ class GradientFieldViewFinder(nn.Module):
|
||||
total_feat = torch.cat([seq_feat, t_feat, pose_feat], dim=-1)
|
||||
_, std = self.marginal_prob_fn(total_feat, t)
|
||||
|
||||
if self.regression_head == 'Rx_Ry':
|
||||
if self.regression_head == 'Rx_Ry_and_T':
|
||||
rot_x = self.fusion_tail_rot_x(total_feat)
|
||||
rot_y = self.fusion_tail_rot_y(total_feat)
|
||||
out_score = torch.cat([rot_x, rot_y], dim=-1) / (std + 1e-7) # normalisation
|
||||
trans = self.fusion_tail_trans(total_feat)
|
||||
out_score = torch.cat([rot_x, rot_y, trans], dim=-1) / (std+1e-7) # normalisation
|
||||
else:
|
||||
raise NotImplementedError
|
||||
|
||||
@ -134,18 +144,24 @@ class GradientFieldViewFinder(nn.Module):
|
||||
|
||||
''' ----------- DEBUG -----------'''
|
||||
if __name__ == "__main__":
|
||||
test_scene_feat = torch.rand(32, 1024).to("cuda:0")
|
||||
test_target_feat = torch.rand(32, 1024).to("cuda:0")
|
||||
test_pose = torch.rand(32, 6).to("cuda:0")
|
||||
config = {
|
||||
"regression_head": "Rx_Ry_and_T",
|
||||
"per_point_feature": False,
|
||||
"pose_mode": "rot_matrix",
|
||||
"sde_mode": "ve",
|
||||
"sampling_steps": 500,
|
||||
"sample_mode": "ode"
|
||||
}
|
||||
test_seq_feat = torch.rand(32, 2048).to("cuda:0")
|
||||
test_pose = torch.rand(32, 9).to("cuda:0")
|
||||
test_t = torch.rand(32, 1).to("cuda:0")
|
||||
view_finder = GradientFieldViewFinder().to("cuda:0")
|
||||
view_finder = GradientFieldViewFinder(config).to("cuda:0")
|
||||
test_data = {
|
||||
'target_feat': test_target_feat,
|
||||
'scene_feat': test_scene_feat,
|
||||
'seq_feat': test_seq_feat,
|
||||
'sampled_pose': test_pose,
|
||||
't': test_t
|
||||
}
|
||||
score = view_finder(test_data)
|
||||
|
||||
result = view_finder.next_best_view(test_scene_feat, test_target_feat)
|
||||
print(result)
|
||||
print(score.shape)
|
||||
res, inprocess = view_finder.next_best_view(test_seq_feat)
|
||||
print(res.shape, inprocess.shape)
|
||||
|
@ -4,9 +4,9 @@ from PytorchBoot.runners.runner import Runner
|
||||
from PytorchBoot.config import ConfigManager
|
||||
from PytorchBoot.utils import Log
|
||||
import PytorchBoot.stereotype as stereotype
|
||||
from PytorchBoot.status import status_manager
|
||||
|
||||
|
||||
@stereotype.runner("data_splitor", comment="unfinished")
|
||||
@stereotype.runner("data_splitor")
|
||||
class DataSplitor(Runner):
|
||||
def __init__(self, config):
|
||||
super().__init__(config)
|
||||
@ -23,15 +23,17 @@ class DataSplitor(Runner):
|
||||
|
||||
random.shuffle(self.datapath_list)
|
||||
start_idx = 0
|
||||
for dataset in self.datasets:
|
||||
for dataset_idx in range(len(self.datasets)):
|
||||
dataset = list(self.datasets.keys())[dataset_idx]
|
||||
ratio = self.datasets[dataset]["ratio"]
|
||||
path = self.datasets[dataset]["path"]
|
||||
split_size = int(len(self.datapath_list) * ratio)
|
||||
split_files = self.datapath_list[start_idx:start_idx + split_size]
|
||||
start_idx += split_size
|
||||
self.save_split_files(path, split_files)
|
||||
status_manager.set_progress("split", "data_splitor", "split dataset", dataset_idx, len(self.datasets))
|
||||
Log.success(f"save {dataset} split files to {path}")
|
||||
|
||||
status_manager.set_progress("split", "data_splitor", "split dataset", len(self.datasets), len(self.datasets))
|
||||
def save_split_files(self, path, split_files):
|
||||
os.makedirs(os.path.dirname(path), exist_ok=True)
|
||||
with open(path, "w") as f:
|
||||
|
@ -6,6 +6,7 @@ from PytorchBoot.runners.runner import Runner
|
||||
from PytorchBoot.config import ConfigManager
|
||||
from PytorchBoot.utils import Log
|
||||
import PytorchBoot.stereotype as stereotype
|
||||
from PytorchBoot.status import status_manager
|
||||
|
||||
from utils.data_load import DataLoadUtil
|
||||
from utils.reconstruction import ReconstructionUtil
|
||||
@ -16,12 +17,19 @@ class StrategyGenerator(Runner):
|
||||
def __init__(self, config):
|
||||
super().__init__(config)
|
||||
self.load_experiment("generate")
|
||||
self.status_info = {
|
||||
"status_manager": status_manager,
|
||||
"app_name": "generate",
|
||||
"runner_name": "strategy_generator"
|
||||
}
|
||||
|
||||
def run(self):
|
||||
dataset_name_list = ConfigManager.get("runner", "generate", "dataset_list")
|
||||
voxel_threshold, overlap_threshold = ConfigManager.get("runner","generate","voxel_threshold"), ConfigManager.get("runner","generate","overlap_threshold")
|
||||
self.save_pts = ConfigManager.get("runner","generate","save_points")
|
||||
for dataset_name in dataset_name_list:
|
||||
for dataset_idx in range(len(dataset_name_list)):
|
||||
dataset_name = dataset_name_list[dataset_idx]
|
||||
status_manager.set_progress("generate", "strategy_generator", "dataset", dataset_idx, len(dataset_name_list))
|
||||
root_dir = ConfigManager.get("datasets", dataset_name, "root_dir")
|
||||
model_dir = ConfigManager.get("datasets", dataset_name, "model_dir")
|
||||
scene_name_list = os.listdir(root_dir)
|
||||
@ -29,8 +37,12 @@ class StrategyGenerator(Runner):
|
||||
total = len(scene_name_list)
|
||||
for scene_name in scene_name_list:
|
||||
Log.info(f"({dataset_name})Processing [{cnt}/{total}]: {scene_name}")
|
||||
status_manager.set_progress("generate", "strategy_generator", "scene", cnt, total)
|
||||
self.generate_sequence(root_dir, model_dir, scene_name,voxel_threshold, overlap_threshold)
|
||||
|
||||
cnt += 1
|
||||
status_manager.set_progress("generate", "strategy_generator", "scene", total, total)
|
||||
status_manager.set_progress("generate", "strategy_generator", "dataset", len(dataset_name_list), len(dataset_name_list))
|
||||
|
||||
def create_experiment(self, backup_name=None):
|
||||
super().create_experiment(backup_name)
|
||||
@ -41,6 +53,7 @@ class StrategyGenerator(Runner):
|
||||
super().load_experiment(backup_name)
|
||||
|
||||
def generate_sequence(self, root, model_dir, scene_name, voxel_threshold, overlap_threshold):
|
||||
status_manager.set_status("generate", "strategy_generator", "scene", scene_name)
|
||||
frame_num = DataLoadUtil.get_scene_seq_length(root, scene_name)
|
||||
model_pts = DataLoadUtil.load_original_model_points(model_dir, scene_name)
|
||||
down_sampled_model_pts = PtsUtil.voxel_downsample_point_cloud(model_pts, voxel_threshold)
|
||||
@ -50,7 +63,7 @@ class StrategyGenerator(Runner):
|
||||
|
||||
for frame_idx in range(frame_num):
|
||||
path = DataLoadUtil.get_path(root, scene_name, frame_idx)
|
||||
|
||||
status_manager.set_progress("generate", "strategy_generator", "loading frame", frame_idx, frame_num)
|
||||
point_cloud = DataLoadUtil.get_point_cloud_world_from_path(path)
|
||||
sampled_point_cloud = PtsUtil.voxel_downsample_point_cloud(point_cloud, voxel_threshold)
|
||||
if self.save_pts:
|
||||
@ -59,13 +72,17 @@ class StrategyGenerator(Runner):
|
||||
os.makedirs(pts_dir)
|
||||
np.savetxt(os.path.join(pts_dir, f"{frame_idx}.txt"), sampled_point_cloud)
|
||||
pts_list.append(sampled_point_cloud)
|
||||
limited_useful_view, _ = ReconstructionUtil.compute_next_best_view_sequence_with_overlap(down_sampled_transformed_model_pts, pts_list, threshold=voxel_threshold, overlap_threshold=overlap_threshold)
|
||||
status_manager.set_progress("generate", "strategy_generator", "loading frame", frame_num, frame_num)
|
||||
|
||||
limited_useful_view, _ = ReconstructionUtil.compute_next_best_view_sequence_with_overlap(down_sampled_transformed_model_pts, pts_list, threshold=voxel_threshold, overlap_threshold=overlap_threshold, status_info=self.status_info)
|
||||
data_pairs = self.generate_data_pairs(limited_useful_view)
|
||||
seq_save_data = {
|
||||
"data_pairs": data_pairs,
|
||||
"best_sequence": limited_useful_view,
|
||||
"max_coverage_rate": limited_useful_view[-1][1]
|
||||
}
|
||||
|
||||
status_manager.set_status("generate", "strategy_generator", "max_coverage_rate", limited_useful_view[-1][1])
|
||||
Log.success(f"Scene <{scene_name}> Finished, Max Coverage Rate: {limited_useful_view[-1][1]}, Best Sequence length: {len(limited_useful_view)}")
|
||||
|
||||
output_label_path = DataLoadUtil.get_label_path(root, scene_name)
|
||||
|
@ -184,11 +184,11 @@ class PoseUtil:
|
||||
], f"the rotation mode {rot_mode} is not supported!"
|
||||
|
||||
if rot_mode == "quat_wxyz" or rot_mode == "quat_xyzw":
|
||||
pose_dim = 4
|
||||
pose_dim = 7
|
||||
elif rot_mode == "euler_xyz":
|
||||
pose_dim = 3
|
||||
elif rot_mode == "euler_xyz_sx_cx" or rot_mode == "rot_matrix":
|
||||
pose_dim = 6
|
||||
elif rot_mode == "euler_xyz_sx_cx" or rot_mode == "rot_matrix":
|
||||
pose_dim = 9
|
||||
else:
|
||||
raise NotImplementedError
|
||||
return pose_dim
|
||||
|
@ -45,12 +45,12 @@ class ReconstructionUtil:
|
||||
|
||||
|
||||
@staticmethod
|
||||
def compute_next_best_view_sequence_with_overlap(target_point_cloud, point_cloud_list, threshold=0.01, overlap_threshold=0.3):
|
||||
def compute_next_best_view_sequence_with_overlap(target_point_cloud, point_cloud_list, threshold=0.01, overlap_threshold=0.3, status_info=None):
|
||||
selected_views = []
|
||||
current_coverage = 0.0
|
||||
remaining_views = list(range(len(point_cloud_list)))
|
||||
view_sequence = []
|
||||
|
||||
cnt_processed_view = 0
|
||||
while remaining_views:
|
||||
best_view = None
|
||||
best_coverage_increase = -1
|
||||
@ -74,6 +74,14 @@ class ReconstructionUtil:
|
||||
if coverage_increase > best_coverage_increase:
|
||||
best_coverage_increase = coverage_increase
|
||||
best_view = view_index
|
||||
cnt_processed_view += 1
|
||||
if status_info is not None:
|
||||
|
||||
sm = status_info["status_manager"]
|
||||
app_name = status_info["app_name"]
|
||||
runner_name = status_info["runner_name"]
|
||||
sm.set_status(app_name, runner_name, "current coverage", current_coverage)
|
||||
sm.set_progress(app_name, runner_name, "processed view", cnt_processed_view, len(point_cloud_list))
|
||||
|
||||
if best_view is not None:
|
||||
if best_coverage_increase <=1e-3:
|
||||
@ -87,7 +95,11 @@ class ReconstructionUtil:
|
||||
|
||||
else:
|
||||
break
|
||||
|
||||
if status_info is not None:
|
||||
sm = status_info["status_manager"]
|
||||
app_name = status_info["app_name"]
|
||||
runner_name = status_info["runner_name"]
|
||||
sm.set_progress(app_name, runner_name, "processed view", len(point_cloud_list), len(point_cloud_list))
|
||||
return view_sequence, remaining_views
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user