update gf_view_finder

This commit is contained in:
hofee 2024-09-02 23:47:52 +08:00
parent 2fcfcd1966
commit e0fb9a7617
7 changed files with 78 additions and 31 deletions

View File

@ -13,13 +13,13 @@ runner:
generate:
voxel_threshold: 0.005
overlap_threshold: 0.5
save_points: True
save_points: False
dataset_list:
- OmniObject3d
datasets:
OmniObject3d:
model_dir: "/media/hofee/data/data/scaled_object_meshes"
root_dir: "/media/hofee/data/data/nbv_rec/sample"
model_dir: "H:\\AI\\Datasets\\scaled_object_meshes"
root_dir: "C:\\Document\\Local Project\\nbv_rec\\data\\sample"

View File

@ -89,7 +89,7 @@ def cond_ode_sampler(
num_steps = xs.shape[0]
xs = xs.reshape(batch_size*num_steps, -1)
xs = PoseUtil.normalize_rotation(xs, pose_mode)
xs[:, :-3] = PoseUtil.normalize_rotation(xs[:, :-3], pose_mode)
xs = xs.reshape(num_steps, batch_size, -1)
x = PoseUtil.normalize_rotation(x, pose_mode)
x[:, :-3] = PoseUtil.normalize_rotation(x[:, :-3], pose_mode)
return xs.permute(1, 0, 2), x

View File

@ -2,6 +2,9 @@ import torch
import torch.nn as nn
import PytorchBoot.stereotype as stereotype
import sys
sys.path.append(r"C:\Document\Local Project\nbv_rec\nbv_reconstruction")
from utils.pose import PoseUtil
import modules.module_lib as mlib
import modules.func_lib as flib
@ -47,7 +50,7 @@ class GradientFieldViewFinder(nn.Module):
)
''' fusion tail '''
if self.regression_head == 'Rx_Ry':
if self.regression_head == 'Rx_Ry_and_T':
if self.pose_mode != 'rot_matrix':
raise NotImplementedError
if not self.per_point_feature:
@ -62,6 +65,12 @@ class GradientFieldViewFinder(nn.Module):
self.act,
zero_module(nn.Linear(256, 3)),
)
''' tranalation regress head '''
self.fusion_tail_trans = nn.Sequential(
nn.Linear(128 + 256 + 2048, 256),
self.act,
zero_module(nn.Linear(256, 3)),
)
else:
raise NotImplementedError
else:
@ -89,10 +98,11 @@ class GradientFieldViewFinder(nn.Module):
total_feat = torch.cat([seq_feat, t_feat, pose_feat], dim=-1)
_, std = self.marginal_prob_fn(total_feat, t)
if self.regression_head == 'Rx_Ry':
if self.regression_head == 'Rx_Ry_and_T':
rot_x = self.fusion_tail_rot_x(total_feat)
rot_y = self.fusion_tail_rot_y(total_feat)
out_score = torch.cat([rot_x, rot_y], dim=-1) / (std + 1e-7) # normalisation
trans = self.fusion_tail_trans(total_feat)
out_score = torch.cat([rot_x, rot_y, trans], dim=-1) / (std+1e-7) # normalisation
else:
raise NotImplementedError
@ -134,18 +144,24 @@ class GradientFieldViewFinder(nn.Module):
''' ----------- DEBUG -----------'''
if __name__ == "__main__":
test_scene_feat = torch.rand(32, 1024).to("cuda:0")
test_target_feat = torch.rand(32, 1024).to("cuda:0")
test_pose = torch.rand(32, 6).to("cuda:0")
config = {
"regression_head": "Rx_Ry_and_T",
"per_point_feature": False,
"pose_mode": "rot_matrix",
"sde_mode": "ve",
"sampling_steps": 500,
"sample_mode": "ode"
}
test_seq_feat = torch.rand(32, 2048).to("cuda:0")
test_pose = torch.rand(32, 9).to("cuda:0")
test_t = torch.rand(32, 1).to("cuda:0")
view_finder = GradientFieldViewFinder().to("cuda:0")
view_finder = GradientFieldViewFinder(config).to("cuda:0")
test_data = {
'target_feat': test_target_feat,
'scene_feat': test_scene_feat,
'seq_feat': test_seq_feat,
'sampled_pose': test_pose,
't': test_t
}
score = view_finder(test_data)
result = view_finder.next_best_view(test_scene_feat, test_target_feat)
print(result)
print(score.shape)
res, inprocess = view_finder.next_best_view(test_seq_feat)
print(res.shape, inprocess.shape)

View File

@ -4,9 +4,9 @@ from PytorchBoot.runners.runner import Runner
from PytorchBoot.config import ConfigManager
from PytorchBoot.utils import Log
import PytorchBoot.stereotype as stereotype
from PytorchBoot.status import status_manager
@stereotype.runner("data_splitor", comment="unfinished")
@stereotype.runner("data_splitor")
class DataSplitor(Runner):
def __init__(self, config):
super().__init__(config)
@ -23,15 +23,17 @@ class DataSplitor(Runner):
random.shuffle(self.datapath_list)
start_idx = 0
for dataset in self.datasets:
for dataset_idx in range(len(self.datasets)):
dataset = list(self.datasets.keys())[dataset_idx]
ratio = self.datasets[dataset]["ratio"]
path = self.datasets[dataset]["path"]
split_size = int(len(self.datapath_list) * ratio)
split_files = self.datapath_list[start_idx:start_idx + split_size]
start_idx += split_size
self.save_split_files(path, split_files)
status_manager.set_progress("split", "data_splitor", "split dataset", dataset_idx, len(self.datasets))
Log.success(f"save {dataset} split files to {path}")
status_manager.set_progress("split", "data_splitor", "split dataset", len(self.datasets), len(self.datasets))
def save_split_files(self, path, split_files):
os.makedirs(os.path.dirname(path), exist_ok=True)
with open(path, "w") as f:

View File

@ -6,6 +6,7 @@ from PytorchBoot.runners.runner import Runner
from PytorchBoot.config import ConfigManager
from PytorchBoot.utils import Log
import PytorchBoot.stereotype as stereotype
from PytorchBoot.status import status_manager
from utils.data_load import DataLoadUtil
from utils.reconstruction import ReconstructionUtil
@ -16,12 +17,19 @@ class StrategyGenerator(Runner):
def __init__(self, config):
super().__init__(config)
self.load_experiment("generate")
self.status_info = {
"status_manager": status_manager,
"app_name": "generate",
"runner_name": "strategy_generator"
}
def run(self):
dataset_name_list = ConfigManager.get("runner", "generate", "dataset_list")
voxel_threshold, overlap_threshold = ConfigManager.get("runner","generate","voxel_threshold"), ConfigManager.get("runner","generate","overlap_threshold")
self.save_pts = ConfigManager.get("runner","generate","save_points")
for dataset_name in dataset_name_list:
for dataset_idx in range(len(dataset_name_list)):
dataset_name = dataset_name_list[dataset_idx]
status_manager.set_progress("generate", "strategy_generator", "dataset", dataset_idx, len(dataset_name_list))
root_dir = ConfigManager.get("datasets", dataset_name, "root_dir")
model_dir = ConfigManager.get("datasets", dataset_name, "model_dir")
scene_name_list = os.listdir(root_dir)
@ -29,8 +37,12 @@ class StrategyGenerator(Runner):
total = len(scene_name_list)
for scene_name in scene_name_list:
Log.info(f"({dataset_name})Processing [{cnt}/{total}]: {scene_name}")
status_manager.set_progress("generate", "strategy_generator", "scene", cnt, total)
self.generate_sequence(root_dir, model_dir, scene_name,voxel_threshold, overlap_threshold)
cnt += 1
status_manager.set_progress("generate", "strategy_generator", "scene", total, total)
status_manager.set_progress("generate", "strategy_generator", "dataset", len(dataset_name_list), len(dataset_name_list))
def create_experiment(self, backup_name=None):
super().create_experiment(backup_name)
@ -41,6 +53,7 @@ class StrategyGenerator(Runner):
super().load_experiment(backup_name)
def generate_sequence(self, root, model_dir, scene_name, voxel_threshold, overlap_threshold):
status_manager.set_status("generate", "strategy_generator", "scene", scene_name)
frame_num = DataLoadUtil.get_scene_seq_length(root, scene_name)
model_pts = DataLoadUtil.load_original_model_points(model_dir, scene_name)
down_sampled_model_pts = PtsUtil.voxel_downsample_point_cloud(model_pts, voxel_threshold)
@ -50,7 +63,7 @@ class StrategyGenerator(Runner):
for frame_idx in range(frame_num):
path = DataLoadUtil.get_path(root, scene_name, frame_idx)
status_manager.set_progress("generate", "strategy_generator", "loading frame", frame_idx, frame_num)
point_cloud = DataLoadUtil.get_point_cloud_world_from_path(path)
sampled_point_cloud = PtsUtil.voxel_downsample_point_cloud(point_cloud, voxel_threshold)
if self.save_pts:
@ -59,13 +72,17 @@ class StrategyGenerator(Runner):
os.makedirs(pts_dir)
np.savetxt(os.path.join(pts_dir, f"{frame_idx}.txt"), sampled_point_cloud)
pts_list.append(sampled_point_cloud)
limited_useful_view, _ = ReconstructionUtil.compute_next_best_view_sequence_with_overlap(down_sampled_transformed_model_pts, pts_list, threshold=voxel_threshold, overlap_threshold=overlap_threshold)
status_manager.set_progress("generate", "strategy_generator", "loading frame", frame_num, frame_num)
limited_useful_view, _ = ReconstructionUtil.compute_next_best_view_sequence_with_overlap(down_sampled_transformed_model_pts, pts_list, threshold=voxel_threshold, overlap_threshold=overlap_threshold, status_info=self.status_info)
data_pairs = self.generate_data_pairs(limited_useful_view)
seq_save_data = {
"data_pairs": data_pairs,
"best_sequence": limited_useful_view,
"max_coverage_rate": limited_useful_view[-1][1]
}
status_manager.set_status("generate", "strategy_generator", "max_coverage_rate", limited_useful_view[-1][1])
Log.success(f"Scene <{scene_name}> Finished, Max Coverage Rate: {limited_useful_view[-1][1]}, Best Sequence length: {len(limited_useful_view)}")
output_label_path = DataLoadUtil.get_label_path(root, scene_name)

View File

@ -184,11 +184,11 @@ class PoseUtil:
], f"the rotation mode {rot_mode} is not supported!"
if rot_mode == "quat_wxyz" or rot_mode == "quat_xyzw":
pose_dim = 4
pose_dim = 7
elif rot_mode == "euler_xyz":
pose_dim = 3
elif rot_mode == "euler_xyz_sx_cx" or rot_mode == "rot_matrix":
pose_dim = 6
elif rot_mode == "euler_xyz_sx_cx" or rot_mode == "rot_matrix":
pose_dim = 9
else:
raise NotImplementedError
return pose_dim

View File

@ -45,12 +45,12 @@ class ReconstructionUtil:
@staticmethod
def compute_next_best_view_sequence_with_overlap(target_point_cloud, point_cloud_list, threshold=0.01, overlap_threshold=0.3):
def compute_next_best_view_sequence_with_overlap(target_point_cloud, point_cloud_list, threshold=0.01, overlap_threshold=0.3, status_info=None):
selected_views = []
current_coverage = 0.0
remaining_views = list(range(len(point_cloud_list)))
view_sequence = []
cnt_processed_view = 0
while remaining_views:
best_view = None
best_coverage_increase = -1
@ -74,6 +74,14 @@ class ReconstructionUtil:
if coverage_increase > best_coverage_increase:
best_coverage_increase = coverage_increase
best_view = view_index
cnt_processed_view += 1
if status_info is not None:
sm = status_info["status_manager"]
app_name = status_info["app_name"]
runner_name = status_info["runner_name"]
sm.set_status(app_name, runner_name, "current coverage", current_coverage)
sm.set_progress(app_name, runner_name, "processed view", cnt_processed_view, len(point_cloud_list))
if best_view is not None:
if best_coverage_increase <=1e-3:
@ -87,7 +95,11 @@ class ReconstructionUtil:
else:
break
if status_info is not None:
sm = status_info["status_manager"]
app_name = status_info["app_name"]
runner_name = status_info["runner_name"]
sm.set_progress(app_name, runner_name, "processed view", len(point_cloud_list), len(point_cloud_list))
return view_sequence, remaining_views