add readme.md
This commit is contained in:
parent
ed569254dc
commit
ccec9b8e8a
192
Readme.md
Normal file
192
Readme.md
Normal file
@ -0,0 +1,192 @@
|
||||
# Next Best View for Reconstruction
|
||||
|
||||
## 1. Setup Environment
|
||||
### 1.1 Install Main Project
|
||||
```bash
|
||||
mkdir nbv_rec
|
||||
cd nbv_rec
|
||||
git clone https://git.hofee.top/hofee/nbv_reconstruction.git
|
||||
```
|
||||
### 1.2 Install PytorchBoot
|
||||
the environment is based on PytorchBoot, clone and install it from [PytorchBoot](https://git.hofee.top/hofee/PyTorchBoot.git)
|
||||
```bash
|
||||
git clone https://git.hofee.top/hofee/PyTorchBoot.git
|
||||
cd PyTorchBoot
|
||||
pip install .
|
||||
cd ..
|
||||
```
|
||||
### 1.3 Install Blender (Optional)
|
||||
If you want to render your own dataset as described in [section 2. Render Datasets](#2-render-datasets), you'll need to install Blender version 4.0 from [Blender Release](https://download.blender.org/release/Blender4.0/). Here is an example of installing Blender on Ubuntu:
|
||||
```bash
|
||||
wget https://download.blender.org/release/Blender4.0/blender-4.0.2-linux-x64.tar.xz
|
||||
tar -xvf blender-4.0.2-linux-x64.tar.xz
|
||||
```
|
||||
If blender is not in your PATH, you can add it by:
|
||||
```bash
|
||||
export PATH=$PATH:/path/to/blender/blender-4.0.2-linux-x64
|
||||
```
|
||||
To run the blender script, you need to install the `pyyaml` and `scipy` package into your blender python environment. Run the following command to print the python path of your blender:
|
||||
```bash
|
||||
./blender -b --python-expr "import sys; print(sys.executable)"
|
||||
```
|
||||
Then copy the python path `/path/to/blender_python` shown in the output and run the following command to install the packages:
|
||||
```bash
|
||||
/path/to/blender_python -m pip install pyyaml scipy
|
||||
```
|
||||
### 1.4 Install Blender Render Script (Optional)
|
||||
Clone the script from [nbv_rec_blender_render](https://git.hofee.top/hofee/nbv_rec_blender_render.git) and rename it to `blender`:
|
||||
```bash
|
||||
git clone https://git.hofee.top/hofee/nbv_rec_blender_render.git
|
||||
mv nbv_rec_blender_render blender
|
||||
```
|
||||
|
||||
### 1.5 Check Dependencies
|
||||
Switch to the project root directory and run `pytorch-boot scan` or `ptb scan` to check if all dependencies are installed:
|
||||
```bash
|
||||
cd nbv_reconstruction
|
||||
pytorch-boot scan
|
||||
# or
|
||||
ptb scan
|
||||
```
|
||||
If you see project structure information in the output, it means all dependencies are correctly installed. Otherwise, you may need to run `pip install xxx` to install the missing packages.
|
||||
|
||||
## 2. Render Datasets (Optional)
|
||||
### 2.1 Download Object Mesh Models
|
||||
Download the mesh models divided into three parts from:
|
||||
- [object_meshes_part1.zip](None)
|
||||
- [object_meshes_part2.zip](https://pan.baidu.com/s/1pBPhrFtBwEGp1g4vwsLIxA?pwd=1234)
|
||||
- [object_meshes_part3.zip](https://pan.baidu.com/s/1peE8HqFFL0qNFhM5OC69gA?pwd=1234)
|
||||
|
||||
or download the whole dataset from [object_meshes.zip](https://pan.baidu.com/s/1ilWWgzg_l7_pPBv64eSgzA?pwd=1234)
|
||||
|
||||
Download the table model from [table.obj](https://pan.baidu.com/s/1sjjiID25Es_kmcdUIjU_Dw?pwd=1234)
|
||||
|
||||
### 2.2 Set Render Configurations
|
||||
Open file `configs/local/view_generate_config.yaml` and modify the parameters to fit your needs. You are required to at least set the following parameters in `runner-generate`:
|
||||
- `object_dir`: the directory of the downloaded object mesh models
|
||||
- `output_dir`: the directory to save the rendered dataset
|
||||
- `table_model_path`: the path of the downloaded table model
|
||||
|
||||
### 2.3 Render Dataset
|
||||
|
||||
There are two ways to render the dataset:
|
||||
|
||||
#### 2.3.1 Render with Visual Monitoring
|
||||
|
||||
If you want to visually monitor the rendering progress and machine resource usage:
|
||||
|
||||
1. In the `view_generate_config.yaml` file, under the `runner-generate` section, run:
|
||||
```
|
||||
ptb ui
|
||||
```
|
||||
2. Open your browser and visit http://localhost:5000
|
||||
3. Navigate to `Project Dashboard - Project Structure - Applications - generate_view`
|
||||
4. Click the `Run` button to execute the rendering script
|
||||
|
||||
#### 2.3.2 Render in Terminal
|
||||
|
||||
If you don't need visual monitoring and prefer to run the rendering process directly in the terminal, simply run:
|
||||
|
||||
```
|
||||
ptb run generate_view
|
||||
```
|
||||
|
||||
This command will start the rendering process without launching the UI.
|
||||
|
||||
## 3. Preprocess
|
||||
|
||||
⚠️ The preprocessing code is currently not managed by `PytorchBoot`. To run the preprocessing:
|
||||
|
||||
1. Open the `./preprocess/preprocessor.py` file.
|
||||
2. Locate the `if __name__ == "__main__":` block at the bottom of the file.
|
||||
3. Specify the dataset folder by setting `root = "path/to/your/dataset"`.
|
||||
4. Run the preprocessing script directly:
|
||||
|
||||
```
|
||||
python ./preprocess/preprocessor.py
|
||||
```
|
||||
|
||||
This will preprocess the data in the specified dataset folder.
|
||||
|
||||
## 4. Generate Strategy Label
|
||||
|
||||
### 4.1 Set Configuration
|
||||
|
||||
Open the file `configs/local/strategy_generate_config.yaml` and modify the parameters to fit your needs. You are required to at least set the following parameter:
|
||||
|
||||
- `datasets.OmniObject3d.root_dir`: the directory of your dataset
|
||||
|
||||
### 4.2 Generate Strategy Label
|
||||
|
||||
There are two ways to generate the strategy label:
|
||||
|
||||
#### 4.2.1 Generate with Visual Monitoring
|
||||
|
||||
If you want to visually monitor the generation progress and machine resource usage:
|
||||
|
||||
1. In the terminal, run:
|
||||
```
|
||||
ptb ui
|
||||
```
|
||||
2. Open your browser and visit http://localhost:5000
|
||||
3. Navigate to Project Dashboard - Project Structure - Applications - generate_strategy
|
||||
4. Click the `Run` button to execute the generation script
|
||||
|
||||
#### 4.2.2 Generate in Terminal
|
||||
|
||||
If you don't need visual monitoring and prefer to run the generation process directly in the terminal, simply run:
|
||||
|
||||
```
|
||||
ptb run generate_strategy
|
||||
```
|
||||
|
||||
This command will start the strategy label generation process without launching the UI.
|
||||
|
||||
## 5. Train
|
||||
|
||||
### 5.1 Set Configuration
|
||||
|
||||
Open the file `configs/local/train_config.yaml` and modify the parameters to fit your needs. You are required to at least set the following parameters in the `experiment` section:
|
||||
|
||||
```yaml
|
||||
experiment:
|
||||
name: your_experiment_name
|
||||
root_dir: path/to/your/experiment_dir
|
||||
use_checkpoint: False # if True, the checkpoint will be loaded
|
||||
epoch: 600 # specific epoch to load, -1 stands for last epoch
|
||||
max_epochs: 5000 # maximum epochs to train
|
||||
save_checkpoint_interval: 1 # save checkpoint interval
|
||||
test_first: True # if True, test process will be performed before training at each epoch
|
||||
```
|
||||
|
||||
Adjust these parameters according to your training requirements.
|
||||
|
||||
|
||||
### 5.2 Start Training
|
||||
|
||||
There are two ways to start the training process:
|
||||
|
||||
#### 5.2.1 Train with Visual Monitoring
|
||||
|
||||
If you want to visually monitor the training progress and machine resource usage:
|
||||
|
||||
1. In the terminal, run:
|
||||
```
|
||||
ptb ui
|
||||
```
|
||||
2. Open your browser and visit http://localhost:5000
|
||||
3. Navigate to Project Dashboard - Project Structure - Applications - train
|
||||
4. Click the `Run` button to start the training process
|
||||
|
||||
#### 5.2.2 Train in Terminal
|
||||
|
||||
If you don't need visual monitoring and prefer to run the training process directly in the terminal, simply run:
|
||||
|
||||
```
|
||||
ptb run train
|
||||
```
|
||||
|
||||
This command will start the training process without launching the UI.
|
||||
|
||||
## 6. Evaluation
|
||||
...
|
22
TODO.md
22
TODO.md
@ -1,22 +0,0 @@
|
||||
# TODO
|
||||
## 预处理数据
|
||||
### 1. 生成view阶段
|
||||
**input**: 物体mesh
|
||||
|
||||
### 2. 生成label阶段
|
||||
**input**: 目标物体点云、目标物体点云法线、桌面扫描点、被拍到的桌面扫描点
|
||||
|
||||
**可以删掉的数据**: mask、normal
|
||||
|
||||
### 3. 训练阶段
|
||||
**input**: 完整点云、pose、label
|
||||
|
||||
**可以删掉的数据**:depth
|
||||
|
||||
### view生成后
|
||||
预处理目标物体点云、目标物体点云法线、桌面扫描点、被拍到的桌面扫描点、完整点云
|
||||
|
||||
删除depth、mask、normal
|
||||
|
||||
### label生成后
|
||||
只上传:完整点云、pose、label
|
@ -14,12 +14,6 @@ runner:
|
||||
voxel_threshold: 0.003
|
||||
soft_overlap_threshold: 0.3
|
||||
hard_overlap_threshold: 0.6
|
||||
filter_degree: 75
|
||||
to_specified_dir: True # if True, output_dir is used, otherwise, root_dir is used
|
||||
save_points: True
|
||||
load_points: True
|
||||
save_best_combined_points: False
|
||||
save_mesh: True
|
||||
overwrite: False
|
||||
seq_num: 15
|
||||
dataset_list:
|
||||
@ -27,11 +21,8 @@ runner:
|
||||
|
||||
datasets:
|
||||
OmniObject3d:
|
||||
#"/media/hofee/data/data/temp_output"
|
||||
root_dir: /media/hofee/repository/full_data_output
|
||||
model_dir: /media/hofee/data/data/scaled_object_meshes
|
||||
from: 0
|
||||
to: -1 # -1 means end
|
||||
#output_dir: "/media/hofee/data/data/label_output"
|
||||
|
||||
|
||||
|
@ -7,12 +7,12 @@ runner:
|
||||
name: debug
|
||||
root_dir: experiments
|
||||
generate:
|
||||
port: 5004
|
||||
port: 5000
|
||||
from: 0
|
||||
to: 1 # -1 means all
|
||||
object_dir: H:\\AI\\Datasets\\scaled_object_box_meshes
|
||||
to: -1 # -1 means all
|
||||
object_dir: H:\\AI\\Datasets\\object_meshes_part2
|
||||
table_model_path: "H:\\AI\\Datasets\\table.obj"
|
||||
output_dir: C:\\Document\\Local Project\\nbv_rec\\nbv_reconstruction\\temp
|
||||
output_dir: C:\\Document\\Datasets\\nbv_rec_part2
|
||||
binocular_vision: true
|
||||
plane_size: 10
|
||||
max_views: 512
|
||||
|
@ -1,22 +0,0 @@
|
||||
|
||||
runner:
|
||||
general:
|
||||
seed: 0
|
||||
device: cpu
|
||||
cuda_visible_devices: "0,1,2,3,4,5,6,7"
|
||||
|
||||
experiment:
|
||||
name: debug
|
||||
root_dir: "experiments"
|
||||
|
||||
split: #
|
||||
root_dir: "/home/data/hofee/project/nbv_rec/data/nbv_rec_data_512_preproc_npy"
|
||||
type: "unseen_instance" # "unseen_category"
|
||||
datasets:
|
||||
OmniObject3d_train:
|
||||
path: "../data/sample_for_training_preprocessed/OmniObject3d_train.txt"
|
||||
ratio: 0.9
|
||||
|
||||
OmniObject3d_test:
|
||||
path: "../data/sample_for_training_preprocessed/OmniObject3d_test.txt"
|
||||
ratio: 0.1
|
@ -1,37 +0,0 @@
|
||||
|
||||
runner:
|
||||
general:
|
||||
seed: 0
|
||||
device: cpu
|
||||
cuda_visible_devices: "0,1,2,3,4,5,6,7"
|
||||
|
||||
|
||||
experiment:
|
||||
name: debug
|
||||
root_dir: "experiments"
|
||||
|
||||
generate:
|
||||
voxel_threshold: 0.003
|
||||
soft_overlap_threshold: 0.3
|
||||
hard_overlap_threshold: 0.6
|
||||
filter_degree: 75
|
||||
to_specified_dir: True # if True, output_dir is used, otherwise, root_dir is used
|
||||
save_points: True
|
||||
load_points: True
|
||||
save_best_combined_points: False
|
||||
save_mesh: True
|
||||
overwrite: False
|
||||
seq_num: 15
|
||||
dataset_list:
|
||||
- OmniObject3d
|
||||
|
||||
datasets:
|
||||
OmniObject3d:
|
||||
#"/media/hofee/data/data/temp_output"
|
||||
root_dir: /data/hofee/data/packed_preprocessed_data
|
||||
model_dir: /media/hofee/data/data/scaled_object_meshes
|
||||
from: 0
|
||||
to: -1 # -1 means end
|
||||
#output_dir: "/media/hofee/data/data/label_output"
|
||||
|
||||
|
@ -22,13 +22,7 @@ class StrategyGenerator(Runner):
|
||||
"app_name": "generate_strategy",
|
||||
"runner_name": "strategy_generator"
|
||||
}
|
||||
self.to_specified_dir = ConfigManager.get("runner", "generate", "to_specified_dir")
|
||||
self.save_best_combined_pts = ConfigManager.get("runner", "generate", "save_best_combined_points")
|
||||
self.save_mesh = ConfigManager.get("runner", "generate", "save_mesh")
|
||||
self.load_pts = ConfigManager.get("runner", "generate", "load_points")
|
||||
self.filter_degree = ConfigManager.get("runner", "generate", "filter_degree")
|
||||
self.overwrite = ConfigManager.get("runner", "generate", "overwrite")
|
||||
self.save_pts = ConfigManager.get("runner","generate","save_points")
|
||||
self.seq_num = ConfigManager.get("runner","generate","seq_num")
|
||||
|
||||
|
||||
|
@ -14,25 +14,16 @@ class DataLoadUtil:
|
||||
|
||||
@staticmethod
|
||||
def load_exr_image(file_path):
|
||||
# 打开 EXR 文件
|
||||
exr_file = OpenEXR.InputFile(file_path)
|
||||
|
||||
# 获取 EXR 文件的头部信息,包括尺寸
|
||||
header = exr_file.header()
|
||||
dw = header['dataWindow']
|
||||
width = dw.max.x - dw.min.x + 1
|
||||
height = dw.max.y - dw.min.y + 1
|
||||
|
||||
# 定义通道,通常法线图像是 RGB
|
||||
float_channels = ['R', 'G', 'B']
|
||||
|
||||
# 读取 EXR 文件中的每个通道并转化为浮点数数组
|
||||
img_data = []
|
||||
for channel in float_channels:
|
||||
channel_data = exr_file.channel(channel, Imath.PixelType(Imath.PixelType.FLOAT))
|
||||
img_data.append(np.frombuffer(channel_data, dtype=np.float32).reshape((height, width)))
|
||||
|
||||
# 将各通道组合成一个 (height, width, 3) 的 RGB 图像
|
||||
img = np.stack(img_data, axis=-1)
|
||||
return img
|
||||
|
||||
|
@ -128,10 +128,10 @@ class visualizeUtil:
|
||||
if __name__ == "__main__":
|
||||
root = r"C:\Document\Local Project\nbv_rec\nbv_reconstruction\temp"
|
||||
model_dir = r"H:\\AI\\Datasets\\scaled_object_box_meshes"
|
||||
scene = "test_obj"
|
||||
scene = "box"
|
||||
output_dir = r"C:\Document\Local Project\nbv_rec\nbv_reconstruction\test"
|
||||
|
||||
visualizeUtil.save_all_cam_pos_and_cam_axis(root, scene, output_dir)
|
||||
#visualizeUtil.save_all_cam_pos_and_cam_axis(root, scene, output_dir)
|
||||
visualizeUtil.save_all_combined_pts(root, scene, output_dir)
|
||||
visualizeUtil.save_target_mesh_at_world_space(root, model_dir, scene)
|
||||
#visualizeUtil.save_points_and_normals(root, scene,"10", output_dir, binocular=True)
|
Loading…
x
Reference in New Issue
Block a user