finish partial_global inference
This commit is contained in:
parent
2c8ef20321
commit
be835aded4
@ -6,7 +6,7 @@ runner:
|
|||||||
cuda_visible_devices: "0,1,2,3,4,5,6,7"
|
cuda_visible_devices: "0,1,2,3,4,5,6,7"
|
||||||
|
|
||||||
experiment:
|
experiment:
|
||||||
name: train_ab_global_only
|
name: train_ab_partial
|
||||||
root_dir: "experiments"
|
root_dir: "experiments"
|
||||||
epoch: -1 # -1 stands for last epoch
|
epoch: -1 # -1 stands for last epoch
|
||||||
|
|
||||||
@ -15,7 +15,7 @@ runner:
|
|||||||
- OmniObject3d_test
|
- OmniObject3d_test
|
||||||
|
|
||||||
blender_script_path: "/media/hofee/data/project/python/nbv_reconstruction/blender/data_renderer.py"
|
blender_script_path: "/media/hofee/data/project/python/nbv_reconstruction/blender/data_renderer.py"
|
||||||
output_dir: "/media/hofee/data/data/new_inference_test_output"
|
output_dir: "/media/hofee/data/data/new_partial_inference_test_output"
|
||||||
pipeline: nbv_reconstruction_pipeline
|
pipeline: nbv_reconstruction_pipeline
|
||||||
voxel_size: 0.003
|
voxel_size: 0.003
|
||||||
min_new_area: 1.0
|
min_new_area: 1.0
|
||||||
@ -66,7 +66,7 @@ module:
|
|||||||
global_feat: True
|
global_feat: True
|
||||||
feature_transform: False
|
feature_transform: False
|
||||||
transformer_seq_encoder:
|
transformer_seq_encoder:
|
||||||
embed_dim: 256
|
embed_dim: 320
|
||||||
num_heads: 4
|
num_heads: 4
|
||||||
ffn_dim: 256
|
ffn_dim: 256
|
||||||
num_layers: 3
|
num_layers: 3
|
||||||
|
@ -88,26 +88,49 @@ class NBVReconstructionPipeline(nn.Module):
|
|||||||
scanned_n_to_world_pose_9d_batch = data[
|
scanned_n_to_world_pose_9d_batch = data[
|
||||||
"scanned_n_to_world_pose_9d"
|
"scanned_n_to_world_pose_9d"
|
||||||
] # List(B): Tensor(S x 9)
|
] # List(B): Tensor(S x 9)
|
||||||
|
scanned_pts_mask_batch = data["scanned_pts_mask"] # List(B): Tensor(S x N)
|
||||||
|
|
||||||
device = next(self.parameters()).device
|
device = next(self.parameters()).device
|
||||||
|
|
||||||
embedding_list_batch = []
|
embedding_list_batch = []
|
||||||
|
|
||||||
combined_scanned_pts_batch = data["combined_scanned_pts"] # Tensor(B x N x 3)
|
combined_scanned_pts_batch = data["combined_scanned_pts"] # Tensor(B x N x 3)
|
||||||
global_scanned_feat = self.pts_encoder.encode_points(
|
global_scanned_feat, per_point_feat_batch = self.pts_encoder.encode_points(
|
||||||
combined_scanned_pts_batch, require_per_point_feat=False
|
combined_scanned_pts_batch, require_per_point_feat=True
|
||||||
) # global_scanned_feat: Tensor(B x Dg)
|
) # global_scanned_feat: Tensor(B x Dg)
|
||||||
|
batch_size = len(scanned_n_to_world_pose_9d_batch)
|
||||||
|
for i in range(batch_size):
|
||||||
|
seq_len = len(scanned_n_to_world_pose_9d_batch[i])
|
||||||
|
scanned_n_to_world_pose_9d = scanned_n_to_world_pose_9d_batch[i].to(device) # Tensor(S x 9)
|
||||||
|
scanned_pts_mask = scanned_pts_mask_batch[i] # Tensor(S x N)
|
||||||
|
per_point_feat = per_point_feat_batch[i] # Tensor(N x Dp)
|
||||||
|
partial_point_feat_seq = []
|
||||||
|
for j in range(seq_len):
|
||||||
|
partial_per_point_feat = per_point_feat[scanned_pts_mask[j]]
|
||||||
|
if partial_per_point_feat.shape[0] == 0:
|
||||||
|
partial_point_feat = torch.zeros(per_point_feat.shape[1], device=device)
|
||||||
|
else:
|
||||||
|
partial_point_feat = torch.mean(partial_per_point_feat, dim=0) # Tensor(Dp)
|
||||||
|
partial_point_feat_seq.append(partial_point_feat)
|
||||||
|
partial_point_feat_seq = torch.stack(partial_point_feat_seq, dim=0) # Tensor(S x Dp)
|
||||||
|
|
||||||
for scanned_n_to_world_pose_9d in scanned_n_to_world_pose_9d_batch:
|
|
||||||
scanned_n_to_world_pose_9d = scanned_n_to_world_pose_9d.to(device) # Tensor(S x 9)
|
|
||||||
pose_feat_seq = self.pose_encoder.encode_pose(scanned_n_to_world_pose_9d) # Tensor(S x Dp)
|
pose_feat_seq = self.pose_encoder.encode_pose(scanned_n_to_world_pose_9d) # Tensor(S x Dp)
|
||||||
seq_embedding = pose_feat_seq
|
|
||||||
|
seq_embedding = torch.cat([partial_point_feat_seq, pose_feat_seq], dim=-1)
|
||||||
|
|
||||||
embedding_list_batch.append(seq_embedding) # List(B): Tensor(S x (Dp))
|
embedding_list_batch.append(seq_embedding) # List(B): Tensor(S x (Dp))
|
||||||
|
|
||||||
seq_feat = self.seq_encoder.encode_sequence(embedding_list_batch) # Tensor(B x Ds)
|
seq_feat = self.seq_encoder.encode_sequence(embedding_list_batch) # Tensor(B x Ds)
|
||||||
main_feat = torch.cat([seq_feat, global_scanned_feat], dim=-1) # Tensor(B x (Ds+Dg))
|
main_feat = torch.cat([seq_feat, global_scanned_feat], dim=-1) # Tensor(B x (Ds+Dg))
|
||||||
|
|
||||||
if torch.isnan(main_feat).any():
|
if torch.isnan(main_feat).any():
|
||||||
|
for i in range(len(main_feat)):
|
||||||
|
if torch.isnan(main_feat[i]).any():
|
||||||
|
scanned_pts_mask = scanned_pts_mask_batch[i]
|
||||||
|
Log.info(f"scanned_pts_mask shape: {scanned_pts_mask.shape}")
|
||||||
|
Log.info(f"scanned_pts_mask sum: {scanned_pts_mask.sum()}")
|
||||||
|
import ipdb
|
||||||
|
ipdb.set_trace()
|
||||||
Log.error("nan in main_feat", True)
|
Log.error("nan in main_feat", True)
|
||||||
|
|
||||||
return main_feat
|
return main_feat
|
@ -90,7 +90,8 @@ class Inferencer(Runner):
|
|||||||
output = self.predict_sequence(data)
|
output = self.predict_sequence(data)
|
||||||
self.save_inference_result(test_set_name, data["scene_name"], output)
|
self.save_inference_result(test_set_name, data["scene_name"], output)
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
Log.error(f"Error in scene {scene_name}, {e}")
|
print(e)
|
||||||
|
Log.error(f"Error, {e}")
|
||||||
continue
|
continue
|
||||||
|
|
||||||
status_manager.set_progress("inference", "inferencer", f"dataset", len(self.test_set_list), len(self.test_set_list))
|
status_manager.set_progress("inference", "inferencer", f"dataset", len(self.test_set_list), len(self.test_set_list))
|
||||||
@ -114,7 +115,9 @@ class Inferencer(Runner):
|
|||||||
|
|
||||||
''' data for inference '''
|
''' data for inference '''
|
||||||
input_data = {}
|
input_data = {}
|
||||||
|
|
||||||
input_data["combined_scanned_pts"] = torch.tensor(data["first_scanned_pts"][0], dtype=torch.float32).to(self.device).unsqueeze(0)
|
input_data["combined_scanned_pts"] = torch.tensor(data["first_scanned_pts"][0], dtype=torch.float32).to(self.device).unsqueeze(0)
|
||||||
|
input_data["scanned_pts_mask"] = [torch.zeros(input_data["combined_scanned_pts"].shape[1], dtype=torch.bool).to(self.device).unsqueeze(0)]
|
||||||
input_data["scanned_n_to_world_pose_9d"] = [torch.tensor(data["first_scanned_n_to_world_pose_9d"], dtype=torch.float32).to(self.device)]
|
input_data["scanned_n_to_world_pose_9d"] = [torch.tensor(data["first_scanned_n_to_world_pose_9d"], dtype=torch.float32).to(self.device)]
|
||||||
input_data["mode"] = namespace.Mode.TEST
|
input_data["mode"] = namespace.Mode.TEST
|
||||||
input_pts_N = input_data["combined_scanned_pts"].shape[1]
|
input_pts_N = input_data["combined_scanned_pts"].shape[1]
|
||||||
@ -187,11 +190,30 @@ class Inferencer(Runner):
|
|||||||
scanned_view_pts.append(new_target_pts)
|
scanned_view_pts.append(new_target_pts)
|
||||||
|
|
||||||
input_data["scanned_n_to_world_pose_9d"] = [torch.cat([input_data["scanned_n_to_world_pose_9d"][0], pred_pose_9d], dim=0)]
|
input_data["scanned_n_to_world_pose_9d"] = [torch.cat([input_data["scanned_n_to_world_pose_9d"][0], pred_pose_9d], dim=0)]
|
||||||
|
start_indices = [0]
|
||||||
|
total_points = 0
|
||||||
|
for pts in scanned_view_pts:
|
||||||
|
total_points += pts.shape[0]
|
||||||
|
start_indices.append(total_points)
|
||||||
combined_scanned_pts = np.vstack(scanned_view_pts)
|
combined_scanned_pts = np.vstack(scanned_view_pts)
|
||||||
voxel_downsampled_combined_scanned_pts_np = PtsUtil.voxel_downsample_point_cloud(combined_scanned_pts, voxel_threshold)
|
voxel_downsampled_combined_scanned_pts_np, inverse = self.voxel_downsample_with_mapping(combined_scanned_pts, voxel_threshold)
|
||||||
random_downsampled_combined_scanned_pts_np = PtsUtil.random_downsample_point_cloud(voxel_downsampled_combined_scanned_pts_np, input_pts_N)
|
random_downsampled_combined_scanned_pts_np, random_downsample_idx = PtsUtil.random_downsample_point_cloud(voxel_downsampled_combined_scanned_pts_np, input_pts_N, require_idx=True)
|
||||||
|
all_idx_unique = np.arange(len(voxel_downsampled_combined_scanned_pts_np))
|
||||||
|
all_random_downsample_idx = all_idx_unique[random_downsample_idx]
|
||||||
|
scanned_pts_mask = []
|
||||||
|
for idx, start_idx in enumerate(start_indices):
|
||||||
|
if idx == len(start_indices) - 1:
|
||||||
|
break
|
||||||
|
end_idx = start_indices[idx+1]
|
||||||
|
view_inverse = inverse[start_idx:end_idx]
|
||||||
|
view_unique_downsampled_idx = np.unique(view_inverse)
|
||||||
|
view_unique_downsampled_idx_set = set(view_unique_downsampled_idx)
|
||||||
|
mask = np.array([idx in view_unique_downsampled_idx_set for idx in all_random_downsample_idx])
|
||||||
|
scanned_pts_mask.append(mask)
|
||||||
|
|
||||||
input_data["combined_scanned_pts"] = torch.tensor(random_downsampled_combined_scanned_pts_np, dtype=torch.float32).unsqueeze(0).to(self.device)
|
input_data["combined_scanned_pts"] = torch.tensor(random_downsampled_combined_scanned_pts_np, dtype=torch.float32).unsqueeze(0).to(self.device)
|
||||||
|
#import ipdb; ipdb.set_trace()
|
||||||
|
input_data["scanned_pts_mask"] = [torch.tensor(scanned_pts_mask, dtype=torch.bool)]
|
||||||
|
|
||||||
|
|
||||||
last_pred_cr = pred_cr
|
last_pred_cr = pred_cr
|
||||||
@ -232,6 +254,14 @@ class Inferencer(Runner):
|
|||||||
|
|
||||||
return result
|
return result
|
||||||
|
|
||||||
|
def voxel_downsample_with_mapping(self, point_cloud, voxel_size=0.003):
|
||||||
|
voxel_indices = np.floor(point_cloud / voxel_size).astype(np.int32)
|
||||||
|
unique_voxels, inverse, counts = np.unique(voxel_indices, axis=0, return_inverse=True, return_counts=True)
|
||||||
|
idx_sort = np.argsort(inverse)
|
||||||
|
idx_unique = idx_sort[np.cumsum(counts)-counts]
|
||||||
|
downsampled_points = point_cloud[idx_unique]
|
||||||
|
return downsampled_points, inverse
|
||||||
|
|
||||||
def compute_coverage_rate(self, scanned_view_pts, new_pts, model_pts, threshold=0.005):
|
def compute_coverage_rate(self, scanned_view_pts, new_pts, model_pts, threshold=0.005):
|
||||||
if new_pts is not None:
|
if new_pts is not None:
|
||||||
new_scanned_view_pts = scanned_view_pts + [new_pts]
|
new_scanned_view_pts = scanned_view_pts + [new_pts]
|
||||||
|
Loading…
x
Reference in New Issue
Block a user