global: upd
This commit is contained in:
parent
097712c0ea
commit
b221036e8b
@ -48,7 +48,7 @@ class NBVReconstructionDataset(BaseDataset):
|
|||||||
for line in f:
|
for line in f:
|
||||||
scene_name = line.strip()
|
scene_name = line.strip()
|
||||||
scene_name_list.append(scene_name)
|
scene_name_list.append(scene_name)
|
||||||
return scene_name_list[:10]
|
return scene_name_list
|
||||||
|
|
||||||
def get_datalist(self):
|
def get_datalist(self):
|
||||||
datalist = []
|
datalist = []
|
||||||
|
154
core/old_seq_dataset.py
Normal file
154
core/old_seq_dataset.py
Normal file
@ -0,0 +1,154 @@
|
|||||||
|
import numpy as np
|
||||||
|
from PytorchBoot.dataset import BaseDataset
|
||||||
|
import PytorchBoot.namespace as namespace
|
||||||
|
import PytorchBoot.stereotype as stereotype
|
||||||
|
from PytorchBoot.utils.log_util import Log
|
||||||
|
import torch
|
||||||
|
import os
|
||||||
|
import sys
|
||||||
|
sys.path.append(r"/home/data/hofee/project/nbv_rec/nbv_reconstruction")
|
||||||
|
|
||||||
|
from utils.data_load import DataLoadUtil
|
||||||
|
from utils.pose import PoseUtil
|
||||||
|
from utils.pts import PtsUtil
|
||||||
|
|
||||||
|
@stereotype.dataset("old_seq_nbv_reconstruction_dataset")
|
||||||
|
class SeqNBVReconstructionDataset(BaseDataset):
|
||||||
|
def __init__(self, config):
|
||||||
|
super(SeqNBVReconstructionDataset, self).__init__(config)
|
||||||
|
self.type = config["type"]
|
||||||
|
if self.type != namespace.Mode.TEST:
|
||||||
|
Log.error("Dataset <seq_nbv_reconstruction_dataset> Only support test mode", terminate=True)
|
||||||
|
self.config = config
|
||||||
|
self.root_dir = config["root_dir"]
|
||||||
|
self.split_file_path = config["split_file"]
|
||||||
|
self.scene_name_list = self.load_scene_name_list()
|
||||||
|
self.datalist = self.get_datalist()
|
||||||
|
self.pts_num = config["pts_num"]
|
||||||
|
|
||||||
|
self.model_dir = config["model_dir"]
|
||||||
|
self.filter_degree = config["filter_degree"]
|
||||||
|
self.load_from_preprocess = config.get("load_from_preprocess", False)
|
||||||
|
|
||||||
|
|
||||||
|
def load_scene_name_list(self):
|
||||||
|
scene_name_list = []
|
||||||
|
with open(self.split_file_path, "r") as f:
|
||||||
|
for line in f:
|
||||||
|
scene_name = line.strip()
|
||||||
|
scene_name_list.append(scene_name)
|
||||||
|
return scene_name_list
|
||||||
|
|
||||||
|
def get_datalist(self):
|
||||||
|
datalist = []
|
||||||
|
for scene_name in self.scene_name_list:
|
||||||
|
seq_num = DataLoadUtil.get_label_num(self.root_dir, scene_name)
|
||||||
|
scene_max_coverage_rate = 0
|
||||||
|
scene_max_cr_idx = 0
|
||||||
|
|
||||||
|
for seq_idx in range(seq_num):
|
||||||
|
label_path = DataLoadUtil.get_label_path(self.root_dir, scene_name, seq_idx)
|
||||||
|
label_data = DataLoadUtil.load_label(label_path)
|
||||||
|
max_coverage_rate = label_data["max_coverage_rate"]
|
||||||
|
if max_coverage_rate > scene_max_coverage_rate:
|
||||||
|
scene_max_coverage_rate = max_coverage_rate
|
||||||
|
scene_max_cr_idx = seq_idx
|
||||||
|
|
||||||
|
label_path = DataLoadUtil.get_label_path(self.root_dir, scene_name, scene_max_cr_idx)
|
||||||
|
label_data = DataLoadUtil.load_label(label_path)
|
||||||
|
first_frame = label_data["best_sequence"][0]
|
||||||
|
best_seq_len = len(label_data["best_sequence"])
|
||||||
|
datalist.append({
|
||||||
|
"scene_name": scene_name,
|
||||||
|
"first_frame": first_frame,
|
||||||
|
"max_coverage_rate": scene_max_coverage_rate,
|
||||||
|
"best_seq_len": best_seq_len,
|
||||||
|
"label_idx": scene_max_cr_idx,
|
||||||
|
})
|
||||||
|
return datalist
|
||||||
|
|
||||||
|
def __getitem__(self, index):
|
||||||
|
data_item_info = self.datalist[index]
|
||||||
|
first_frame_idx = data_item_info["first_frame"][0]
|
||||||
|
first_frame_coverage = data_item_info["first_frame"][1]
|
||||||
|
max_coverage_rate = data_item_info["max_coverage_rate"]
|
||||||
|
scene_name = data_item_info["scene_name"]
|
||||||
|
first_cam_info = DataLoadUtil.load_cam_info(DataLoadUtil.get_path(self.root_dir, scene_name, first_frame_idx), binocular=True)
|
||||||
|
first_view_path = DataLoadUtil.get_path(self.root_dir, scene_name, first_frame_idx)
|
||||||
|
first_left_cam_pose = first_cam_info["cam_to_world"]
|
||||||
|
first_center_cam_pose = first_cam_info["cam_to_world_O"]
|
||||||
|
first_target_point_cloud = DataLoadUtil.load_from_preprocessed_pts(first_view_path)
|
||||||
|
first_pts_num = first_target_point_cloud.shape[0]
|
||||||
|
first_downsampled_target_point_cloud = PtsUtil.random_downsample_point_cloud(first_target_point_cloud, self.pts_num)
|
||||||
|
first_to_world_rot_6d = PoseUtil.matrix_to_rotation_6d_numpy(np.asarray(first_left_cam_pose[:3,:3]))
|
||||||
|
first_to_world_trans = first_left_cam_pose[:3,3]
|
||||||
|
first_to_world_9d = np.concatenate([first_to_world_rot_6d, first_to_world_trans], axis=0)
|
||||||
|
diag = DataLoadUtil.get_bbox_diag(self.model_dir, scene_name)
|
||||||
|
voxel_threshold = diag*0.02
|
||||||
|
first_O_to_first_L_pose = np.dot(np.linalg.inv(first_left_cam_pose), first_center_cam_pose)
|
||||||
|
scene_path = os.path.join(self.root_dir, scene_name)
|
||||||
|
model_points_normals = DataLoadUtil.load_points_normals(self.root_dir, scene_name)
|
||||||
|
|
||||||
|
data_item = {
|
||||||
|
"first_pts_num": np.asarray(
|
||||||
|
first_pts_num, dtype=np.int32
|
||||||
|
),
|
||||||
|
"first_pts": np.asarray([first_downsampled_target_point_cloud],dtype=np.float32),
|
||||||
|
"combined_scanned_pts": np.asarray(first_downsampled_target_point_cloud,dtype=np.float32),
|
||||||
|
"first_to_world_9d": np.asarray([first_to_world_9d],dtype=np.float32),
|
||||||
|
"scene_name": scene_name,
|
||||||
|
"max_coverage_rate": max_coverage_rate,
|
||||||
|
"voxel_threshold": voxel_threshold,
|
||||||
|
"filter_degree": self.filter_degree,
|
||||||
|
"O_to_L_pose": first_O_to_first_L_pose,
|
||||||
|
"first_frame_coverage": first_frame_coverage,
|
||||||
|
"scene_path": scene_path,
|
||||||
|
"model_points_normals": model_points_normals,
|
||||||
|
"best_seq_len": data_item_info["best_seq_len"],
|
||||||
|
"first_frame_id": first_frame_idx,
|
||||||
|
}
|
||||||
|
return data_item
|
||||||
|
|
||||||
|
def __len__(self):
|
||||||
|
return len(self.datalist)
|
||||||
|
|
||||||
|
def get_collate_fn(self):
|
||||||
|
def collate_fn(batch):
|
||||||
|
collate_data = {}
|
||||||
|
collate_data["first_pts"] = [torch.tensor(item['first_pts']) for item in batch]
|
||||||
|
collate_data["first_to_world_9d"] = [torch.tensor(item['first_to_world_9d']) for item in batch]
|
||||||
|
collate_data["combined_scanned_pts"] = torch.stack([torch.tensor(item['combined_scanned_pts']) for item in batch])
|
||||||
|
for key in batch[0].keys():
|
||||||
|
if key not in ["first_pts", "first_to_world_9d", "combined_scanned_pts"]:
|
||||||
|
collate_data[key] = [item[key] for item in batch]
|
||||||
|
return collate_data
|
||||||
|
return collate_fn
|
||||||
|
|
||||||
|
# -------------- Debug ---------------- #
|
||||||
|
if __name__ == "__main__":
|
||||||
|
import torch
|
||||||
|
seed = 0
|
||||||
|
torch.manual_seed(seed)
|
||||||
|
np.random.seed(seed)
|
||||||
|
config = {
|
||||||
|
"root_dir": "/home/data/hofee/project/nbv_rec/data/nbv_rec_data_512_preproc_npy",
|
||||||
|
"split_file": "/home/data/hofee/project/nbv_rec/data/OmniObject3d_train.txt",
|
||||||
|
"model_dir": "/home/data/hofee/project/nbv_rec/data/scaled_object_meshes",
|
||||||
|
"ratio": 0.005,
|
||||||
|
"batch_size": 2,
|
||||||
|
"filter_degree": 75,
|
||||||
|
"num_workers": 0,
|
||||||
|
"pts_num": 32684,
|
||||||
|
"type": namespace.Mode.TEST,
|
||||||
|
"load_from_preprocess": True
|
||||||
|
}
|
||||||
|
ds = SeqNBVReconstructionDataset(config)
|
||||||
|
print(len(ds))
|
||||||
|
#ds.__getitem__(10)
|
||||||
|
dl = ds.get_loader(shuffle=True)
|
||||||
|
for idx, data in enumerate(dl):
|
||||||
|
data = ds.process_batch(data, "cuda:0")
|
||||||
|
print(data)
|
||||||
|
# ------ Debug Start ------
|
||||||
|
import ipdb;ipdb.set_trace()
|
||||||
|
# ------ Debug End ------+
|
@ -2,34 +2,45 @@ import numpy as np
|
|||||||
from PytorchBoot.dataset import BaseDataset
|
from PytorchBoot.dataset import BaseDataset
|
||||||
import PytorchBoot.namespace as namespace
|
import PytorchBoot.namespace as namespace
|
||||||
import PytorchBoot.stereotype as stereotype
|
import PytorchBoot.stereotype as stereotype
|
||||||
|
from PytorchBoot.config import ConfigManager
|
||||||
from PytorchBoot.utils.log_util import Log
|
from PytorchBoot.utils.log_util import Log
|
||||||
import torch
|
import torch
|
||||||
import os
|
import os
|
||||||
import sys
|
import sys
|
||||||
sys.path.append(r"/home/data/hofee/project/nbv_rec/nbv_reconstruction")
|
|
||||||
|
sys.path.append(r"/data/hofee/project/nbv_rec/nbv_reconstruction")
|
||||||
|
|
||||||
from utils.data_load import DataLoadUtil
|
from utils.data_load import DataLoadUtil
|
||||||
from utils.pose import PoseUtil
|
from utils.pose import PoseUtil
|
||||||
from utils.pts import PtsUtil
|
from utils.pts import PtsUtil
|
||||||
|
|
||||||
@stereotype.dataset("seq_nbv_reconstruction_dataset")
|
|
||||||
class SeqNBVReconstructionDataset(BaseDataset):
|
@stereotype.dataset("seq_reconstruction_dataset")
|
||||||
|
class SeqReconstructionDataset(BaseDataset):
|
||||||
def __init__(self, config):
|
def __init__(self, config):
|
||||||
super(SeqNBVReconstructionDataset, self).__init__(config)
|
super(SeqReconstructionDataset, self).__init__(config)
|
||||||
self.type = config["type"]
|
|
||||||
if self.type != namespace.Mode.TEST:
|
|
||||||
Log.error("Dataset <seq_nbv_reconstruction_dataset> Only support test mode", terminate=True)
|
|
||||||
self.config = config
|
self.config = config
|
||||||
self.root_dir = config["root_dir"]
|
self.root_dir = config["root_dir"]
|
||||||
self.split_file_path = config["split_file"]
|
self.split_file_path = config["split_file"]
|
||||||
self.scene_name_list = self.load_scene_name_list()
|
self.scene_name_list = self.load_scene_name_list()
|
||||||
self.datalist = self.get_datalist()
|
self.datalist = self.get_datalist()
|
||||||
self.pts_num = config["pts_num"]
|
|
||||||
|
|
||||||
self.model_dir = config["model_dir"]
|
self.pts_num = config["pts_num"]
|
||||||
self.filter_degree = config["filter_degree"]
|
self.type = config["type"]
|
||||||
|
self.cache = config.get("cache")
|
||||||
self.load_from_preprocess = config.get("load_from_preprocess", False)
|
self.load_from_preprocess = config.get("load_from_preprocess", False)
|
||||||
|
|
||||||
|
if self.type == namespace.Mode.TEST:
|
||||||
|
#self.model_dir = config["model_dir"]
|
||||||
|
self.filter_degree = config["filter_degree"]
|
||||||
|
if self.type == namespace.Mode.TRAIN:
|
||||||
|
scale_ratio = 1
|
||||||
|
self.datalist = self.datalist*scale_ratio
|
||||||
|
if self.cache:
|
||||||
|
expr_root = ConfigManager.get("runner", "experiment", "root_dir")
|
||||||
|
expr_name = ConfigManager.get("runner", "experiment", "name")
|
||||||
|
self.cache_dir = os.path.join(expr_root, expr_name, "cache")
|
||||||
|
# self.preprocess_cache()
|
||||||
|
|
||||||
def load_scene_name_list(self):
|
def load_scene_name_list(self):
|
||||||
scene_name_list = []
|
scene_name_list = []
|
||||||
@ -44,111 +55,123 @@ class SeqNBVReconstructionDataset(BaseDataset):
|
|||||||
for scene_name in self.scene_name_list:
|
for scene_name in self.scene_name_list:
|
||||||
seq_num = DataLoadUtil.get_label_num(self.root_dir, scene_name)
|
seq_num = DataLoadUtil.get_label_num(self.root_dir, scene_name)
|
||||||
scene_max_coverage_rate = 0
|
scene_max_coverage_rate = 0
|
||||||
|
max_coverage_rate_list = []
|
||||||
scene_max_cr_idx = 0
|
scene_max_cr_idx = 0
|
||||||
|
|
||||||
for seq_idx in range(seq_num):
|
for seq_idx in range(seq_num):
|
||||||
label_path = DataLoadUtil.get_label_path(self.root_dir, scene_name, seq_idx)
|
label_path = DataLoadUtil.get_label_path(
|
||||||
|
self.root_dir, scene_name, seq_idx
|
||||||
|
)
|
||||||
label_data = DataLoadUtil.load_label(label_path)
|
label_data = DataLoadUtil.load_label(label_path)
|
||||||
max_coverage_rate = label_data["max_coverage_rate"]
|
max_coverage_rate = label_data["max_coverage_rate"]
|
||||||
if max_coverage_rate > scene_max_coverage_rate:
|
if max_coverage_rate > scene_max_coverage_rate:
|
||||||
scene_max_coverage_rate = max_coverage_rate
|
scene_max_coverage_rate = max_coverage_rate
|
||||||
scene_max_cr_idx = seq_idx
|
scene_max_cr_idx = seq_idx
|
||||||
|
max_coverage_rate_list.append(max_coverage_rate)
|
||||||
label_path = DataLoadUtil.get_label_path(self.root_dir, scene_name, scene_max_cr_idx)
|
best_label_path = DataLoadUtil.get_label_path(self.root_dir, scene_name, scene_max_cr_idx)
|
||||||
label_data = DataLoadUtil.load_label(label_path)
|
best_label_data = DataLoadUtil.load_label(best_label_path)
|
||||||
first_frame = label_data["best_sequence"][0]
|
first_frame = best_label_data["best_sequence"][0]
|
||||||
best_seq_len = len(label_data["best_sequence"])
|
best_seq_len = len(best_label_data["best_sequence"])
|
||||||
datalist.append({
|
datalist.append({
|
||||||
"scene_name": scene_name,
|
"scene_name": scene_name,
|
||||||
"first_frame": first_frame,
|
"first_frame": first_frame,
|
||||||
"max_coverage_rate": scene_max_coverage_rate,
|
|
||||||
"best_seq_len": best_seq_len,
|
"best_seq_len": best_seq_len,
|
||||||
|
"max_coverage_rate": scene_max_coverage_rate,
|
||||||
"label_idx": scene_max_cr_idx,
|
"label_idx": scene_max_cr_idx,
|
||||||
})
|
})
|
||||||
return datalist
|
return datalist
|
||||||
|
|
||||||
|
def preprocess_cache(self):
|
||||||
|
Log.info("preprocessing cache...")
|
||||||
|
for item_idx in range(len(self.datalist)):
|
||||||
|
self.__getitem__(item_idx)
|
||||||
|
Log.success("finish preprocessing cache.")
|
||||||
|
|
||||||
|
def load_from_cache(self, scene_name, curr_frame_idx):
|
||||||
|
cache_name = f"{scene_name}_{curr_frame_idx}.txt"
|
||||||
|
cache_path = os.path.join(self.cache_dir, cache_name)
|
||||||
|
if os.path.exists(cache_path):
|
||||||
|
data = np.loadtxt(cache_path)
|
||||||
|
return data
|
||||||
|
else:
|
||||||
|
return None
|
||||||
|
|
||||||
|
def save_to_cache(self, scene_name, curr_frame_idx, data):
|
||||||
|
cache_name = f"{scene_name}_{curr_frame_idx}.txt"
|
||||||
|
cache_path = os.path.join(self.cache_dir, cache_name)
|
||||||
|
try:
|
||||||
|
np.savetxt(cache_path, data)
|
||||||
|
except Exception as e:
|
||||||
|
Log.error(f"Save cache failed: {e}")
|
||||||
|
|
||||||
def __getitem__(self, index):
|
def __getitem__(self, index):
|
||||||
data_item_info = self.datalist[index]
|
data_item_info = self.datalist[index]
|
||||||
first_frame_idx = data_item_info["first_frame"][0]
|
|
||||||
first_frame_coverage = data_item_info["first_frame"][1]
|
|
||||||
max_coverage_rate = data_item_info["max_coverage_rate"]
|
max_coverage_rate = data_item_info["max_coverage_rate"]
|
||||||
scene_name = data_item_info["scene_name"]
|
scene_name = data_item_info["scene_name"]
|
||||||
first_cam_info = DataLoadUtil.load_cam_info(DataLoadUtil.get_path(self.root_dir, scene_name, first_frame_idx), binocular=True)
|
(
|
||||||
first_view_path = DataLoadUtil.get_path(self.root_dir, scene_name, first_frame_idx)
|
scanned_views_pts,
|
||||||
first_left_cam_pose = first_cam_info["cam_to_world"]
|
scanned_coverages_rate,
|
||||||
first_center_cam_pose = first_cam_info["cam_to_world_O"]
|
scanned_n_to_world_pose,
|
||||||
first_target_point_cloud = DataLoadUtil.load_from_preprocessed_pts(first_view_path)
|
) = ([], [], [])
|
||||||
first_pts_num = first_target_point_cloud.shape[0]
|
view = data_item_info["first_frame"]
|
||||||
first_downsampled_target_point_cloud = PtsUtil.random_downsample_point_cloud(first_target_point_cloud, self.pts_num)
|
frame_idx = view[0]
|
||||||
first_to_world_rot_6d = PoseUtil.matrix_to_rotation_6d_numpy(np.asarray(first_left_cam_pose[:3,:3]))
|
coverage_rate = view[1]
|
||||||
first_to_world_trans = first_left_cam_pose[:3,3]
|
view_path = DataLoadUtil.get_path(self.root_dir, scene_name, frame_idx)
|
||||||
first_to_world_9d = np.concatenate([first_to_world_rot_6d, first_to_world_trans], axis=0)
|
cam_info = DataLoadUtil.load_cam_info(view_path, binocular=True)
|
||||||
diag = DataLoadUtil.get_bbox_diag(self.model_dir, scene_name)
|
|
||||||
voxel_threshold = diag*0.02
|
n_to_world_pose = cam_info["cam_to_world"]
|
||||||
first_O_to_first_L_pose = np.dot(np.linalg.inv(first_left_cam_pose), first_center_cam_pose)
|
target_point_cloud = (
|
||||||
scene_path = os.path.join(self.root_dir, scene_name)
|
DataLoadUtil.load_from_preprocessed_pts(view_path)
|
||||||
model_points_normals = DataLoadUtil.load_points_normals(self.root_dir, scene_name)
|
)
|
||||||
|
downsampled_target_point_cloud = PtsUtil.random_downsample_point_cloud(
|
||||||
|
target_point_cloud, self.pts_num
|
||||||
|
)
|
||||||
|
scanned_views_pts.append(downsampled_target_point_cloud)
|
||||||
|
scanned_coverages_rate.append(coverage_rate)
|
||||||
|
n_to_world_6d = PoseUtil.matrix_to_rotation_6d_numpy(
|
||||||
|
np.asarray(n_to_world_pose[:3, :3])
|
||||||
|
)
|
||||||
|
n_to_world_trans = n_to_world_pose[:3, 3]
|
||||||
|
n_to_world_9d = np.concatenate([n_to_world_6d, n_to_world_trans], axis=0)
|
||||||
|
scanned_n_to_world_pose.append(n_to_world_9d)
|
||||||
|
|
||||||
|
# combined_scanned_views_pts = np.concatenate(scanned_views_pts, axis=0)
|
||||||
|
# voxel_downsampled_combined_scanned_pts_np = PtsUtil.voxel_downsample_point_cloud(combined_scanned_views_pts, 0.002)
|
||||||
|
# random_downsampled_combined_scanned_pts_np = PtsUtil.random_downsample_point_cloud(voxel_downsampled_combined_scanned_pts_np, self.pts_num)
|
||||||
|
|
||||||
data_item = {
|
data_item = {
|
||||||
"first_pts_num": np.asarray(
|
"first_scanned_pts": np.asarray(scanned_views_pts, dtype=np.float32), # Ndarray(S x Nv x 3)
|
||||||
first_pts_num, dtype=np.int32
|
"first_scanned_coverage_rate": scanned_coverages_rate, # List(S): Float, range(0, 1)
|
||||||
),
|
"first_scanned_n_to_world_pose_9d": np.asarray(scanned_n_to_world_pose, dtype=np.float32), # Ndarray(S x 9)
|
||||||
"first_pts": np.asarray([first_downsampled_target_point_cloud],dtype=np.float32),
|
"seq_max_coverage_rate": max_coverage_rate, # Float, range(0, 1)
|
||||||
"combined_scanned_pts": np.asarray(first_downsampled_target_point_cloud,dtype=np.float32),
|
"scene_name": scene_name, # String
|
||||||
"first_to_world_9d": np.asarray([first_to_world_9d],dtype=np.float32),
|
|
||||||
"scene_name": scene_name,
|
|
||||||
"max_coverage_rate": max_coverage_rate,
|
|
||||||
"voxel_threshold": voxel_threshold,
|
|
||||||
"filter_degree": self.filter_degree,
|
|
||||||
"O_to_L_pose": first_O_to_first_L_pose,
|
|
||||||
"first_frame_coverage": first_frame_coverage,
|
|
||||||
"scene_path": scene_path,
|
|
||||||
"model_points_normals": model_points_normals,
|
|
||||||
"best_seq_len": data_item_info["best_seq_len"],
|
|
||||||
"first_frame_id": first_frame_idx,
|
|
||||||
}
|
}
|
||||||
|
|
||||||
return data_item
|
return data_item
|
||||||
|
|
||||||
def __len__(self):
|
def __len__(self):
|
||||||
return len(self.datalist)
|
return len(self.datalist)
|
||||||
|
|
||||||
def get_collate_fn(self):
|
|
||||||
def collate_fn(batch):
|
|
||||||
collate_data = {}
|
|
||||||
collate_data["first_pts"] = [torch.tensor(item['first_pts']) for item in batch]
|
|
||||||
collate_data["first_to_world_9d"] = [torch.tensor(item['first_to_world_9d']) for item in batch]
|
|
||||||
collate_data["combined_scanned_pts"] = torch.stack([torch.tensor(item['combined_scanned_pts']) for item in batch])
|
|
||||||
for key in batch[0].keys():
|
|
||||||
if key not in ["first_pts", "first_to_world_9d", "combined_scanned_pts"]:
|
|
||||||
collate_data[key] = [item[key] for item in batch]
|
|
||||||
return collate_data
|
|
||||||
return collate_fn
|
|
||||||
|
|
||||||
# -------------- Debug ---------------- #
|
# -------------- Debug ---------------- #
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
import torch
|
import torch
|
||||||
|
|
||||||
seed = 0
|
seed = 0
|
||||||
torch.manual_seed(seed)
|
torch.manual_seed(seed)
|
||||||
np.random.seed(seed)
|
np.random.seed(seed)
|
||||||
config = {
|
config = {
|
||||||
"root_dir": "/home/data/hofee/project/nbv_rec/data/nbv_rec_data_512_preproc_npy",
|
"root_dir": "/data/hofee/data/new_full_data",
|
||||||
"split_file": "/home/data/hofee/project/nbv_rec/data/OmniObject3d_train.txt",
|
"source": "seq_reconstruction_dataset",
|
||||||
"model_dir": "/home/data/hofee/project/nbv_rec/data/scaled_object_meshes",
|
"split_file": "/data/hofee/data/sample.txt",
|
||||||
"ratio": 0.005,
|
"load_from_preprocess": True,
|
||||||
|
"ratio": 0.5,
|
||||||
"batch_size": 2,
|
"batch_size": 2,
|
||||||
"filter_degree": 75,
|
"filter_degree": 75,
|
||||||
"num_workers": 0,
|
"num_workers": 0,
|
||||||
"pts_num": 32684,
|
"pts_num": 4096,
|
||||||
"type": namespace.Mode.TEST,
|
"type": namespace.Mode.TRAIN,
|
||||||
"load_from_preprocess": True
|
|
||||||
}
|
}
|
||||||
ds = SeqNBVReconstructionDataset(config)
|
ds = SeqReconstructionDataset(config)
|
||||||
print(len(ds))
|
print(len(ds))
|
||||||
#ds.__getitem__(10)
|
print(ds.__getitem__(10))
|
||||||
dl = ds.get_loader(shuffle=True)
|
|
||||||
for idx, data in enumerate(dl):
|
|
||||||
data = ds.process_batch(data, "cuda:0")
|
|
||||||
print(data)
|
|
||||||
# ------ Debug Start ------
|
|
||||||
import ipdb;ipdb.set_trace()
|
|
||||||
# ------ Debug End ------+
|
|
||||||
|
Loading…
x
Reference in New Issue
Block a user