solve merge
This commit is contained in:
commit
b13e45bafc
@ -84,7 +84,7 @@ module:
|
|||||||
gf_view_finder:
|
gf_view_finder:
|
||||||
t_feat_dim: 128
|
t_feat_dim: 128
|
||||||
pose_feat_dim: 256
|
pose_feat_dim: 256
|
||||||
main_feat_dim: 2048
|
main_feat_dim: 3072
|
||||||
regression_head: Rx_Ry_and_T
|
regression_head: Rx_Ry_and_T
|
||||||
pose_mode: rot_matrix
|
pose_mode: rot_matrix
|
||||||
per_point_feature: False
|
per_point_feature: False
|
||||||
|
@ -7,7 +7,11 @@ runner:
|
|||||||
parallel: False
|
parallel: False
|
||||||
|
|
||||||
experiment:
|
experiment:
|
||||||
|
<<<<<<< HEAD
|
||||||
name: test_new_pipeline_train_overfit
|
name: test_new_pipeline_train_overfit
|
||||||
|
=======
|
||||||
|
name: debug
|
||||||
|
>>>>>>> 63a246c0c87d42f04076a459adcfdc88c954b09c
|
||||||
root_dir: "experiments"
|
root_dir: "experiments"
|
||||||
use_checkpoint: False
|
use_checkpoint: False
|
||||||
epoch: -1 # -1 stands for last epoch
|
epoch: -1 # -1 stands for last epoch
|
||||||
@ -32,10 +36,10 @@ runner:
|
|||||||
|
|
||||||
dataset:
|
dataset:
|
||||||
OmniObject3d_train:
|
OmniObject3d_train:
|
||||||
root_dir: "/data/hofee/data/packed_preprocessed_data"
|
root_dir: "/home/data/hofee/project/nbv_rec/data/sample_for_training_new"
|
||||||
model_dir: "../data/scaled_object_meshes"
|
model_dir: "../data/scaled_object_meshes"
|
||||||
source: nbv_reconstruction_dataset
|
source: nbv_reconstruction_dataset
|
||||||
split_file: "/data/hofee/data/OmniObject3d_train_overfit.txt"
|
split_file: "/home/data/hofee/project/nbv_rec/data/sample.txt"
|
||||||
type: train
|
type: train
|
||||||
cache: True
|
cache: True
|
||||||
ratio: 1
|
ratio: 1
|
||||||
@ -44,27 +48,27 @@ dataset:
|
|||||||
pts_num: 4096
|
pts_num: 4096
|
||||||
load_from_preprocess: True
|
load_from_preprocess: True
|
||||||
|
|
||||||
# OmniObject3d_test:
|
OmniObject3d_test:
|
||||||
# root_dir: "/data/hofee/data/packed_preprocessed_data"
|
root_dir: "/home/data/hofee/project/nbv_rec/data/sample_for_training_new"
|
||||||
# model_dir: "../data/scaled_object_meshes"
|
|
||||||
# source: nbv_reconstruction_dataset
|
|
||||||
# split_file: "/data/hofee/data/OmniObject3d_test.txt"
|
|
||||||
# type: test
|
|
||||||
# cache: True
|
|
||||||
# filter_degree: 75
|
|
||||||
# eval_list:
|
|
||||||
# - pose_diff
|
|
||||||
# ratio: 0.05
|
|
||||||
# batch_size: 160
|
|
||||||
# num_workers: 12
|
|
||||||
# pts_num: 4096
|
|
||||||
# load_from_preprocess: True
|
|
||||||
|
|
||||||
OmniObject3d_val:
|
|
||||||
root_dir: "/data/hofee/data/packed_preprocessed_data"
|
|
||||||
model_dir: "../data/scaled_object_meshes"
|
model_dir: "../data/scaled_object_meshes"
|
||||||
source: nbv_reconstruction_dataset
|
source: nbv_reconstruction_dataset
|
||||||
split_file: "/data/hofee/data/OmniObject3d_train_overfit.txt"
|
split_file: "/home/data/hofee/project/nbv_rec/data/sample.txt"
|
||||||
|
type: test
|
||||||
|
cache: True
|
||||||
|
filter_degree: 75
|
||||||
|
eval_list:
|
||||||
|
- pose_diff
|
||||||
|
ratio: 0.05
|
||||||
|
batch_size: 160
|
||||||
|
num_workers: 12
|
||||||
|
pts_num: 4096
|
||||||
|
load_from_preprocess: True
|
||||||
|
|
||||||
|
OmniObject3d_val:
|
||||||
|
root_dir: "/home/data/hofee/project/nbv_rec/data/sample_for_training_new"
|
||||||
|
model_dir: "../data/scaled_object_meshes"
|
||||||
|
source: nbv_reconstruction_dataset
|
||||||
|
split_file: "/home/data/hofee/project/nbv_rec/data/sample.txt"
|
||||||
type: test
|
type: test
|
||||||
cache: True
|
cache: True
|
||||||
filter_degree: 75
|
filter_degree: 75
|
||||||
|
@ -121,19 +121,20 @@ class NBVReconstructionGlobalPointsPipeline(nn.Module):
|
|||||||
for seq_idx in range(seq_len):
|
for seq_idx in range(seq_len):
|
||||||
partial_idx_in_combined_pts = scanned_mask == seq_idx # Ndarray(V), N->V idx mask
|
partial_idx_in_combined_pts = scanned_mask == seq_idx # Ndarray(V), N->V idx mask
|
||||||
partial_perpoint_feat = perpoint_scanned_feat[partial_idx_in_combined_pts] # Ndarray(V x Dl)
|
partial_perpoint_feat = perpoint_scanned_feat[partial_idx_in_combined_pts] # Ndarray(V x Dl)
|
||||||
partial_feat = torch.max(partial_perpoint_feat, dim=0) # Tensor(Dl)
|
partial_feat = torch.mean(partial_perpoint_feat, dim=0) # Tensor(Dl)
|
||||||
partial_feat_seq.append(partial_feat)
|
partial_feat_seq.append(partial_feat)
|
||||||
scanned_target_pts_num.append(partial_perpoint_feat.shape[0])
|
scanned_target_pts_num.append(partial_perpoint_feat.shape[0])
|
||||||
|
|
||||||
scanned_target_pts_num = torch.tensor(scanned_target_pts_num, dtype=torch.float32).to(device).unsqueeze(-1) # Tensor(S)
|
|
||||||
scanned_n_to_world_pose_9d = scanned_n_to_world_pose_9d.to(device) # Tensor(S x 9)
|
|
||||||
|
|
||||||
|
|
||||||
|
scanned_target_pts_num = torch.tensor(scanned_target_pts_num, dtype=torch.float32).unsqueeze(-1).to(device) # Tensor(S x 1)
|
||||||
|
scanned_n_to_world_pose_9d = scanned_n_to_world_pose_9d.to(device) # Tensor(S x 9)
|
||||||
pose_feat_seq = self.pose_encoder.encode_pose(scanned_n_to_world_pose_9d) # Tensor(S x Dp)
|
pose_feat_seq = self.pose_encoder.encode_pose(scanned_n_to_world_pose_9d) # Tensor(S x Dp)
|
||||||
pts_num_feat_seq = self.pts_num_encoder.encode_pts_num(scanned_target_pts_num) # Tensor(S x Dn)
|
pts_num_feat_seq = self.pts_num_encoder.encode_pts_num(scanned_target_pts_num) # Tensor(S x Dn)
|
||||||
partial_feat_seq = torch.stack(partial_feat_seq) # Tensor(S x Dl)
|
partial_feat_seq = torch.stack(partial_feat_seq) # Tensor(S x Dl)
|
||||||
seq_embedding = torch.cat([pose_feat_seq, pts_num_feat_seq, partial_feat_seq], dim=-1) # Tensor(S x (Dp+Dn+Dl))
|
seq_embedding = torch.cat([pose_feat_seq, pts_num_feat_seq, partial_feat_seq], dim=-1) # Tensor(S x (Dp+Dn+Dl))
|
||||||
embedding_list_batch.append(seq_embedding) # List(B): Tensor(S x (Dp+Dn+Dl))
|
embedding_list_batch.append(seq_embedding) # List(B): Tensor(S x (Dp+Dn+Dl))
|
||||||
|
|
||||||
|
|
||||||
seq_feat = self.transformer_seq_encoder.encode_sequence(embedding_list_batch) # Tensor(B x Ds)
|
seq_feat = self.transformer_seq_encoder.encode_sequence(embedding_list_batch) # Tensor(B x Ds)
|
||||||
main_feat = torch.cat([seq_feat, global_scanned_feat], dim=-1) # Tensor(B x (Ds+Dg))
|
main_feat = torch.cat([seq_feat, global_scanned_feat], dim=-1) # Tensor(B x (Ds+Dg))
|
||||||
|
|
||||||
|
@ -34,7 +34,7 @@ class NBVReconstructionDataset(BaseDataset):
|
|||||||
#self.model_dir = config["model_dir"]
|
#self.model_dir = config["model_dir"]
|
||||||
self.filter_degree = config["filter_degree"]
|
self.filter_degree = config["filter_degree"]
|
||||||
if self.type == namespace.Mode.TRAIN:
|
if self.type == namespace.Mode.TRAIN:
|
||||||
scale_ratio = 1
|
scale_ratio = 100
|
||||||
self.datalist = self.datalist*scale_ratio
|
self.datalist = self.datalist*scale_ratio
|
||||||
if self.cache:
|
if self.cache:
|
||||||
expr_root = ConfigManager.get("runner", "experiment", "root_dir")
|
expr_root = ConfigManager.get("runner", "experiment", "root_dir")
|
||||||
@ -174,6 +174,7 @@ class NBVReconstructionDataset(BaseDataset):
|
|||||||
combined_scanned_views_pts_mask[start_idx:end_idx] = i
|
combined_scanned_views_pts_mask[start_idx:end_idx] = i
|
||||||
start_idx = end_idx
|
start_idx = end_idx
|
||||||
fps_downsampled_combined_scanned_pts_mask = combined_scanned_views_pts_mask[fps_idx]
|
fps_downsampled_combined_scanned_pts_mask = combined_scanned_views_pts_mask[fps_idx]
|
||||||
|
|
||||||
data_item = {
|
data_item = {
|
||||||
"scanned_pts": np.asarray(scanned_views_pts, dtype=np.float32), # Ndarray(S x Nv x 3)
|
"scanned_pts": np.asarray(scanned_views_pts, dtype=np.float32), # Ndarray(S x Nv x 3)
|
||||||
"scanned_pts_mask": np.asarray(fps_downsampled_combined_scanned_pts_mask,dtype=np.uint8), # Ndarray(N), range(0, S)
|
"scanned_pts_mask": np.asarray(fps_downsampled_combined_scanned_pts_mask,dtype=np.uint8), # Ndarray(N), range(0, S)
|
||||||
|
@ -93,18 +93,8 @@ class StrategyGenerator(Runner):
|
|||||||
else:
|
else:
|
||||||
nrm = np.load(nrm_path)
|
nrm = np.load(nrm_path)
|
||||||
nrm_list.append(nrm)
|
nrm_list.append(nrm)
|
||||||
<<<<<<< HEAD
|
|
||||||
|
|
||||||
pts_list.append(pts)
|
pts_list.append(pts)
|
||||||
|
|
||||||
indices = np.load(idx_path)
|
indices = np.load(idx_path)
|
||||||
|
|
||||||
=======
|
|
||||||
|
|
||||||
indices = np.load(idx_path)
|
|
||||||
pts_list.append(pts)
|
|
||||||
|
|
||||||
>>>>>>> a883a31968b668a26545f2e8766179365308b0e2
|
|
||||||
scan_points_indices_list.append(indices)
|
scan_points_indices_list.append(indices)
|
||||||
if pts.shape[0] > 0:
|
if pts.shape[0] > 0:
|
||||||
non_zero_cnt += 1
|
non_zero_cnt += 1
|
||||||
|
Loading…
x
Reference in New Issue
Block a user