global: upd inference
This commit is contained in:
parent
b221036e8b
commit
985a08d89c
@ -6,71 +6,67 @@ runner:
|
|||||||
cuda_visible_devices: "0,1,2,3,4,5,6,7"
|
cuda_visible_devices: "0,1,2,3,4,5,6,7"
|
||||||
|
|
||||||
experiment:
|
experiment:
|
||||||
name: w_gf_wo_lf_full
|
name: overfit_ab_global_only
|
||||||
root_dir: "experiments"
|
root_dir: "experiments"
|
||||||
epoch: 1 # -1 stands for last epoch
|
epoch: -1 # -1 stands for last epoch
|
||||||
|
|
||||||
test:
|
test:
|
||||||
dataset_list:
|
dataset_list:
|
||||||
- OmniObject3d_train
|
- OmniObject3d_train
|
||||||
|
|
||||||
blender_script_path: "/media/hofee/data/project/python/nbv_reconstruction/blender/data_renderer.py"
|
blender_script_path: "/data/hofee/project/nbv_rec/blender/data_renderer.py"
|
||||||
output_dir: "/media/hofee/data/project/python/nbv_reconstruction/nbv_reconstruction/test/inference_global_full_on_testset"
|
output_dir: "/data/hofee/data/inference_global_full_on_testset"
|
||||||
pipeline: nbv_reconstruction_global_pts_pipeline
|
pipeline: nbv_reconstruction_pipeline
|
||||||
|
voxel_size: 0.003
|
||||||
|
|
||||||
dataset:
|
dataset:
|
||||||
OmniObject3d_train:
|
OmniObject3d_train:
|
||||||
root_dir: "/media/hofee/repository/nbv_reconstruction_data_512"
|
root_dir: "/data/hofee/data/new_full_data"
|
||||||
model_dir: "/media/hofee/data/data/scaled_object_meshes"
|
model_dir: "/data/hofee/data/scaled_object_meshes"
|
||||||
source: seq_nbv_reconstruction_dataset
|
source: seq_reconstruction_dataset
|
||||||
split_file: "/media/hofee/data/project/python/nbv_reconstruction/nbv_reconstruction/test/test_set_list.txt"
|
split_file: "/data/hofee/data/sample.txt"
|
||||||
type: test
|
type: test
|
||||||
filter_degree: 75
|
filter_degree: 75
|
||||||
ratio: 1
|
ratio: 1
|
||||||
batch_size: 1
|
batch_size: 1
|
||||||
num_workers: 12
|
num_workers: 12
|
||||||
pts_num: 4096
|
pts_num: 8192
|
||||||
load_from_preprocess: False
|
load_from_preprocess: True
|
||||||
|
|
||||||
|
OmniObject3d_test:
|
||||||
|
root_dir: "/data/hofee/data/new_full_data"
|
||||||
|
model_dir: "/data/hofee/data/scaled_object_meshes"
|
||||||
|
source: seq_reconstruction_dataset
|
||||||
|
split_file: "/data/hofee/data/sample.txt"
|
||||||
|
type: test
|
||||||
|
filter_degree: 75
|
||||||
|
eval_list:
|
||||||
|
- pose_diff
|
||||||
|
- coverage_rate_increase
|
||||||
|
ratio: 0.1
|
||||||
|
batch_size: 1
|
||||||
|
num_workers: 12
|
||||||
|
pts_num: 8192
|
||||||
|
load_from_preprocess: True
|
||||||
|
|
||||||
pipeline:
|
pipeline:
|
||||||
nbv_reconstruction_local_pts_pipeline:
|
nbv_reconstruction_pipeline:
|
||||||
modules:
|
modules:
|
||||||
pts_encoder: pointnet_encoder
|
pts_encoder: pointnet_encoder
|
||||||
seq_encoder: transformer_seq_encoder
|
seq_encoder: transformer_seq_encoder
|
||||||
pose_encoder: pose_encoder
|
pose_encoder: pose_encoder
|
||||||
view_finder: gf_view_finder
|
view_finder: gf_view_finder
|
||||||
eps: 1e-5
|
eps: 1e-5
|
||||||
global_scanned_feat: False
|
|
||||||
|
|
||||||
nbv_reconstruction_global_pts_pipeline:
|
|
||||||
modules:
|
|
||||||
pts_encoder: pointnet_encoder
|
|
||||||
pose_seq_encoder: transformer_pose_seq_encoder
|
|
||||||
pose_encoder: pose_encoder
|
|
||||||
view_finder: gf_view_finder
|
|
||||||
eps: 1e-5
|
|
||||||
global_scanned_feat: True
|
global_scanned_feat: True
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
module:
|
module:
|
||||||
|
|
||||||
pointnet_encoder:
|
pointnet_encoder:
|
||||||
in_dim: 3
|
in_dim: 3
|
||||||
out_dim: 1024
|
out_dim: 1024
|
||||||
global_feat: True
|
global_feat: True
|
||||||
feature_transform: False
|
feature_transform: False
|
||||||
|
|
||||||
transformer_seq_encoder:
|
transformer_seq_encoder:
|
||||||
pts_embed_dim: 1024
|
embed_dim: 256
|
||||||
pose_embed_dim: 256
|
|
||||||
num_heads: 4
|
|
||||||
ffn_dim: 256
|
|
||||||
num_layers: 3
|
|
||||||
output_dim: 2048
|
|
||||||
|
|
||||||
transformer_pose_seq_encoder:
|
|
||||||
pose_embed_dim: 256
|
|
||||||
num_heads: 4
|
num_heads: 4
|
||||||
ffn_dim: 256
|
ffn_dim: 256
|
||||||
num_layers: 3
|
num_layers: 3
|
||||||
@ -86,7 +82,8 @@ module:
|
|||||||
sample_mode: ode
|
sample_mode: ode
|
||||||
sampling_steps: 500
|
sampling_steps: 500
|
||||||
sde_mode: ve
|
sde_mode: ve
|
||||||
|
|
||||||
pose_encoder:
|
pose_encoder:
|
||||||
pose_dim: 9
|
pose_dim: 9
|
||||||
out_dim: 256
|
out_dim: 256
|
||||||
|
pts_num_encoder:
|
||||||
|
out_dim: 64
|
@ -103,6 +103,18 @@ class SeqReconstructionDataset(BaseDataset):
|
|||||||
except Exception as e:
|
except Exception as e:
|
||||||
Log.error(f"Save cache failed: {e}")
|
Log.error(f"Save cache failed: {e}")
|
||||||
|
|
||||||
|
def seq_combined_pts(self, scene, frame_idx_list):
|
||||||
|
all_combined_pts = []
|
||||||
|
for i in frame_idx_list:
|
||||||
|
path = DataLoadUtil.get_path(self.root_dir, scene, i)
|
||||||
|
pts = DataLoadUtil.load_from_preprocessed_pts(path,"npy")
|
||||||
|
if pts.shape[0] == 0:
|
||||||
|
continue
|
||||||
|
all_combined_pts.append(pts)
|
||||||
|
all_combined_pts = np.vstack(all_combined_pts)
|
||||||
|
downsampled_all_pts = PtsUtil.voxel_downsample_point_cloud(all_combined_pts, 0.003)
|
||||||
|
return downsampled_all_pts
|
||||||
|
|
||||||
def __getitem__(self, index):
|
def __getitem__(self, index):
|
||||||
data_item_info = self.datalist[index]
|
data_item_info = self.datalist[index]
|
||||||
max_coverage_rate = data_item_info["max_coverage_rate"]
|
max_coverage_rate = data_item_info["max_coverage_rate"]
|
||||||
@ -130,20 +142,26 @@ class SeqReconstructionDataset(BaseDataset):
|
|||||||
n_to_world_6d = PoseUtil.matrix_to_rotation_6d_numpy(
|
n_to_world_6d = PoseUtil.matrix_to_rotation_6d_numpy(
|
||||||
np.asarray(n_to_world_pose[:3, :3])
|
np.asarray(n_to_world_pose[:3, :3])
|
||||||
)
|
)
|
||||||
|
first_left_cam_pose = cam_info["cam_to_world"]
|
||||||
|
first_center_cam_pose = cam_info["cam_to_world_O"]
|
||||||
|
first_O_to_first_L_pose = np.dot(np.linalg.inv(first_left_cam_pose), first_center_cam_pose)
|
||||||
n_to_world_trans = n_to_world_pose[:3, 3]
|
n_to_world_trans = n_to_world_pose[:3, 3]
|
||||||
n_to_world_9d = np.concatenate([n_to_world_6d, n_to_world_trans], axis=0)
|
n_to_world_9d = np.concatenate([n_to_world_6d, n_to_world_trans], axis=0)
|
||||||
scanned_n_to_world_pose.append(n_to_world_9d)
|
scanned_n_to_world_pose.append(n_to_world_9d)
|
||||||
|
|
||||||
# combined_scanned_views_pts = np.concatenate(scanned_views_pts, axis=0)
|
frame_list = []
|
||||||
# voxel_downsampled_combined_scanned_pts_np = PtsUtil.voxel_downsample_point_cloud(combined_scanned_views_pts, 0.002)
|
for i in range(DataLoadUtil.get_scene_seq_length(self.root_dir, scene_name)):
|
||||||
# random_downsampled_combined_scanned_pts_np = PtsUtil.random_downsample_point_cloud(voxel_downsampled_combined_scanned_pts_np, self.pts_num)
|
frame_list.append(i)
|
||||||
|
gt_pts = self.seq_combined_pts(scene_name, frame_list)
|
||||||
data_item = {
|
data_item = {
|
||||||
"first_scanned_pts": np.asarray(scanned_views_pts, dtype=np.float32), # Ndarray(S x Nv x 3)
|
"first_scanned_pts": np.asarray(scanned_views_pts, dtype=np.float32), # Ndarray(S x Nv x 3)
|
||||||
"first_scanned_coverage_rate": scanned_coverages_rate, # List(S): Float, range(0, 1)
|
"first_scanned_coverage_rate": scanned_coverages_rate, # List(S): Float, range(0, 1)
|
||||||
"first_scanned_n_to_world_pose_9d": np.asarray(scanned_n_to_world_pose, dtype=np.float32), # Ndarray(S x 9)
|
"first_scanned_n_to_world_pose_9d": np.asarray(scanned_n_to_world_pose, dtype=np.float32), # Ndarray(S x 9)
|
||||||
"seq_max_coverage_rate": max_coverage_rate, # Float, range(0, 1)
|
"seq_max_coverage_rate": max_coverage_rate, # Float, range(0, 1)
|
||||||
"scene_name": scene_name, # String
|
"scene_name": scene_name, # String
|
||||||
|
"gt_pts": gt_pts, # Ndarray(N x 3)
|
||||||
|
"scene_path": os.path.join(self.root_dir, scene_name), # String
|
||||||
|
"O_to_L_pose": first_O_to_first_L_pose,
|
||||||
}
|
}
|
||||||
|
|
||||||
return data_item
|
return data_item
|
||||||
|
@ -27,6 +27,7 @@ class Inferencer(Runner):
|
|||||||
|
|
||||||
self.script_path = ConfigManager.get(namespace.Stereotype.RUNNER, "blender_script_path")
|
self.script_path = ConfigManager.get(namespace.Stereotype.RUNNER, "blender_script_path")
|
||||||
self.output_dir = ConfigManager.get(namespace.Stereotype.RUNNER, "output_dir")
|
self.output_dir = ConfigManager.get(namespace.Stereotype.RUNNER, "output_dir")
|
||||||
|
self.voxel_size = ConfigManager.get(namespace.Stereotype.RUNNER, "voxel_size")
|
||||||
''' Pipeline '''
|
''' Pipeline '''
|
||||||
self.pipeline_name = self.config[namespace.Stereotype.PIPELINE]
|
self.pipeline_name = self.config[namespace.Stereotype.PIPELINE]
|
||||||
self.pipeline:torch.nn.Module = ComponentFactory.create(namespace.Stereotype.PIPELINE, self.pipeline_name)
|
self.pipeline:torch.nn.Module = ComponentFactory.create(namespace.Stereotype.PIPELINE, self.pipeline_name)
|
||||||
@ -65,16 +66,11 @@ class Inferencer(Runner):
|
|||||||
for dataset_idx, test_set in enumerate(self.test_set_list):
|
for dataset_idx, test_set in enumerate(self.test_set_list):
|
||||||
status_manager.set_progress("inference", "inferencer", f"dataset", dataset_idx, len(self.test_set_list))
|
status_manager.set_progress("inference", "inferencer", f"dataset", dataset_idx, len(self.test_set_list))
|
||||||
test_set_name = test_set.get_name()
|
test_set_name = test_set.get_name()
|
||||||
test_loader = test_set.get_loader()
|
|
||||||
|
|
||||||
if test_loader.batch_size > 1:
|
total=int(len(test_set))
|
||||||
Log.error("Batch size should be 1 for inference, found {} in {}".format(test_loader.batch_size, test_set_name), terminate=True)
|
for i in range(total):
|
||||||
|
data = test_set.__getitem__(i)
|
||||||
total=int(len(test_loader))
|
|
||||||
loop = tqdm(enumerate(test_loader), total=total)
|
|
||||||
for i, data in loop:
|
|
||||||
status_manager.set_progress("inference", "inferencer", f"Batch[{test_set_name}]", i+1, total)
|
status_manager.set_progress("inference", "inferencer", f"Batch[{test_set_name}]", i+1, total)
|
||||||
test_set.process_batch(data, self.device)
|
|
||||||
output = self.predict_sequence(data)
|
output = self.predict_sequence(data)
|
||||||
self.save_inference_result(test_set_name, data["scene_name"][0], output)
|
self.save_inference_result(test_set_name, data["scene_name"][0], output)
|
||||||
|
|
||||||
@ -88,26 +84,23 @@ class Inferencer(Runner):
|
|||||||
''' data for rendering '''
|
''' data for rendering '''
|
||||||
scene_path = data["scene_path"][0]
|
scene_path = data["scene_path"][0]
|
||||||
O_to_L_pose = data["O_to_L_pose"][0]
|
O_to_L_pose = data["O_to_L_pose"][0]
|
||||||
voxel_threshold = data["voxel_threshold"][0]
|
voxel_threshold = self.voxel_size
|
||||||
filter_degree = data["filter_degree"][0]
|
filter_degree = 75
|
||||||
model_points_normals = data["model_points_normals"][0]
|
down_sampled_model_pts = data["gt_pts"]
|
||||||
model_pts = model_points_normals[:,:3]
|
import ipdb; ipdb.set_trace()
|
||||||
down_sampled_model_pts = PtsUtil.voxel_downsample_point_cloud(model_pts, voxel_threshold)
|
first_frame_to_world_9d = data["first_scanned_n_to_world_pose_9d"][0]
|
||||||
first_frame_to_world_9d = data["first_to_world_9d"][0]
|
first_frame_to_world = np.eye(4)
|
||||||
first_frame_to_world = torch.eye(4, device=first_frame_to_world_9d.device)
|
first_frame_to_world[:3,:3] = PoseUtil.rotation_6d_to_matrix_numpy(first_frame_to_world_9d[:6])
|
||||||
first_frame_to_world[:3,:3] = PoseUtil.rotation_6d_to_matrix_tensor_batch(first_frame_to_world_9d[:,:6])[0]
|
first_frame_to_world[:3,3] = first_frame_to_world_9d[6:]
|
||||||
first_frame_to_world[:3,3] = first_frame_to_world_9d[0,6:]
|
|
||||||
first_frame_to_world = first_frame_to_world.to(self.device)
|
|
||||||
|
|
||||||
''' data for inference '''
|
''' data for inference '''
|
||||||
input_data = {}
|
input_data = {}
|
||||||
input_data["scanned_pts"] = [data["first_pts"][0].to(self.device)]
|
input_data["combined_scanned_pts"] = torch.tensor(data["first_scanned_pts"][0], dtype=torch.float32).to(self.device)
|
||||||
input_data["scanned_n_to_world_pose_9d"] = [data["first_to_world_9d"][0].to(self.device)]
|
input_data["scanned_n_to_world_pose_9d"] = [torch.tensor(data["first_scanned_n_to_world_pose_9d"], dtype=torch.float32).to(self.device)]
|
||||||
input_data["mode"] = namespace.Mode.TEST
|
input_data["mode"] = namespace.Mode.TEST
|
||||||
input_data["combined_scanned_pts"] = data["combined_scanned_pts"]
|
input_pts_N = input_data["combined_scanned_pts"].shape[1]
|
||||||
input_pts_N = input_data["scanned_pts"][0].shape[1]
|
|
||||||
|
|
||||||
first_frame_target_pts, _ = RenderUtil.render_pts(first_frame_to_world, scene_path, self.script_path, model_points_normals, voxel_threshold=voxel_threshold, filter_degree=filter_degree, nO_to_nL_pose=O_to_L_pose)
|
first_frame_target_pts, _ = RenderUtil.render_pts(first_frame_to_world, scene_path, self.script_path, down_sampled_model_pts, voxel_threshold=voxel_threshold, filter_degree=filter_degree, nO_to_nL_pose=O_to_L_pose)
|
||||||
scanned_view_pts = [first_frame_target_pts]
|
scanned_view_pts = [first_frame_target_pts]
|
||||||
last_pred_cr = self.compute_coverage_rate(scanned_view_pts, None, down_sampled_model_pts, threshold=voxel_threshold)
|
last_pred_cr = self.compute_coverage_rate(scanned_view_pts, None, down_sampled_model_pts, threshold=voxel_threshold)
|
||||||
|
|
||||||
|
@ -10,7 +10,7 @@ from utils.pts import PtsUtil
|
|||||||
class RenderUtil:
|
class RenderUtil:
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def render_pts(cam_pose, scene_path, script_path, model_points_normals, voxel_threshold=0.005, filter_degree=75, nO_to_nL_pose=None, require_full_scene=False):
|
def render_pts(cam_pose, scene_path, script_path, voxel_threshold=0.005, filter_degree=75, nO_to_nL_pose=None, require_full_scene=False):
|
||||||
|
|
||||||
nO_to_world_pose = DataLoadUtil.get_real_cam_O_from_cam_L(cam_pose, nO_to_nL_pose, scene_path=scene_path)
|
nO_to_world_pose = DataLoadUtil.get_real_cam_O_from_cam_L(cam_pose, nO_to_nL_pose, scene_path=scene_path)
|
||||||
|
|
||||||
@ -34,10 +34,10 @@ class RenderUtil:
|
|||||||
return None
|
return None
|
||||||
path = os.path.join(temp_dir, "tmp")
|
path = os.path.join(temp_dir, "tmp")
|
||||||
point_cloud = DataLoadUtil.get_target_point_cloud_world_from_path(path, binocular=True)
|
point_cloud = DataLoadUtil.get_target_point_cloud_world_from_path(path, binocular=True)
|
||||||
|
normals = DataLoadUtil.get_target_normals_world_from_path(path, binocular=True)
|
||||||
cam_params = DataLoadUtil.load_cam_info(path, binocular=True)
|
cam_params = DataLoadUtil.load_cam_info(path, binocular=True)
|
||||||
|
|
||||||
''' TODO: old code: filter_points api is changed, need to update the code '''
|
filtered_point_cloud = PtsUtil.filter_points(point_cloud, normals, cam_pose=cam_params["cam_to_world"], voxel_size=voxel_threshold, theta=filter_degree)
|
||||||
filtered_point_cloud = PtsUtil.filter_points(point_cloud, model_points_normals, cam_pose=cam_params["cam_to_world"], voxel_size=voxel_threshold, theta=filter_degree)
|
|
||||||
full_scene_point_cloud = None
|
full_scene_point_cloud = None
|
||||||
if require_full_scene:
|
if require_full_scene:
|
||||||
depth_L, depth_R = DataLoadUtil.load_depth(path, cam_params['near_plane'], cam_params['far_plane'], binocular=True)
|
depth_L, depth_R = DataLoadUtil.load_depth(path, cam_params['near_plane'], cam_params['far_plane'], binocular=True)
|
||||||
|
Loading…
x
Reference in New Issue
Block a user