deploy pointnet++
This commit is contained in:
parent
445e9dc00b
commit
91cabec977
4
modules/module_lib/pointnet2_utils/.gitignore
vendored
Normal file
4
modules/module_lib/pointnet2_utils/.gitignore
vendored
Normal file
@ -0,0 +1,4 @@
|
|||||||
|
pointnet2/build/
|
||||||
|
pointnet2/dist/
|
||||||
|
pointnet2/pointnet2.egg-info/
|
||||||
|
__pycache__/
|
21
modules/module_lib/pointnet2_utils/LICENSE
Normal file
21
modules/module_lib/pointnet2_utils/LICENSE
Normal file
@ -0,0 +1,21 @@
|
|||||||
|
MIT License
|
||||||
|
|
||||||
|
Copyright (c) 2019 Shaoshuai Shi
|
||||||
|
|
||||||
|
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||||
|
of this software and associated documentation files (the "Software"), to deal
|
||||||
|
in the Software without restriction, including without limitation the rights
|
||||||
|
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||||
|
copies of the Software, and to permit persons to whom the Software is
|
||||||
|
furnished to do so, subject to the following conditions:
|
||||||
|
|
||||||
|
The above copyright notice and this permission notice shall be included in all
|
||||||
|
copies or substantial portions of the Software.
|
||||||
|
|
||||||
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||||
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||||
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||||
|
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||||
|
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||||
|
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||||
|
SOFTWARE.
|
51
modules/module_lib/pointnet2_utils/README.md
Normal file
51
modules/module_lib/pointnet2_utils/README.md
Normal file
@ -0,0 +1,51 @@
|
|||||||
|
# Pointnet2.PyTorch
|
||||||
|
|
||||||
|
* PyTorch implementation of [PointNet++](https://arxiv.org/abs/1706.02413) based on [erikwijmans/Pointnet2_PyTorch](https://github.com/erikwijmans/Pointnet2_PyTorch).
|
||||||
|
* Faster than the original codes by re-implementing the CUDA operations.
|
||||||
|
|
||||||
|
## Installation
|
||||||
|
### Requirements
|
||||||
|
* Linux (tested on Ubuntu 14.04/16.04)
|
||||||
|
* Python 3.6+
|
||||||
|
* PyTorch 1.0
|
||||||
|
|
||||||
|
### Install
|
||||||
|
Install this library by running the following command:
|
||||||
|
|
||||||
|
```shell
|
||||||
|
cd pointnet2
|
||||||
|
python setup.py install
|
||||||
|
cd ../
|
||||||
|
```
|
||||||
|
|
||||||
|
## Examples
|
||||||
|
Here I provide a simple example to use this library in the task of KITTI ourdoor foreground point cloud segmentation, and you could refer to the paper [PointRCNN](https://arxiv.org/abs/1812.04244) for the details of task description and foreground label generation.
|
||||||
|
|
||||||
|
1. Download the training data from [KITTI 3D object detection](http://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=3d) website and organize the downloaded files as follows:
|
||||||
|
```
|
||||||
|
Pointnet2.PyTorch
|
||||||
|
├── pointnet2
|
||||||
|
├── tools
|
||||||
|
│ ├──data
|
||||||
|
│ │ ├── KITTI
|
||||||
|
│ │ │ ├── ImageSets
|
||||||
|
│ │ │ ├── object
|
||||||
|
│ │ │ │ ├──training
|
||||||
|
│ │ │ │ ├──calib & velodyne & label_2 & image_2
|
||||||
|
│ │ train_and_eval.py
|
||||||
|
```
|
||||||
|
|
||||||
|
2. Run the following command to train and evaluate:
|
||||||
|
```shell
|
||||||
|
cd tools
|
||||||
|
python train_and_eval.py --batch_size 8 --epochs 100 --ckpt_save_interval 2
|
||||||
|
```
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
## Project using this repo:
|
||||||
|
* [PointRCNN](https://github.com/sshaoshuai/PointRCNN): 3D object detector from raw point cloud.
|
||||||
|
|
||||||
|
## Acknowledgement
|
||||||
|
* [charlesq34/pointnet2](https://github.com/charlesq34/pointnet2): Paper author and official code repo.
|
||||||
|
* [erikwijmans/Pointnet2_PyTorch](https://github.com/erikwijmans/Pointnet2_PyTorch): Initial work of PyTorch implementation of PointNet++.
|
Binary file not shown.
@ -0,0 +1,162 @@
|
|||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
import torch.nn.functional as F
|
||||||
|
|
||||||
|
from . import pointnet2_utils
|
||||||
|
from . import pytorch_utils as pt_utils
|
||||||
|
from typing import List
|
||||||
|
|
||||||
|
|
||||||
|
class _PointnetSAModuleBase(nn.Module):
|
||||||
|
|
||||||
|
def __init__(self):
|
||||||
|
super().__init__()
|
||||||
|
self.npoint = None
|
||||||
|
self.groupers = None
|
||||||
|
self.mlps = None
|
||||||
|
self.pool_method = 'max_pool'
|
||||||
|
|
||||||
|
def forward(self, xyz: torch.Tensor, features: torch.Tensor = None, new_xyz=None) -> (torch.Tensor, torch.Tensor):
|
||||||
|
"""
|
||||||
|
:param xyz: (B, N, 3) tensor of the xyz coordinates of the features
|
||||||
|
:param features: (B, N, C) tensor of the descriptors of the the features
|
||||||
|
:param new_xyz:
|
||||||
|
:return:
|
||||||
|
new_xyz: (B, npoint, 3) tensor of the new features' xyz
|
||||||
|
new_features: (B, npoint, \sum_k(mlps[k][-1])) tensor of the new_features descriptors
|
||||||
|
"""
|
||||||
|
new_features_list = []
|
||||||
|
|
||||||
|
xyz_flipped = xyz.transpose(1, 2).contiguous()
|
||||||
|
if new_xyz is None:
|
||||||
|
new_xyz = pointnet2_utils.gather_operation(
|
||||||
|
xyz_flipped,
|
||||||
|
pointnet2_utils.furthest_point_sample(xyz, self.npoint)
|
||||||
|
).transpose(1, 2).contiguous() if self.npoint is not None else None
|
||||||
|
|
||||||
|
for i in range(len(self.groupers)):
|
||||||
|
new_features = self.groupers[i](xyz, new_xyz, features) # (B, C, npoint, nsample)
|
||||||
|
|
||||||
|
new_features = self.mlps[i](new_features) # (B, mlp[-1], npoint, nsample)
|
||||||
|
|
||||||
|
if self.pool_method == 'max_pool':
|
||||||
|
new_features = F.max_pool2d(
|
||||||
|
new_features, kernel_size=[1, new_features.size(3)]
|
||||||
|
) # (B, mlp[-1], npoint, 1)
|
||||||
|
elif self.pool_method == 'avg_pool':
|
||||||
|
new_features = F.avg_pool2d(
|
||||||
|
new_features, kernel_size=[1, new_features.size(3)]
|
||||||
|
) # (B, mlp[-1], npoint, 1)
|
||||||
|
else:
|
||||||
|
raise NotImplementedError
|
||||||
|
|
||||||
|
new_features = new_features.squeeze(-1) # (B, mlp[-1], npoint)
|
||||||
|
new_features_list.append(new_features)
|
||||||
|
|
||||||
|
return new_xyz, torch.cat(new_features_list, dim=1)
|
||||||
|
|
||||||
|
|
||||||
|
class PointnetSAModuleMSG(_PointnetSAModuleBase):
|
||||||
|
"""Pointnet set abstraction layer with multiscale grouping"""
|
||||||
|
|
||||||
|
def __init__(self, *, npoint: int, radii: List[float], nsamples: List[int], mlps: List[List[int]], bn: bool = True,
|
||||||
|
use_xyz: bool = True, pool_method='max_pool', instance_norm=False):
|
||||||
|
"""
|
||||||
|
:param npoint: int
|
||||||
|
:param radii: list of float, list of radii to group with
|
||||||
|
:param nsamples: list of int, number of samples in each ball query
|
||||||
|
:param mlps: list of list of int, spec of the pointnet before the global pooling for each scale
|
||||||
|
:param bn: whether to use batchnorm
|
||||||
|
:param use_xyz:
|
||||||
|
:param pool_method: max_pool / avg_pool
|
||||||
|
:param instance_norm: whether to use instance_norm
|
||||||
|
"""
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
assert len(radii) == len(nsamples) == len(mlps)
|
||||||
|
|
||||||
|
self.npoint = npoint
|
||||||
|
self.groupers = nn.ModuleList()
|
||||||
|
self.mlps = nn.ModuleList()
|
||||||
|
for i in range(len(radii)):
|
||||||
|
radius = radii[i]
|
||||||
|
nsample = nsamples[i]
|
||||||
|
self.groupers.append(
|
||||||
|
pointnet2_utils.QueryAndGroup(radius, nsample, use_xyz=use_xyz)
|
||||||
|
if npoint is not None else pointnet2_utils.GroupAll(use_xyz)
|
||||||
|
)
|
||||||
|
mlp_spec = mlps[i]
|
||||||
|
if use_xyz:
|
||||||
|
mlp_spec[0] += 3
|
||||||
|
|
||||||
|
self.mlps.append(pt_utils.SharedMLP(mlp_spec, bn=bn, instance_norm=instance_norm))
|
||||||
|
self.pool_method = pool_method
|
||||||
|
|
||||||
|
|
||||||
|
class PointnetSAModule(PointnetSAModuleMSG):
|
||||||
|
"""Pointnet set abstraction layer"""
|
||||||
|
|
||||||
|
def __init__(self, *, mlp: List[int], npoint: int = None, radius: float = None, nsample: int = None,
|
||||||
|
bn: bool = True, use_xyz: bool = True, pool_method='max_pool', instance_norm=False):
|
||||||
|
"""
|
||||||
|
:param mlp: list of int, spec of the pointnet before the global max_pool
|
||||||
|
:param npoint: int, number of features
|
||||||
|
:param radius: float, radius of ball
|
||||||
|
:param nsample: int, number of samples in the ball query
|
||||||
|
:param bn: whether to use batchnorm
|
||||||
|
:param use_xyz:
|
||||||
|
:param pool_method: max_pool / avg_pool
|
||||||
|
:param instance_norm: whether to use instance_norm
|
||||||
|
"""
|
||||||
|
super().__init__(
|
||||||
|
mlps=[mlp], npoint=npoint, radii=[radius], nsamples=[nsample], bn=bn, use_xyz=use_xyz,
|
||||||
|
pool_method=pool_method, instance_norm=instance_norm
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
class PointnetFPModule(nn.Module):
|
||||||
|
r"""Propigates the features of one set to another"""
|
||||||
|
|
||||||
|
def __init__(self, *, mlp: List[int], bn: bool = True):
|
||||||
|
"""
|
||||||
|
:param mlp: list of int
|
||||||
|
:param bn: whether to use batchnorm
|
||||||
|
"""
|
||||||
|
super().__init__()
|
||||||
|
self.mlp = pt_utils.SharedMLP(mlp, bn=bn)
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self, unknown: torch.Tensor, known: torch.Tensor, unknow_feats: torch.Tensor, known_feats: torch.Tensor
|
||||||
|
) -> torch.Tensor:
|
||||||
|
"""
|
||||||
|
:param unknown: (B, n, 3) tensor of the xyz positions of the unknown features
|
||||||
|
:param known: (B, m, 3) tensor of the xyz positions of the known features
|
||||||
|
:param unknow_feats: (B, C1, n) tensor of the features to be propigated to
|
||||||
|
:param known_feats: (B, C2, m) tensor of features to be propigated
|
||||||
|
:return:
|
||||||
|
new_features: (B, mlp[-1], n) tensor of the features of the unknown features
|
||||||
|
"""
|
||||||
|
if known is not None:
|
||||||
|
dist, idx = pointnet2_utils.three_nn(unknown, known)
|
||||||
|
dist_recip = 1.0 / (dist + 1e-8)
|
||||||
|
norm = torch.sum(dist_recip, dim=2, keepdim=True)
|
||||||
|
weight = dist_recip / norm
|
||||||
|
|
||||||
|
interpolated_feats = pointnet2_utils.three_interpolate(known_feats, idx, weight)
|
||||||
|
else:
|
||||||
|
interpolated_feats = known_feats.expand(*known_feats.size()[0:2], unknown.size(1))
|
||||||
|
|
||||||
|
if unknow_feats is not None:
|
||||||
|
new_features = torch.cat([interpolated_feats, unknow_feats], dim=1) # (B, C2 + C1, n)
|
||||||
|
else:
|
||||||
|
new_features = interpolated_feats
|
||||||
|
|
||||||
|
new_features = new_features.unsqueeze(-1)
|
||||||
|
|
||||||
|
new_features = self.mlp(new_features)
|
||||||
|
|
||||||
|
return new_features.squeeze(-1)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
pass
|
291
modules/module_lib/pointnet2_utils/pointnet2/pointnet2_utils.py
Normal file
291
modules/module_lib/pointnet2_utils/pointnet2/pointnet2_utils.py
Normal file
@ -0,0 +1,291 @@
|
|||||||
|
import torch
|
||||||
|
from torch.autograd import Variable
|
||||||
|
from torch.autograd import Function
|
||||||
|
import torch.nn as nn
|
||||||
|
from typing import Tuple
|
||||||
|
import sys
|
||||||
|
|
||||||
|
import pointnet2_cuda as pointnet2
|
||||||
|
|
||||||
|
|
||||||
|
class FurthestPointSampling(Function):
|
||||||
|
@staticmethod
|
||||||
|
def forward(ctx, xyz: torch.Tensor, npoint: int) -> torch.Tensor:
|
||||||
|
"""
|
||||||
|
Uses iterative furthest point sampling to select a set of npoint features that have the largest
|
||||||
|
minimum distance
|
||||||
|
:param ctx:
|
||||||
|
:param xyz: (B, N, 3) where N > npoint
|
||||||
|
:param npoint: int, number of features in the sampled set
|
||||||
|
:return:
|
||||||
|
output: (B, npoint) tensor containing the set
|
||||||
|
"""
|
||||||
|
assert xyz.is_contiguous()
|
||||||
|
|
||||||
|
B, N, _ = xyz.size()
|
||||||
|
output = torch.cuda.IntTensor(B, npoint)
|
||||||
|
temp = torch.cuda.FloatTensor(B, N).fill_(1e10)
|
||||||
|
|
||||||
|
pointnet2.furthest_point_sampling_wrapper(B, N, npoint, xyz, temp, output)
|
||||||
|
return output
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def backward(xyz, a=None):
|
||||||
|
return None, None
|
||||||
|
|
||||||
|
|
||||||
|
furthest_point_sample = FurthestPointSampling.apply
|
||||||
|
|
||||||
|
|
||||||
|
class GatherOperation(Function):
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def forward(ctx, features: torch.Tensor, idx: torch.Tensor) -> torch.Tensor:
|
||||||
|
"""
|
||||||
|
:param ctx:
|
||||||
|
:param features: (B, C, N)
|
||||||
|
:param idx: (B, npoint) index tensor of the features to gather
|
||||||
|
:return:
|
||||||
|
output: (B, C, npoint)
|
||||||
|
"""
|
||||||
|
assert features.is_contiguous()
|
||||||
|
assert idx.is_contiguous()
|
||||||
|
|
||||||
|
B, npoint = idx.size()
|
||||||
|
_, C, N = features.size()
|
||||||
|
output = torch.cuda.FloatTensor(B, C, npoint)
|
||||||
|
|
||||||
|
pointnet2.gather_points_wrapper(B, C, N, npoint, features, idx, output)
|
||||||
|
|
||||||
|
ctx.for_backwards = (idx, C, N)
|
||||||
|
return output
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def backward(ctx, grad_out):
|
||||||
|
idx, C, N = ctx.for_backwards
|
||||||
|
B, npoint = idx.size()
|
||||||
|
|
||||||
|
grad_features = Variable(torch.cuda.FloatTensor(B, C, N).zero_())
|
||||||
|
grad_out_data = grad_out.data.contiguous()
|
||||||
|
pointnet2.gather_points_grad_wrapper(B, C, N, npoint, grad_out_data, idx, grad_features.data)
|
||||||
|
return grad_features, None
|
||||||
|
|
||||||
|
|
||||||
|
gather_operation = GatherOperation.apply
|
||||||
|
|
||||||
|
|
||||||
|
class ThreeNN(Function):
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def forward(ctx, unknown: torch.Tensor, known: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||||
|
"""
|
||||||
|
Find the three nearest neighbors of unknown in known
|
||||||
|
:param ctx:
|
||||||
|
:param unknown: (B, N, 3)
|
||||||
|
:param known: (B, M, 3)
|
||||||
|
:return:
|
||||||
|
dist: (B, N, 3) l2 distance to the three nearest neighbors
|
||||||
|
idx: (B, N, 3) index of 3 nearest neighbors
|
||||||
|
"""
|
||||||
|
assert unknown.is_contiguous()
|
||||||
|
assert known.is_contiguous()
|
||||||
|
|
||||||
|
B, N, _ = unknown.size()
|
||||||
|
m = known.size(1)
|
||||||
|
dist2 = torch.cuda.FloatTensor(B, N, 3)
|
||||||
|
idx = torch.cuda.IntTensor(B, N, 3)
|
||||||
|
|
||||||
|
pointnet2.three_nn_wrapper(B, N, m, unknown, known, dist2, idx)
|
||||||
|
return torch.sqrt(dist2), idx
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def backward(ctx, a=None, b=None):
|
||||||
|
return None, None
|
||||||
|
|
||||||
|
|
||||||
|
three_nn = ThreeNN.apply
|
||||||
|
|
||||||
|
|
||||||
|
class ThreeInterpolate(Function):
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def forward(ctx, features: torch.Tensor, idx: torch.Tensor, weight: torch.Tensor) -> torch.Tensor:
|
||||||
|
"""
|
||||||
|
Performs weight linear interpolation on 3 features
|
||||||
|
:param ctx:
|
||||||
|
:param features: (B, C, M) Features descriptors to be interpolated from
|
||||||
|
:param idx: (B, n, 3) three nearest neighbors of the target features in features
|
||||||
|
:param weight: (B, n, 3) weights
|
||||||
|
:return:
|
||||||
|
output: (B, C, N) tensor of the interpolated features
|
||||||
|
"""
|
||||||
|
assert features.is_contiguous()
|
||||||
|
assert idx.is_contiguous()
|
||||||
|
assert weight.is_contiguous()
|
||||||
|
|
||||||
|
B, c, m = features.size()
|
||||||
|
n = idx.size(1)
|
||||||
|
ctx.three_interpolate_for_backward = (idx, weight, m)
|
||||||
|
output = torch.cuda.FloatTensor(B, c, n)
|
||||||
|
|
||||||
|
pointnet2.three_interpolate_wrapper(B, c, m, n, features, idx, weight, output)
|
||||||
|
return output
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def backward(ctx, grad_out: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
||||||
|
"""
|
||||||
|
:param ctx:
|
||||||
|
:param grad_out: (B, C, N) tensor with gradients of outputs
|
||||||
|
:return:
|
||||||
|
grad_features: (B, C, M) tensor with gradients of features
|
||||||
|
None:
|
||||||
|
None:
|
||||||
|
"""
|
||||||
|
idx, weight, m = ctx.three_interpolate_for_backward
|
||||||
|
B, c, n = grad_out.size()
|
||||||
|
|
||||||
|
grad_features = Variable(torch.cuda.FloatTensor(B, c, m).zero_())
|
||||||
|
grad_out_data = grad_out.data.contiguous()
|
||||||
|
|
||||||
|
pointnet2.three_interpolate_grad_wrapper(B, c, n, m, grad_out_data, idx, weight, grad_features.data)
|
||||||
|
return grad_features, None, None
|
||||||
|
|
||||||
|
|
||||||
|
three_interpolate = ThreeInterpolate.apply
|
||||||
|
|
||||||
|
|
||||||
|
class GroupingOperation(Function):
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def forward(ctx, features: torch.Tensor, idx: torch.Tensor) -> torch.Tensor:
|
||||||
|
"""
|
||||||
|
:param ctx:
|
||||||
|
:param features: (B, C, N) tensor of features to group
|
||||||
|
:param idx: (B, npoint, nsample) tensor containing the indicies of features to group with
|
||||||
|
:return:
|
||||||
|
output: (B, C, npoint, nsample) tensor
|
||||||
|
"""
|
||||||
|
assert features.is_contiguous()
|
||||||
|
assert idx.is_contiguous()
|
||||||
|
|
||||||
|
B, nfeatures, nsample = idx.size()
|
||||||
|
_, C, N = features.size()
|
||||||
|
output = torch.cuda.FloatTensor(B, C, nfeatures, nsample)
|
||||||
|
|
||||||
|
pointnet2.group_points_wrapper(B, C, N, nfeatures, nsample, features, idx, output)
|
||||||
|
|
||||||
|
ctx.for_backwards = (idx, N)
|
||||||
|
return output
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def backward(ctx, grad_out: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||||
|
"""
|
||||||
|
:param ctx:
|
||||||
|
:param grad_out: (B, C, npoint, nsample) tensor of the gradients of the output from forward
|
||||||
|
:return:
|
||||||
|
grad_features: (B, C, N) gradient of the features
|
||||||
|
"""
|
||||||
|
idx, N = ctx.for_backwards
|
||||||
|
|
||||||
|
B, C, npoint, nsample = grad_out.size()
|
||||||
|
grad_features = Variable(torch.cuda.FloatTensor(B, C, N).zero_())
|
||||||
|
|
||||||
|
grad_out_data = grad_out.data.contiguous()
|
||||||
|
pointnet2.group_points_grad_wrapper(B, C, N, npoint, nsample, grad_out_data, idx, grad_features.data)
|
||||||
|
return grad_features, None
|
||||||
|
|
||||||
|
|
||||||
|
grouping_operation = GroupingOperation.apply
|
||||||
|
|
||||||
|
|
||||||
|
class BallQuery(Function):
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def forward(ctx, radius: float, nsample: int, xyz: torch.Tensor, new_xyz: torch.Tensor) -> torch.Tensor:
|
||||||
|
"""
|
||||||
|
:param ctx:
|
||||||
|
:param radius: float, radius of the balls
|
||||||
|
:param nsample: int, maximum number of features in the balls
|
||||||
|
:param xyz: (B, N, 3) xyz coordinates of the features
|
||||||
|
:param new_xyz: (B, npoint, 3) centers of the ball query
|
||||||
|
:return:
|
||||||
|
idx: (B, npoint, nsample) tensor with the indicies of the features that form the query balls
|
||||||
|
"""
|
||||||
|
assert new_xyz.is_contiguous()
|
||||||
|
assert xyz.is_contiguous()
|
||||||
|
|
||||||
|
B, N, _ = xyz.size()
|
||||||
|
npoint = new_xyz.size(1)
|
||||||
|
idx = torch.cuda.IntTensor(B, npoint, nsample).zero_()
|
||||||
|
|
||||||
|
pointnet2.ball_query_wrapper(B, N, npoint, radius, nsample, new_xyz, xyz, idx)
|
||||||
|
return idx
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def backward(ctx, a=None):
|
||||||
|
return None, None, None, None
|
||||||
|
|
||||||
|
|
||||||
|
ball_query = BallQuery.apply
|
||||||
|
|
||||||
|
|
||||||
|
class QueryAndGroup(nn.Module):
|
||||||
|
def __init__(self, radius: float, nsample: int, use_xyz: bool = True):
|
||||||
|
"""
|
||||||
|
:param radius: float, radius of ball
|
||||||
|
:param nsample: int, maximum number of features to gather in the ball
|
||||||
|
:param use_xyz:
|
||||||
|
"""
|
||||||
|
super().__init__()
|
||||||
|
self.radius, self.nsample, self.use_xyz = radius, nsample, use_xyz
|
||||||
|
|
||||||
|
def forward(self, xyz: torch.Tensor, new_xyz: torch.Tensor, features: torch.Tensor = None) -> Tuple[torch.Tensor]:
|
||||||
|
"""
|
||||||
|
:param xyz: (B, N, 3) xyz coordinates of the features
|
||||||
|
:param new_xyz: (B, npoint, 3) centroids
|
||||||
|
:param features: (B, C, N) descriptors of the features
|
||||||
|
:return:
|
||||||
|
new_features: (B, 3 + C, npoint, nsample)
|
||||||
|
"""
|
||||||
|
idx = ball_query(self.radius, self.nsample, xyz, new_xyz)
|
||||||
|
xyz_trans = xyz.transpose(1, 2).contiguous()
|
||||||
|
grouped_xyz = grouping_operation(xyz_trans, idx) # (B, 3, npoint, nsample)
|
||||||
|
grouped_xyz -= new_xyz.transpose(1, 2).unsqueeze(-1)
|
||||||
|
|
||||||
|
if features is not None:
|
||||||
|
grouped_features = grouping_operation(features, idx)
|
||||||
|
if self.use_xyz:
|
||||||
|
new_features = torch.cat([grouped_xyz, grouped_features], dim=1) # (B, C + 3, npoint, nsample)
|
||||||
|
else:
|
||||||
|
new_features = grouped_features
|
||||||
|
else:
|
||||||
|
assert self.use_xyz, "Cannot have not features and not use xyz as a feature!"
|
||||||
|
new_features = grouped_xyz
|
||||||
|
|
||||||
|
return new_features
|
||||||
|
|
||||||
|
|
||||||
|
class GroupAll(nn.Module):
|
||||||
|
def __init__(self, use_xyz: bool = True):
|
||||||
|
super().__init__()
|
||||||
|
self.use_xyz = use_xyz
|
||||||
|
|
||||||
|
def forward(self, xyz: torch.Tensor, new_xyz: torch.Tensor, features: torch.Tensor = None):
|
||||||
|
"""
|
||||||
|
:param xyz: (B, N, 3) xyz coordinates of the features
|
||||||
|
:param new_xyz: ignored
|
||||||
|
:param features: (B, C, N) descriptors of the features
|
||||||
|
:return:
|
||||||
|
new_features: (B, C + 3, 1, N)
|
||||||
|
"""
|
||||||
|
grouped_xyz = xyz.transpose(1, 2).unsqueeze(2)
|
||||||
|
if features is not None:
|
||||||
|
grouped_features = features.unsqueeze(2)
|
||||||
|
if self.use_xyz:
|
||||||
|
new_features = torch.cat([grouped_xyz, grouped_features], dim=1) # (B, 3 + C, 1, N)
|
||||||
|
else:
|
||||||
|
new_features = grouped_features
|
||||||
|
else:
|
||||||
|
new_features = grouped_xyz
|
||||||
|
|
||||||
|
return new_features
|
236
modules/module_lib/pointnet2_utils/pointnet2/pytorch_utils.py
Normal file
236
modules/module_lib/pointnet2_utils/pointnet2/pytorch_utils.py
Normal file
@ -0,0 +1,236 @@
|
|||||||
|
import torch.nn as nn
|
||||||
|
from typing import List, Tuple
|
||||||
|
|
||||||
|
|
||||||
|
class SharedMLP(nn.Sequential):
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
args: List[int],
|
||||||
|
*,
|
||||||
|
bn: bool = False,
|
||||||
|
activation=nn.ReLU(inplace=True),
|
||||||
|
preact: bool = False,
|
||||||
|
first: bool = False,
|
||||||
|
name: str = "",
|
||||||
|
instance_norm: bool = False,
|
||||||
|
):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
for i in range(len(args) - 1):
|
||||||
|
self.add_module(
|
||||||
|
name + 'layer{}'.format(i),
|
||||||
|
Conv2d(
|
||||||
|
args[i],
|
||||||
|
args[i + 1],
|
||||||
|
bn=(not first or not preact or (i != 0)) and bn,
|
||||||
|
activation=activation
|
||||||
|
if (not first or not preact or (i != 0)) else None,
|
||||||
|
preact=preact,
|
||||||
|
instance_norm=instance_norm
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
class _ConvBase(nn.Sequential):
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
in_size,
|
||||||
|
out_size,
|
||||||
|
kernel_size,
|
||||||
|
stride,
|
||||||
|
padding,
|
||||||
|
activation,
|
||||||
|
bn,
|
||||||
|
init,
|
||||||
|
conv=None,
|
||||||
|
batch_norm=None,
|
||||||
|
bias=True,
|
||||||
|
preact=False,
|
||||||
|
name="",
|
||||||
|
instance_norm=False,
|
||||||
|
instance_norm_func=None
|
||||||
|
):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
bias = bias and (not bn)
|
||||||
|
conv_unit = conv(
|
||||||
|
in_size,
|
||||||
|
out_size,
|
||||||
|
kernel_size=kernel_size,
|
||||||
|
stride=stride,
|
||||||
|
padding=padding,
|
||||||
|
bias=bias
|
||||||
|
)
|
||||||
|
init(conv_unit.weight)
|
||||||
|
if bias:
|
||||||
|
nn.init.constant_(conv_unit.bias, 0)
|
||||||
|
|
||||||
|
if bn:
|
||||||
|
if not preact:
|
||||||
|
bn_unit = batch_norm(out_size)
|
||||||
|
else:
|
||||||
|
bn_unit = batch_norm(in_size)
|
||||||
|
if instance_norm:
|
||||||
|
if not preact:
|
||||||
|
in_unit = instance_norm_func(out_size, affine=False, track_running_stats=False)
|
||||||
|
else:
|
||||||
|
in_unit = instance_norm_func(in_size, affine=False, track_running_stats=False)
|
||||||
|
|
||||||
|
if preact:
|
||||||
|
if bn:
|
||||||
|
self.add_module(name + 'bn', bn_unit)
|
||||||
|
|
||||||
|
if activation is not None:
|
||||||
|
self.add_module(name + 'activation', activation)
|
||||||
|
|
||||||
|
if not bn and instance_norm:
|
||||||
|
self.add_module(name + 'in', in_unit)
|
||||||
|
|
||||||
|
self.add_module(name + 'conv', conv_unit)
|
||||||
|
|
||||||
|
if not preact:
|
||||||
|
if bn:
|
||||||
|
self.add_module(name + 'bn', bn_unit)
|
||||||
|
|
||||||
|
if activation is not None:
|
||||||
|
self.add_module(name + 'activation', activation)
|
||||||
|
|
||||||
|
if not bn and instance_norm:
|
||||||
|
self.add_module(name + 'in', in_unit)
|
||||||
|
|
||||||
|
|
||||||
|
class _BNBase(nn.Sequential):
|
||||||
|
|
||||||
|
def __init__(self, in_size, batch_norm=None, name=""):
|
||||||
|
super().__init__()
|
||||||
|
self.add_module(name + "bn", batch_norm(in_size))
|
||||||
|
|
||||||
|
nn.init.constant_(self[0].weight, 1.0)
|
||||||
|
nn.init.constant_(self[0].bias, 0)
|
||||||
|
|
||||||
|
|
||||||
|
class BatchNorm1d(_BNBase):
|
||||||
|
|
||||||
|
def __init__(self, in_size: int, *, name: str = ""):
|
||||||
|
super().__init__(in_size, batch_norm=nn.BatchNorm1d, name=name)
|
||||||
|
|
||||||
|
|
||||||
|
class BatchNorm2d(_BNBase):
|
||||||
|
|
||||||
|
def __init__(self, in_size: int, name: str = ""):
|
||||||
|
super().__init__(in_size, batch_norm=nn.BatchNorm2d, name=name)
|
||||||
|
|
||||||
|
|
||||||
|
class Conv1d(_ConvBase):
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
in_size: int,
|
||||||
|
out_size: int,
|
||||||
|
*,
|
||||||
|
kernel_size: int = 1,
|
||||||
|
stride: int = 1,
|
||||||
|
padding: int = 0,
|
||||||
|
activation=nn.ReLU(inplace=True),
|
||||||
|
bn: bool = False,
|
||||||
|
init=nn.init.kaiming_normal_,
|
||||||
|
bias: bool = True,
|
||||||
|
preact: bool = False,
|
||||||
|
name: str = "",
|
||||||
|
instance_norm=False
|
||||||
|
):
|
||||||
|
super().__init__(
|
||||||
|
in_size,
|
||||||
|
out_size,
|
||||||
|
kernel_size,
|
||||||
|
stride,
|
||||||
|
padding,
|
||||||
|
activation,
|
||||||
|
bn,
|
||||||
|
init,
|
||||||
|
conv=nn.Conv1d,
|
||||||
|
batch_norm=BatchNorm1d,
|
||||||
|
bias=bias,
|
||||||
|
preact=preact,
|
||||||
|
name=name,
|
||||||
|
instance_norm=instance_norm,
|
||||||
|
instance_norm_func=nn.InstanceNorm1d
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
class Conv2d(_ConvBase):
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
in_size: int,
|
||||||
|
out_size: int,
|
||||||
|
*,
|
||||||
|
kernel_size: Tuple[int, int] = (1, 1),
|
||||||
|
stride: Tuple[int, int] = (1, 1),
|
||||||
|
padding: Tuple[int, int] = (0, 0),
|
||||||
|
activation=nn.ReLU(inplace=True),
|
||||||
|
bn: bool = False,
|
||||||
|
init=nn.init.kaiming_normal_,
|
||||||
|
bias: bool = True,
|
||||||
|
preact: bool = False,
|
||||||
|
name: str = "",
|
||||||
|
instance_norm=False
|
||||||
|
):
|
||||||
|
super().__init__(
|
||||||
|
in_size,
|
||||||
|
out_size,
|
||||||
|
kernel_size,
|
||||||
|
stride,
|
||||||
|
padding,
|
||||||
|
activation,
|
||||||
|
bn,
|
||||||
|
init,
|
||||||
|
conv=nn.Conv2d,
|
||||||
|
batch_norm=BatchNorm2d,
|
||||||
|
bias=bias,
|
||||||
|
preact=preact,
|
||||||
|
name=name,
|
||||||
|
instance_norm=instance_norm,
|
||||||
|
instance_norm_func=nn.InstanceNorm2d
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
class FC(nn.Sequential):
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
in_size: int,
|
||||||
|
out_size: int,
|
||||||
|
*,
|
||||||
|
activation=nn.ReLU(inplace=True),
|
||||||
|
bn: bool = False,
|
||||||
|
init=None,
|
||||||
|
preact: bool = False,
|
||||||
|
name: str = ""
|
||||||
|
):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
fc = nn.Linear(in_size, out_size, bias=not bn)
|
||||||
|
if init is not None:
|
||||||
|
init(fc.weight)
|
||||||
|
if not bn:
|
||||||
|
nn.init.constant(fc.bias, 0)
|
||||||
|
|
||||||
|
if preact:
|
||||||
|
if bn:
|
||||||
|
self.add_module(name + 'bn', BatchNorm1d(in_size))
|
||||||
|
|
||||||
|
if activation is not None:
|
||||||
|
self.add_module(name + 'activation', activation)
|
||||||
|
|
||||||
|
self.add_module(name + 'fc', fc)
|
||||||
|
|
||||||
|
if not preact:
|
||||||
|
if bn:
|
||||||
|
self.add_module(name + 'bn', BatchNorm1d(out_size))
|
||||||
|
|
||||||
|
if activation is not None:
|
||||||
|
self.add_module(name + 'activation', activation)
|
||||||
|
|
23
modules/module_lib/pointnet2_utils/pointnet2/setup.py
Normal file
23
modules/module_lib/pointnet2_utils/pointnet2/setup.py
Normal file
@ -0,0 +1,23 @@
|
|||||||
|
from setuptools import setup
|
||||||
|
from torch.utils.cpp_extension import BuildExtension, CUDAExtension
|
||||||
|
|
||||||
|
setup(
|
||||||
|
name='pointnet2',
|
||||||
|
ext_modules=[
|
||||||
|
CUDAExtension('pointnet2_cuda', [
|
||||||
|
'src/pointnet2_api.cpp',
|
||||||
|
|
||||||
|
'src/ball_query.cpp',
|
||||||
|
'src/ball_query_gpu.cu',
|
||||||
|
'src/group_points.cpp',
|
||||||
|
'src/group_points_gpu.cu',
|
||||||
|
'src/interpolate.cpp',
|
||||||
|
'src/interpolate_gpu.cu',
|
||||||
|
'src/sampling.cpp',
|
||||||
|
'src/sampling_gpu.cu',
|
||||||
|
],
|
||||||
|
extra_compile_args={'cxx': ['-g'],
|
||||||
|
'nvcc': ['-O2']})
|
||||||
|
],
|
||||||
|
cmdclass={'build_ext': BuildExtension}
|
||||||
|
)
|
@ -0,0 +1,28 @@
|
|||||||
|
#include <torch/serialize/tensor.h>
|
||||||
|
#include <vector>
|
||||||
|
// #include <THC/THC.h>
|
||||||
|
#include <cuda.h>
|
||||||
|
#include <cuda_runtime_api.h>
|
||||||
|
#include "ball_query_gpu.h"
|
||||||
|
#include <ATen/cuda/CUDAContext.h>
|
||||||
|
#include <ATen/cuda/CUDAEvent.h>
|
||||||
|
|
||||||
|
// extern THCState *state;
|
||||||
|
|
||||||
|
#define CHECK_CUDA(x) TORCH_CHECK(x.type().is_cuda(), #x, " must be a CUDAtensor ")
|
||||||
|
#define CHECK_CONTIGUOUS(x) TORCH_CHECK(x.is_contiguous(), #x, " must be contiguous ")
|
||||||
|
#define CHECK_INPUT(x) CHECK_CUDA(x);CHECK_CONTIGUOUS(x)
|
||||||
|
|
||||||
|
int ball_query_wrapper_fast(int b, int n, int m, float radius, int nsample,
|
||||||
|
at::Tensor new_xyz_tensor, at::Tensor xyz_tensor, at::Tensor idx_tensor) {
|
||||||
|
CHECK_INPUT(new_xyz_tensor);
|
||||||
|
CHECK_INPUT(xyz_tensor);
|
||||||
|
const float *new_xyz = new_xyz_tensor.data<float>();
|
||||||
|
const float *xyz = xyz_tensor.data<float>();
|
||||||
|
int *idx = idx_tensor.data<int>();
|
||||||
|
|
||||||
|
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
||||||
|
// cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
||||||
|
ball_query_kernel_launcher_fast(b, n, m, radius, nsample, new_xyz, xyz, idx, stream);
|
||||||
|
return 1;
|
||||||
|
}
|
@ -0,0 +1,67 @@
|
|||||||
|
#include <math.h>
|
||||||
|
#include <stdio.h>
|
||||||
|
#include <stdlib.h>
|
||||||
|
|
||||||
|
#include "ball_query_gpu.h"
|
||||||
|
#include "cuda_utils.h"
|
||||||
|
|
||||||
|
|
||||||
|
__global__ void ball_query_kernel_fast(int b, int n, int m, float radius, int nsample,
|
||||||
|
const float *__restrict__ new_xyz, const float *__restrict__ xyz, int *__restrict__ idx) {
|
||||||
|
// new_xyz: (B, M, 3)
|
||||||
|
// xyz: (B, N, 3)
|
||||||
|
// output:
|
||||||
|
// idx: (B, M, nsample)
|
||||||
|
int bs_idx = blockIdx.y;
|
||||||
|
int pt_idx = blockIdx.x * blockDim.x + threadIdx.x;
|
||||||
|
if (bs_idx >= b || pt_idx >= m) return;
|
||||||
|
|
||||||
|
new_xyz += bs_idx * m * 3 + pt_idx * 3;
|
||||||
|
xyz += bs_idx * n * 3;
|
||||||
|
idx += bs_idx * m * nsample + pt_idx * nsample;
|
||||||
|
|
||||||
|
float radius2 = radius * radius;
|
||||||
|
float new_x = new_xyz[0];
|
||||||
|
float new_y = new_xyz[1];
|
||||||
|
float new_z = new_xyz[2];
|
||||||
|
|
||||||
|
int cnt = 0;
|
||||||
|
for (int k = 0; k < n; ++k) {
|
||||||
|
float x = xyz[k * 3 + 0];
|
||||||
|
float y = xyz[k * 3 + 1];
|
||||||
|
float z = xyz[k * 3 + 2];
|
||||||
|
float d2 = (new_x - x) * (new_x - x) + (new_y - y) * (new_y - y) + (new_z - z) * (new_z - z);
|
||||||
|
if (d2 < radius2){
|
||||||
|
if (cnt == 0){
|
||||||
|
for (int l = 0; l < nsample; ++l) {
|
||||||
|
idx[l] = k;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
idx[cnt] = k;
|
||||||
|
++cnt;
|
||||||
|
if (cnt >= nsample) break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
void ball_query_kernel_launcher_fast(int b, int n, int m, float radius, int nsample, \
|
||||||
|
const float *new_xyz, const float *xyz, int *idx, cudaStream_t stream) {
|
||||||
|
// new_xyz: (B, M, 3)
|
||||||
|
// xyz: (B, N, 3)
|
||||||
|
// output:
|
||||||
|
// idx: (B, M, nsample)
|
||||||
|
|
||||||
|
cudaError_t err;
|
||||||
|
|
||||||
|
dim3 blocks(DIVUP(m, THREADS_PER_BLOCK), b); // blockIdx.x(col), blockIdx.y(row)
|
||||||
|
dim3 threads(THREADS_PER_BLOCK);
|
||||||
|
|
||||||
|
ball_query_kernel_fast<<<blocks, threads, 0, stream>>>(b, n, m, radius, nsample, new_xyz, xyz, idx);
|
||||||
|
// cudaDeviceSynchronize(); // for using printf in kernel function
|
||||||
|
err = cudaGetLastError();
|
||||||
|
if (cudaSuccess != err) {
|
||||||
|
fprintf(stderr, "CUDA kernel failed : %s\n", cudaGetErrorString(err));
|
||||||
|
exit(-1);
|
||||||
|
}
|
||||||
|
}
|
@ -0,0 +1,15 @@
|
|||||||
|
#ifndef _BALL_QUERY_GPU_H
|
||||||
|
#define _BALL_QUERY_GPU_H
|
||||||
|
|
||||||
|
#include <torch/serialize/tensor.h>
|
||||||
|
#include <vector>
|
||||||
|
#include <cuda.h>
|
||||||
|
#include <cuda_runtime_api.h>
|
||||||
|
|
||||||
|
int ball_query_wrapper_fast(int b, int n, int m, float radius, int nsample,
|
||||||
|
at::Tensor new_xyz_tensor, at::Tensor xyz_tensor, at::Tensor idx_tensor);
|
||||||
|
|
||||||
|
void ball_query_kernel_launcher_fast(int b, int n, int m, float radius, int nsample,
|
||||||
|
const float *xyz, const float *new_xyz, int *idx, cudaStream_t stream);
|
||||||
|
|
||||||
|
#endif
|
@ -0,0 +1,15 @@
|
|||||||
|
#ifndef _CUDA_UTILS_H
|
||||||
|
#define _CUDA_UTILS_H
|
||||||
|
|
||||||
|
#include <cmath>
|
||||||
|
|
||||||
|
#define TOTAL_THREADS 1024
|
||||||
|
#define THREADS_PER_BLOCK 256
|
||||||
|
#define DIVUP(m,n) ((m) / (n) + ((m) % (n) > 0))
|
||||||
|
|
||||||
|
inline int opt_n_threads(int work_size) {
|
||||||
|
const int pow_2 = std::log(static_cast<double>(work_size)) / std::log(2.0);
|
||||||
|
|
||||||
|
return max(min(1 << pow_2, TOTAL_THREADS), 1);
|
||||||
|
}
|
||||||
|
#endif
|
@ -0,0 +1,37 @@
|
|||||||
|
#include <torch/serialize/tensor.h>
|
||||||
|
#include <cuda.h>
|
||||||
|
#include <cuda_runtime_api.h>
|
||||||
|
#include <vector>
|
||||||
|
// #include <THC/THC.h>
|
||||||
|
#include "group_points_gpu.h"
|
||||||
|
#include <ATen/cuda/CUDAContext.h>
|
||||||
|
#include <ATen/cuda/CUDAEvent.h>
|
||||||
|
// extern THCState *state;
|
||||||
|
|
||||||
|
|
||||||
|
int group_points_grad_wrapper_fast(int b, int c, int n, int npoints, int nsample,
|
||||||
|
at::Tensor grad_out_tensor, at::Tensor idx_tensor, at::Tensor grad_points_tensor) {
|
||||||
|
|
||||||
|
float *grad_points = grad_points_tensor.data<float>();
|
||||||
|
const int *idx = idx_tensor.data<int>();
|
||||||
|
const float *grad_out = grad_out_tensor.data<float>();
|
||||||
|
|
||||||
|
// cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
||||||
|
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
||||||
|
group_points_grad_kernel_launcher_fast(b, c, n, npoints, nsample, grad_out, idx, grad_points, stream);
|
||||||
|
return 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
int group_points_wrapper_fast(int b, int c, int n, int npoints, int nsample,
|
||||||
|
at::Tensor points_tensor, at::Tensor idx_tensor, at::Tensor out_tensor) {
|
||||||
|
|
||||||
|
const float *points = points_tensor.data<float>();
|
||||||
|
const int *idx = idx_tensor.data<int>();
|
||||||
|
float *out = out_tensor.data<float>();
|
||||||
|
|
||||||
|
// cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
||||||
|
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
||||||
|
group_points_kernel_launcher_fast(b, c, n, npoints, nsample, points, idx, out, stream);
|
||||||
|
return 1;
|
||||||
|
}
|
@ -0,0 +1,86 @@
|
|||||||
|
#include <stdio.h>
|
||||||
|
#include <stdlib.h>
|
||||||
|
|
||||||
|
#include "cuda_utils.h"
|
||||||
|
#include "group_points_gpu.h"
|
||||||
|
|
||||||
|
|
||||||
|
__global__ void group_points_grad_kernel_fast(int b, int c, int n, int npoints, int nsample,
|
||||||
|
const float *__restrict__ grad_out, const int *__restrict__ idx, float *__restrict__ grad_points) {
|
||||||
|
// grad_out: (B, C, npoints, nsample)
|
||||||
|
// idx: (B, npoints, nsample)
|
||||||
|
// output:
|
||||||
|
// grad_points: (B, C, N)
|
||||||
|
int bs_idx = blockIdx.z;
|
||||||
|
int c_idx = blockIdx.y;
|
||||||
|
int index = blockIdx.x * blockDim.x + threadIdx.x;
|
||||||
|
int pt_idx = index / nsample;
|
||||||
|
if (bs_idx >= b || c_idx >= c || pt_idx >= npoints) return;
|
||||||
|
|
||||||
|
int sample_idx = index % nsample;
|
||||||
|
grad_out += bs_idx * c * npoints * nsample + c_idx * npoints * nsample + pt_idx * nsample + sample_idx;
|
||||||
|
idx += bs_idx * npoints * nsample + pt_idx * nsample + sample_idx;
|
||||||
|
|
||||||
|
atomicAdd(grad_points + bs_idx * c * n + c_idx * n + idx[0] , grad_out[0]);
|
||||||
|
}
|
||||||
|
|
||||||
|
void group_points_grad_kernel_launcher_fast(int b, int c, int n, int npoints, int nsample,
|
||||||
|
const float *grad_out, const int *idx, float *grad_points, cudaStream_t stream) {
|
||||||
|
// grad_out: (B, C, npoints, nsample)
|
||||||
|
// idx: (B, npoints, nsample)
|
||||||
|
// output:
|
||||||
|
// grad_points: (B, C, N)
|
||||||
|
cudaError_t err;
|
||||||
|
dim3 blocks(DIVUP(npoints * nsample, THREADS_PER_BLOCK), c, b); // blockIdx.x(col), blockIdx.y(row)
|
||||||
|
dim3 threads(THREADS_PER_BLOCK);
|
||||||
|
|
||||||
|
group_points_grad_kernel_fast<<<blocks, threads, 0, stream>>>(b, c, n, npoints, nsample, grad_out, idx, grad_points);
|
||||||
|
|
||||||
|
err = cudaGetLastError();
|
||||||
|
if (cudaSuccess != err) {
|
||||||
|
fprintf(stderr, "CUDA kernel failed : %s\n", cudaGetErrorString(err));
|
||||||
|
exit(-1);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
__global__ void group_points_kernel_fast(int b, int c, int n, int npoints, int nsample,
|
||||||
|
const float *__restrict__ points, const int *__restrict__ idx, float *__restrict__ out) {
|
||||||
|
// points: (B, C, N)
|
||||||
|
// idx: (B, npoints, nsample)
|
||||||
|
// output:
|
||||||
|
// out: (B, C, npoints, nsample)
|
||||||
|
int bs_idx = blockIdx.z;
|
||||||
|
int c_idx = blockIdx.y;
|
||||||
|
int index = blockIdx.x * blockDim.x + threadIdx.x;
|
||||||
|
int pt_idx = index / nsample;
|
||||||
|
if (bs_idx >= b || c_idx >= c || pt_idx >= npoints) return;
|
||||||
|
|
||||||
|
int sample_idx = index % nsample;
|
||||||
|
|
||||||
|
idx += bs_idx * npoints * nsample + pt_idx * nsample + sample_idx;
|
||||||
|
int in_idx = bs_idx * c * n + c_idx * n + idx[0];
|
||||||
|
int out_idx = bs_idx * c * npoints * nsample + c_idx * npoints * nsample + pt_idx * nsample + sample_idx;
|
||||||
|
|
||||||
|
out[out_idx] = points[in_idx];
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
void group_points_kernel_launcher_fast(int b, int c, int n, int npoints, int nsample,
|
||||||
|
const float *points, const int *idx, float *out, cudaStream_t stream) {
|
||||||
|
// points: (B, C, N)
|
||||||
|
// idx: (B, npoints, nsample)
|
||||||
|
// output:
|
||||||
|
// out: (B, C, npoints, nsample)
|
||||||
|
cudaError_t err;
|
||||||
|
dim3 blocks(DIVUP(npoints * nsample, THREADS_PER_BLOCK), c, b); // blockIdx.x(col), blockIdx.y(row)
|
||||||
|
dim3 threads(THREADS_PER_BLOCK);
|
||||||
|
|
||||||
|
group_points_kernel_fast<<<blocks, threads, 0, stream>>>(b, c, n, npoints, nsample, points, idx, out);
|
||||||
|
// cudaDeviceSynchronize(); // for using printf in kernel function
|
||||||
|
err = cudaGetLastError();
|
||||||
|
if (cudaSuccess != err) {
|
||||||
|
fprintf(stderr, "CUDA kernel failed : %s\n", cudaGetErrorString(err));
|
||||||
|
exit(-1);
|
||||||
|
}
|
||||||
|
}
|
@ -0,0 +1,22 @@
|
|||||||
|
#ifndef _GROUP_POINTS_GPU_H
|
||||||
|
#define _GROUP_POINTS_GPU_H
|
||||||
|
|
||||||
|
#include <torch/serialize/tensor.h>
|
||||||
|
#include <cuda.h>
|
||||||
|
#include <cuda_runtime_api.h>
|
||||||
|
#include <vector>
|
||||||
|
|
||||||
|
|
||||||
|
int group_points_wrapper_fast(int b, int c, int n, int npoints, int nsample,
|
||||||
|
at::Tensor points_tensor, at::Tensor idx_tensor, at::Tensor out_tensor);
|
||||||
|
|
||||||
|
void group_points_kernel_launcher_fast(int b, int c, int n, int npoints, int nsample,
|
||||||
|
const float *points, const int *idx, float *out, cudaStream_t stream);
|
||||||
|
|
||||||
|
int group_points_grad_wrapper_fast(int b, int c, int n, int npoints, int nsample,
|
||||||
|
at::Tensor grad_out_tensor, at::Tensor idx_tensor, at::Tensor grad_points_tensor);
|
||||||
|
|
||||||
|
void group_points_grad_kernel_launcher_fast(int b, int c, int n, int npoints, int nsample,
|
||||||
|
const float *grad_out, const int *idx, float *grad_points, cudaStream_t stream);
|
||||||
|
|
||||||
|
#endif
|
@ -0,0 +1,59 @@
|
|||||||
|
#include <torch/serialize/tensor.h>
|
||||||
|
#include <vector>
|
||||||
|
// #include <THC/THC.h>
|
||||||
|
#include <ATen/cuda/CUDAContext.h>
|
||||||
|
#include <ATen/cuda/CUDAEvent.h>
|
||||||
|
#include <math.h>
|
||||||
|
#include <stdio.h>
|
||||||
|
#include <stdlib.h>
|
||||||
|
#include <cuda.h>
|
||||||
|
#include <cuda_runtime_api.h>
|
||||||
|
#include "interpolate_gpu.h"
|
||||||
|
|
||||||
|
// extern THCState *state;
|
||||||
|
|
||||||
|
|
||||||
|
void three_nn_wrapper_fast(int b, int n, int m, at::Tensor unknown_tensor,
|
||||||
|
at::Tensor known_tensor, at::Tensor dist2_tensor, at::Tensor idx_tensor) {
|
||||||
|
const float *unknown = unknown_tensor.data<float>();
|
||||||
|
const float *known = known_tensor.data<float>();
|
||||||
|
float *dist2 = dist2_tensor.data<float>();
|
||||||
|
int *idx = idx_tensor.data<int>();
|
||||||
|
|
||||||
|
// cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
||||||
|
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
||||||
|
three_nn_kernel_launcher_fast(b, n, m, unknown, known, dist2, idx, stream);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
void three_interpolate_wrapper_fast(int b, int c, int m, int n,
|
||||||
|
at::Tensor points_tensor,
|
||||||
|
at::Tensor idx_tensor,
|
||||||
|
at::Tensor weight_tensor,
|
||||||
|
at::Tensor out_tensor) {
|
||||||
|
|
||||||
|
const float *points = points_tensor.data<float>();
|
||||||
|
const float *weight = weight_tensor.data<float>();
|
||||||
|
float *out = out_tensor.data<float>();
|
||||||
|
const int *idx = idx_tensor.data<int>();
|
||||||
|
|
||||||
|
// cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
||||||
|
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
||||||
|
three_interpolate_kernel_launcher_fast(b, c, m, n, points, idx, weight, out, stream);
|
||||||
|
}
|
||||||
|
|
||||||
|
void three_interpolate_grad_wrapper_fast(int b, int c, int n, int m,
|
||||||
|
at::Tensor grad_out_tensor,
|
||||||
|
at::Tensor idx_tensor,
|
||||||
|
at::Tensor weight_tensor,
|
||||||
|
at::Tensor grad_points_tensor) {
|
||||||
|
|
||||||
|
const float *grad_out = grad_out_tensor.data<float>();
|
||||||
|
const float *weight = weight_tensor.data<float>();
|
||||||
|
float *grad_points = grad_points_tensor.data<float>();
|
||||||
|
const int *idx = idx_tensor.data<int>();
|
||||||
|
|
||||||
|
// cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
||||||
|
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
||||||
|
three_interpolate_grad_kernel_launcher_fast(b, c, n, m, grad_out, idx, weight, grad_points, stream);
|
||||||
|
}
|
@ -0,0 +1,161 @@
|
|||||||
|
#include <math.h>
|
||||||
|
#include <stdio.h>
|
||||||
|
#include <stdlib.h>
|
||||||
|
|
||||||
|
#include "cuda_utils.h"
|
||||||
|
#include "interpolate_gpu.h"
|
||||||
|
|
||||||
|
|
||||||
|
__global__ void three_nn_kernel_fast(int b, int n, int m, const float *__restrict__ unknown,
|
||||||
|
const float *__restrict__ known, float *__restrict__ dist2, int *__restrict__ idx) {
|
||||||
|
// unknown: (B, N, 3)
|
||||||
|
// known: (B, M, 3)
|
||||||
|
// output:
|
||||||
|
// dist2: (B, N, 3)
|
||||||
|
// idx: (B, N, 3)
|
||||||
|
|
||||||
|
int bs_idx = blockIdx.y;
|
||||||
|
int pt_idx = blockIdx.x * blockDim.x + threadIdx.x;
|
||||||
|
if (bs_idx >= b || pt_idx >= n) return;
|
||||||
|
|
||||||
|
unknown += bs_idx * n * 3 + pt_idx * 3;
|
||||||
|
known += bs_idx * m * 3;
|
||||||
|
dist2 += bs_idx * n * 3 + pt_idx * 3;
|
||||||
|
idx += bs_idx * n * 3 + pt_idx * 3;
|
||||||
|
|
||||||
|
float ux = unknown[0];
|
||||||
|
float uy = unknown[1];
|
||||||
|
float uz = unknown[2];
|
||||||
|
|
||||||
|
double best1 = 1e40, best2 = 1e40, best3 = 1e40;
|
||||||
|
int besti1 = 0, besti2 = 0, besti3 = 0;
|
||||||
|
for (int k = 0; k < m; ++k) {
|
||||||
|
float x = known[k * 3 + 0];
|
||||||
|
float y = known[k * 3 + 1];
|
||||||
|
float z = known[k * 3 + 2];
|
||||||
|
float d = (ux - x) * (ux - x) + (uy - y) * (uy - y) + (uz - z) * (uz - z);
|
||||||
|
if (d < best1) {
|
||||||
|
best3 = best2; besti3 = besti2;
|
||||||
|
best2 = best1; besti2 = besti1;
|
||||||
|
best1 = d; besti1 = k;
|
||||||
|
}
|
||||||
|
else if (d < best2) {
|
||||||
|
best3 = best2; besti3 = besti2;
|
||||||
|
best2 = d; besti2 = k;
|
||||||
|
}
|
||||||
|
else if (d < best3) {
|
||||||
|
best3 = d; besti3 = k;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
dist2[0] = best1; dist2[1] = best2; dist2[2] = best3;
|
||||||
|
idx[0] = besti1; idx[1] = besti2; idx[2] = besti3;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
void three_nn_kernel_launcher_fast(int b, int n, int m, const float *unknown,
|
||||||
|
const float *known, float *dist2, int *idx, cudaStream_t stream) {
|
||||||
|
// unknown: (B, N, 3)
|
||||||
|
// known: (B, M, 3)
|
||||||
|
// output:
|
||||||
|
// dist2: (B, N, 3)
|
||||||
|
// idx: (B, N, 3)
|
||||||
|
|
||||||
|
cudaError_t err;
|
||||||
|
dim3 blocks(DIVUP(n, THREADS_PER_BLOCK), b); // blockIdx.x(col), blockIdx.y(row)
|
||||||
|
dim3 threads(THREADS_PER_BLOCK);
|
||||||
|
|
||||||
|
three_nn_kernel_fast<<<blocks, threads, 0, stream>>>(b, n, m, unknown, known, dist2, idx);
|
||||||
|
|
||||||
|
err = cudaGetLastError();
|
||||||
|
if (cudaSuccess != err) {
|
||||||
|
fprintf(stderr, "CUDA kernel failed : %s\n", cudaGetErrorString(err));
|
||||||
|
exit(-1);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
__global__ void three_interpolate_kernel_fast(int b, int c, int m, int n, const float *__restrict__ points,
|
||||||
|
const int *__restrict__ idx, const float *__restrict__ weight, float *__restrict__ out) {
|
||||||
|
// points: (B, C, M)
|
||||||
|
// idx: (B, N, 3)
|
||||||
|
// weight: (B, N, 3)
|
||||||
|
// output:
|
||||||
|
// out: (B, C, N)
|
||||||
|
|
||||||
|
int bs_idx = blockIdx.z;
|
||||||
|
int c_idx = blockIdx.y;
|
||||||
|
int pt_idx = blockIdx.x * blockDim.x + threadIdx.x;
|
||||||
|
|
||||||
|
if (bs_idx >= b || c_idx >= c || pt_idx >= n) return;
|
||||||
|
|
||||||
|
weight += bs_idx * n * 3 + pt_idx * 3;
|
||||||
|
points += bs_idx * c * m + c_idx * m;
|
||||||
|
idx += bs_idx * n * 3 + pt_idx * 3;
|
||||||
|
out += bs_idx * c * n + c_idx * n;
|
||||||
|
|
||||||
|
out[pt_idx] = weight[0] * points[idx[0]] + weight[1] * points[idx[1]] + weight[2] * points[idx[2]];
|
||||||
|
}
|
||||||
|
|
||||||
|
void three_interpolate_kernel_launcher_fast(int b, int c, int m, int n,
|
||||||
|
const float *points, const int *idx, const float *weight, float *out, cudaStream_t stream) {
|
||||||
|
// points: (B, C, M)
|
||||||
|
// idx: (B, N, 3)
|
||||||
|
// weight: (B, N, 3)
|
||||||
|
// output:
|
||||||
|
// out: (B, C, N)
|
||||||
|
|
||||||
|
cudaError_t err;
|
||||||
|
dim3 blocks(DIVUP(n, THREADS_PER_BLOCK), c, b); // blockIdx.x(col), blockIdx.y(row)
|
||||||
|
dim3 threads(THREADS_PER_BLOCK);
|
||||||
|
three_interpolate_kernel_fast<<<blocks, threads, 0, stream>>>(b, c, m, n, points, idx, weight, out);
|
||||||
|
|
||||||
|
err = cudaGetLastError();
|
||||||
|
if (cudaSuccess != err) {
|
||||||
|
fprintf(stderr, "CUDA kernel failed : %s\n", cudaGetErrorString(err));
|
||||||
|
exit(-1);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
__global__ void three_interpolate_grad_kernel_fast(int b, int c, int n, int m, const float *__restrict__ grad_out,
|
||||||
|
const int *__restrict__ idx, const float *__restrict__ weight, float *__restrict__ grad_points) {
|
||||||
|
// grad_out: (B, C, N)
|
||||||
|
// weight: (B, N, 3)
|
||||||
|
// output:
|
||||||
|
// grad_points: (B, C, M)
|
||||||
|
|
||||||
|
int bs_idx = blockIdx.z;
|
||||||
|
int c_idx = blockIdx.y;
|
||||||
|
int pt_idx = blockIdx.x * blockDim.x + threadIdx.x;
|
||||||
|
|
||||||
|
if (bs_idx >= b || c_idx >= c || pt_idx >= n) return;
|
||||||
|
|
||||||
|
grad_out += bs_idx * c * n + c_idx * n + pt_idx;
|
||||||
|
weight += bs_idx * n * 3 + pt_idx * 3;
|
||||||
|
grad_points += bs_idx * c * m + c_idx * m;
|
||||||
|
idx += bs_idx * n * 3 + pt_idx * 3;
|
||||||
|
|
||||||
|
|
||||||
|
atomicAdd(grad_points + idx[0], grad_out[0] * weight[0]);
|
||||||
|
atomicAdd(grad_points + idx[1], grad_out[0] * weight[1]);
|
||||||
|
atomicAdd(grad_points + idx[2], grad_out[0] * weight[2]);
|
||||||
|
}
|
||||||
|
|
||||||
|
void three_interpolate_grad_kernel_launcher_fast(int b, int c, int n, int m, const float *grad_out,
|
||||||
|
const int *idx, const float *weight, float *grad_points, cudaStream_t stream) {
|
||||||
|
// grad_out: (B, C, N)
|
||||||
|
// weight: (B, N, 3)
|
||||||
|
// output:
|
||||||
|
// grad_points: (B, C, M)
|
||||||
|
|
||||||
|
cudaError_t err;
|
||||||
|
dim3 blocks(DIVUP(n, THREADS_PER_BLOCK), c, b); // blockIdx.x(col), blockIdx.y(row)
|
||||||
|
dim3 threads(THREADS_PER_BLOCK);
|
||||||
|
three_interpolate_grad_kernel_fast<<<blocks, threads, 0, stream>>>(b, c, n, m, grad_out, idx, weight, grad_points);
|
||||||
|
|
||||||
|
err = cudaGetLastError();
|
||||||
|
if (cudaSuccess != err) {
|
||||||
|
fprintf(stderr, "CUDA kernel failed : %s\n", cudaGetErrorString(err));
|
||||||
|
exit(-1);
|
||||||
|
}
|
||||||
|
}
|
@ -0,0 +1,30 @@
|
|||||||
|
#ifndef _INTERPOLATE_GPU_H
|
||||||
|
#define _INTERPOLATE_GPU_H
|
||||||
|
|
||||||
|
#include <torch/serialize/tensor.h>
|
||||||
|
#include<vector>
|
||||||
|
#include <cuda.h>
|
||||||
|
#include <cuda_runtime_api.h>
|
||||||
|
|
||||||
|
|
||||||
|
void three_nn_wrapper_fast(int b, int n, int m, at::Tensor unknown_tensor,
|
||||||
|
at::Tensor known_tensor, at::Tensor dist2_tensor, at::Tensor idx_tensor);
|
||||||
|
|
||||||
|
void three_nn_kernel_launcher_fast(int b, int n, int m, const float *unknown,
|
||||||
|
const float *known, float *dist2, int *idx, cudaStream_t stream);
|
||||||
|
|
||||||
|
|
||||||
|
void three_interpolate_wrapper_fast(int b, int c, int m, int n, at::Tensor points_tensor,
|
||||||
|
at::Tensor idx_tensor, at::Tensor weight_tensor, at::Tensor out_tensor);
|
||||||
|
|
||||||
|
void three_interpolate_kernel_launcher_fast(int b, int c, int m, int n,
|
||||||
|
const float *points, const int *idx, const float *weight, float *out, cudaStream_t stream);
|
||||||
|
|
||||||
|
|
||||||
|
void three_interpolate_grad_wrapper_fast(int b, int c, int n, int m, at::Tensor grad_out_tensor,
|
||||||
|
at::Tensor idx_tensor, at::Tensor weight_tensor, at::Tensor grad_points_tensor);
|
||||||
|
|
||||||
|
void three_interpolate_grad_kernel_launcher_fast(int b, int c, int n, int m, const float *grad_out,
|
||||||
|
const int *idx, const float *weight, float *grad_points, cudaStream_t stream);
|
||||||
|
|
||||||
|
#endif
|
@ -0,0 +1,24 @@
|
|||||||
|
#include <torch/serialize/tensor.h>
|
||||||
|
#include <torch/extension.h>
|
||||||
|
|
||||||
|
#include "ball_query_gpu.h"
|
||||||
|
#include "group_points_gpu.h"
|
||||||
|
#include "sampling_gpu.h"
|
||||||
|
#include "interpolate_gpu.h"
|
||||||
|
|
||||||
|
|
||||||
|
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
|
||||||
|
m.def("ball_query_wrapper", &ball_query_wrapper_fast, "ball_query_wrapper_fast");
|
||||||
|
|
||||||
|
m.def("group_points_wrapper", &group_points_wrapper_fast, "group_points_wrapper_fast");
|
||||||
|
m.def("group_points_grad_wrapper", &group_points_grad_wrapper_fast, "group_points_grad_wrapper_fast");
|
||||||
|
|
||||||
|
m.def("gather_points_wrapper", &gather_points_wrapper_fast, "gather_points_wrapper_fast");
|
||||||
|
m.def("gather_points_grad_wrapper", &gather_points_grad_wrapper_fast, "gather_points_grad_wrapper_fast");
|
||||||
|
|
||||||
|
m.def("furthest_point_sampling_wrapper", &furthest_point_sampling_wrapper, "furthest_point_sampling_wrapper");
|
||||||
|
|
||||||
|
m.def("three_nn_wrapper", &three_nn_wrapper_fast, "three_nn_wrapper_fast");
|
||||||
|
m.def("three_interpolate_wrapper", &three_interpolate_wrapper_fast, "three_interpolate_wrapper_fast");
|
||||||
|
m.def("three_interpolate_grad_wrapper", &three_interpolate_grad_wrapper_fast, "three_interpolate_grad_wrapper_fast");
|
||||||
|
}
|
@ -0,0 +1,51 @@
|
|||||||
|
#include <torch/serialize/tensor.h>
|
||||||
|
#include <ATen/cuda/CUDAContext.h>
|
||||||
|
#include <vector>
|
||||||
|
// #include <THC/THC.h>
|
||||||
|
|
||||||
|
#include "sampling_gpu.h"
|
||||||
|
#include <ATen/cuda/CUDAContext.h>
|
||||||
|
#include <ATen/cuda/CUDAEvent.h>
|
||||||
|
|
||||||
|
// extern THCState *state;
|
||||||
|
|
||||||
|
|
||||||
|
int gather_points_wrapper_fast(int b, int c, int n, int npoints,
|
||||||
|
at::Tensor points_tensor, at::Tensor idx_tensor, at::Tensor out_tensor){
|
||||||
|
const float *points = points_tensor.data<float>();
|
||||||
|
const int *idx = idx_tensor.data<int>();
|
||||||
|
float *out = out_tensor.data<float>();
|
||||||
|
|
||||||
|
// cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
||||||
|
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
||||||
|
gather_points_kernel_launcher_fast(b, c, n, npoints, points, idx, out, stream);
|
||||||
|
return 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
int gather_points_grad_wrapper_fast(int b, int c, int n, int npoints,
|
||||||
|
at::Tensor grad_out_tensor, at::Tensor idx_tensor, at::Tensor grad_points_tensor) {
|
||||||
|
|
||||||
|
const float *grad_out = grad_out_tensor.data<float>();
|
||||||
|
const int *idx = idx_tensor.data<int>();
|
||||||
|
float *grad_points = grad_points_tensor.data<float>();
|
||||||
|
|
||||||
|
// cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
||||||
|
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
||||||
|
gather_points_grad_kernel_launcher_fast(b, c, n, npoints, grad_out, idx, grad_points, stream);
|
||||||
|
return 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
int furthest_point_sampling_wrapper(int b, int n, int m,
|
||||||
|
at::Tensor points_tensor, at::Tensor temp_tensor, at::Tensor idx_tensor) {
|
||||||
|
|
||||||
|
const float *points = points_tensor.data<float>();
|
||||||
|
float *temp = temp_tensor.data<float>();
|
||||||
|
int *idx = idx_tensor.data<int>();
|
||||||
|
|
||||||
|
// cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
||||||
|
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
||||||
|
furthest_point_sampling_kernel_launcher(b, n, m, points, temp, idx, stream);
|
||||||
|
return 1;
|
||||||
|
}
|
253
modules/module_lib/pointnet2_utils/pointnet2/src/sampling_gpu.cu
Normal file
253
modules/module_lib/pointnet2_utils/pointnet2/src/sampling_gpu.cu
Normal file
@ -0,0 +1,253 @@
|
|||||||
|
#include <stdio.h>
|
||||||
|
#include <stdlib.h>
|
||||||
|
|
||||||
|
#include "cuda_utils.h"
|
||||||
|
#include "sampling_gpu.h"
|
||||||
|
|
||||||
|
|
||||||
|
__global__ void gather_points_kernel_fast(int b, int c, int n, int m,
|
||||||
|
const float *__restrict__ points, const int *__restrict__ idx, float *__restrict__ out) {
|
||||||
|
// points: (B, C, N)
|
||||||
|
// idx: (B, M)
|
||||||
|
// output:
|
||||||
|
// out: (B, C, M)
|
||||||
|
|
||||||
|
int bs_idx = blockIdx.z;
|
||||||
|
int c_idx = blockIdx.y;
|
||||||
|
int pt_idx = blockIdx.x * blockDim.x + threadIdx.x;
|
||||||
|
if (bs_idx >= b || c_idx >= c || pt_idx >= m) return;
|
||||||
|
|
||||||
|
out += bs_idx * c * m + c_idx * m + pt_idx;
|
||||||
|
idx += bs_idx * m + pt_idx;
|
||||||
|
points += bs_idx * c * n + c_idx * n;
|
||||||
|
out[0] = points[idx[0]];
|
||||||
|
}
|
||||||
|
|
||||||
|
void gather_points_kernel_launcher_fast(int b, int c, int n, int npoints,
|
||||||
|
const float *points, const int *idx, float *out, cudaStream_t stream) {
|
||||||
|
// points: (B, C, N)
|
||||||
|
// idx: (B, npoints)
|
||||||
|
// output:
|
||||||
|
// out: (B, C, npoints)
|
||||||
|
|
||||||
|
cudaError_t err;
|
||||||
|
dim3 blocks(DIVUP(npoints, THREADS_PER_BLOCK), c, b); // blockIdx.x(col), blockIdx.y(row)
|
||||||
|
dim3 threads(THREADS_PER_BLOCK);
|
||||||
|
|
||||||
|
gather_points_kernel_fast<<<blocks, threads, 0, stream>>>(b, c, n, npoints, points, idx, out);
|
||||||
|
|
||||||
|
err = cudaGetLastError();
|
||||||
|
if (cudaSuccess != err) {
|
||||||
|
fprintf(stderr, "CUDA kernel failed : %s\n", cudaGetErrorString(err));
|
||||||
|
exit(-1);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
__global__ void gather_points_grad_kernel_fast(int b, int c, int n, int m, const float *__restrict__ grad_out,
|
||||||
|
const int *__restrict__ idx, float *__restrict__ grad_points) {
|
||||||
|
// grad_out: (B, C, M)
|
||||||
|
// idx: (B, M)
|
||||||
|
// output:
|
||||||
|
// grad_points: (B, C, N)
|
||||||
|
|
||||||
|
int bs_idx = blockIdx.z;
|
||||||
|
int c_idx = blockIdx.y;
|
||||||
|
int pt_idx = blockIdx.x * blockDim.x + threadIdx.x;
|
||||||
|
if (bs_idx >= b || c_idx >= c || pt_idx >= m) return;
|
||||||
|
|
||||||
|
grad_out += bs_idx * c * m + c_idx * m + pt_idx;
|
||||||
|
idx += bs_idx * m + pt_idx;
|
||||||
|
grad_points += bs_idx * c * n + c_idx * n;
|
||||||
|
|
||||||
|
atomicAdd(grad_points + idx[0], grad_out[0]);
|
||||||
|
}
|
||||||
|
|
||||||
|
void gather_points_grad_kernel_launcher_fast(int b, int c, int n, int npoints,
|
||||||
|
const float *grad_out, const int *idx, float *grad_points, cudaStream_t stream) {
|
||||||
|
// grad_out: (B, C, npoints)
|
||||||
|
// idx: (B, npoints)
|
||||||
|
// output:
|
||||||
|
// grad_points: (B, C, N)
|
||||||
|
|
||||||
|
cudaError_t err;
|
||||||
|
dim3 blocks(DIVUP(npoints, THREADS_PER_BLOCK), c, b); // blockIdx.x(col), blockIdx.y(row)
|
||||||
|
dim3 threads(THREADS_PER_BLOCK);
|
||||||
|
|
||||||
|
gather_points_grad_kernel_fast<<<blocks, threads, 0, stream>>>(b, c, n, npoints, grad_out, idx, grad_points);
|
||||||
|
|
||||||
|
err = cudaGetLastError();
|
||||||
|
if (cudaSuccess != err) {
|
||||||
|
fprintf(stderr, "CUDA kernel failed : %s\n", cudaGetErrorString(err));
|
||||||
|
exit(-1);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
__device__ void __update(float *__restrict__ dists, int *__restrict__ dists_i, int idx1, int idx2){
|
||||||
|
const float v1 = dists[idx1], v2 = dists[idx2];
|
||||||
|
const int i1 = dists_i[idx1], i2 = dists_i[idx2];
|
||||||
|
dists[idx1] = max(v1, v2);
|
||||||
|
dists_i[idx1] = v2 > v1 ? i2 : i1;
|
||||||
|
}
|
||||||
|
|
||||||
|
template <unsigned int block_size>
|
||||||
|
__global__ void furthest_point_sampling_kernel(int b, int n, int m,
|
||||||
|
const float *__restrict__ dataset, float *__restrict__ temp, int *__restrict__ idxs) {
|
||||||
|
// dataset: (B, N, 3)
|
||||||
|
// tmp: (B, N)
|
||||||
|
// output:
|
||||||
|
// idx: (B, M)
|
||||||
|
|
||||||
|
if (m <= 0) return;
|
||||||
|
__shared__ float dists[block_size];
|
||||||
|
__shared__ int dists_i[block_size];
|
||||||
|
|
||||||
|
int batch_index = blockIdx.x;
|
||||||
|
dataset += batch_index * n * 3;
|
||||||
|
temp += batch_index * n;
|
||||||
|
idxs += batch_index * m;
|
||||||
|
|
||||||
|
int tid = threadIdx.x;
|
||||||
|
const int stride = block_size;
|
||||||
|
|
||||||
|
int old = 0;
|
||||||
|
if (threadIdx.x == 0)
|
||||||
|
idxs[0] = old;
|
||||||
|
|
||||||
|
__syncthreads();
|
||||||
|
for (int j = 1; j < m; j++) {
|
||||||
|
int besti = 0;
|
||||||
|
float best = -1;
|
||||||
|
float x1 = dataset[old * 3 + 0];
|
||||||
|
float y1 = dataset[old * 3 + 1];
|
||||||
|
float z1 = dataset[old * 3 + 2];
|
||||||
|
for (int k = tid; k < n; k += stride) {
|
||||||
|
float x2, y2, z2;
|
||||||
|
x2 = dataset[k * 3 + 0];
|
||||||
|
y2 = dataset[k * 3 + 1];
|
||||||
|
z2 = dataset[k * 3 + 2];
|
||||||
|
// float mag = (x2 * x2) + (y2 * y2) + (z2 * z2);
|
||||||
|
// if (mag <= 1e-3)
|
||||||
|
// continue;
|
||||||
|
|
||||||
|
float d = (x2 - x1) * (x2 - x1) + (y2 - y1) * (y2 - y1) + (z2 - z1) * (z2 - z1);
|
||||||
|
float d2 = min(d, temp[k]);
|
||||||
|
temp[k] = d2;
|
||||||
|
besti = d2 > best ? k : besti;
|
||||||
|
best = d2 > best ? d2 : best;
|
||||||
|
}
|
||||||
|
dists[tid] = best;
|
||||||
|
dists_i[tid] = besti;
|
||||||
|
__syncthreads();
|
||||||
|
|
||||||
|
if (block_size >= 1024) {
|
||||||
|
if (tid < 512) {
|
||||||
|
__update(dists, dists_i, tid, tid + 512);
|
||||||
|
}
|
||||||
|
__syncthreads();
|
||||||
|
}
|
||||||
|
|
||||||
|
if (block_size >= 512) {
|
||||||
|
if (tid < 256) {
|
||||||
|
__update(dists, dists_i, tid, tid + 256);
|
||||||
|
}
|
||||||
|
__syncthreads();
|
||||||
|
}
|
||||||
|
if (block_size >= 256) {
|
||||||
|
if (tid < 128) {
|
||||||
|
__update(dists, dists_i, tid, tid + 128);
|
||||||
|
}
|
||||||
|
__syncthreads();
|
||||||
|
}
|
||||||
|
if (block_size >= 128) {
|
||||||
|
if (tid < 64) {
|
||||||
|
__update(dists, dists_i, tid, tid + 64);
|
||||||
|
}
|
||||||
|
__syncthreads();
|
||||||
|
}
|
||||||
|
if (block_size >= 64) {
|
||||||
|
if (tid < 32) {
|
||||||
|
__update(dists, dists_i, tid, tid + 32);
|
||||||
|
}
|
||||||
|
__syncthreads();
|
||||||
|
}
|
||||||
|
if (block_size >= 32) {
|
||||||
|
if (tid < 16) {
|
||||||
|
__update(dists, dists_i, tid, tid + 16);
|
||||||
|
}
|
||||||
|
__syncthreads();
|
||||||
|
}
|
||||||
|
if (block_size >= 16) {
|
||||||
|
if (tid < 8) {
|
||||||
|
__update(dists, dists_i, tid, tid + 8);
|
||||||
|
}
|
||||||
|
__syncthreads();
|
||||||
|
}
|
||||||
|
if (block_size >= 8) {
|
||||||
|
if (tid < 4) {
|
||||||
|
__update(dists, dists_i, tid, tid + 4);
|
||||||
|
}
|
||||||
|
__syncthreads();
|
||||||
|
}
|
||||||
|
if (block_size >= 4) {
|
||||||
|
if (tid < 2) {
|
||||||
|
__update(dists, dists_i, tid, tid + 2);
|
||||||
|
}
|
||||||
|
__syncthreads();
|
||||||
|
}
|
||||||
|
if (block_size >= 2) {
|
||||||
|
if (tid < 1) {
|
||||||
|
__update(dists, dists_i, tid, tid + 1);
|
||||||
|
}
|
||||||
|
__syncthreads();
|
||||||
|
}
|
||||||
|
|
||||||
|
old = dists_i[0];
|
||||||
|
if (tid == 0)
|
||||||
|
idxs[j] = old;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void furthest_point_sampling_kernel_launcher(int b, int n, int m,
|
||||||
|
const float *dataset, float *temp, int *idxs, cudaStream_t stream) {
|
||||||
|
// dataset: (B, N, 3)
|
||||||
|
// tmp: (B, N)
|
||||||
|
// output:
|
||||||
|
// idx: (B, M)
|
||||||
|
|
||||||
|
cudaError_t err;
|
||||||
|
unsigned int n_threads = opt_n_threads(n);
|
||||||
|
|
||||||
|
switch (n_threads) {
|
||||||
|
case 1024:
|
||||||
|
furthest_point_sampling_kernel<1024><<<b, n_threads, 0, stream>>>(b, n, m, dataset, temp, idxs); break;
|
||||||
|
case 512:
|
||||||
|
furthest_point_sampling_kernel<512><<<b, n_threads, 0, stream>>>(b, n, m, dataset, temp, idxs); break;
|
||||||
|
case 256:
|
||||||
|
furthest_point_sampling_kernel<256><<<b, n_threads, 0, stream>>>(b, n, m, dataset, temp, idxs); break;
|
||||||
|
case 128:
|
||||||
|
furthest_point_sampling_kernel<128><<<b, n_threads, 0, stream>>>(b, n, m, dataset, temp, idxs); break;
|
||||||
|
case 64:
|
||||||
|
furthest_point_sampling_kernel<64><<<b, n_threads, 0, stream>>>(b, n, m, dataset, temp, idxs); break;
|
||||||
|
case 32:
|
||||||
|
furthest_point_sampling_kernel<32><<<b, n_threads, 0, stream>>>(b, n, m, dataset, temp, idxs); break;
|
||||||
|
case 16:
|
||||||
|
furthest_point_sampling_kernel<16><<<b, n_threads, 0, stream>>>(b, n, m, dataset, temp, idxs); break;
|
||||||
|
case 8:
|
||||||
|
furthest_point_sampling_kernel<8><<<b, n_threads, 0, stream>>>(b, n, m, dataset, temp, idxs); break;
|
||||||
|
case 4:
|
||||||
|
furthest_point_sampling_kernel<4><<<b, n_threads, 0, stream>>>(b, n, m, dataset, temp, idxs); break;
|
||||||
|
case 2:
|
||||||
|
furthest_point_sampling_kernel<2><<<b, n_threads, 0, stream>>>(b, n, m, dataset, temp, idxs); break;
|
||||||
|
case 1:
|
||||||
|
furthest_point_sampling_kernel<1><<<b, n_threads, 0, stream>>>(b, n, m, dataset, temp, idxs); break;
|
||||||
|
default:
|
||||||
|
furthest_point_sampling_kernel<512><<<b, n_threads, 0, stream>>>(b, n, m, dataset, temp, idxs);
|
||||||
|
}
|
||||||
|
|
||||||
|
err = cudaGetLastError();
|
||||||
|
if (cudaSuccess != err) {
|
||||||
|
fprintf(stderr, "CUDA kernel failed : %s\n", cudaGetErrorString(err));
|
||||||
|
exit(-1);
|
||||||
|
}
|
||||||
|
}
|
@ -0,0 +1,29 @@
|
|||||||
|
#ifndef _SAMPLING_GPU_H
|
||||||
|
#define _SAMPLING_GPU_H
|
||||||
|
|
||||||
|
#include <torch/serialize/tensor.h>
|
||||||
|
#include <ATen/cuda/CUDAContext.h>
|
||||||
|
#include<vector>
|
||||||
|
|
||||||
|
|
||||||
|
int gather_points_wrapper_fast(int b, int c, int n, int npoints,
|
||||||
|
at::Tensor points_tensor, at::Tensor idx_tensor, at::Tensor out_tensor);
|
||||||
|
|
||||||
|
void gather_points_kernel_launcher_fast(int b, int c, int n, int npoints,
|
||||||
|
const float *points, const int *idx, float *out, cudaStream_t stream);
|
||||||
|
|
||||||
|
|
||||||
|
int gather_points_grad_wrapper_fast(int b, int c, int n, int npoints,
|
||||||
|
at::Tensor grad_out_tensor, at::Tensor idx_tensor, at::Tensor grad_points_tensor);
|
||||||
|
|
||||||
|
void gather_points_grad_kernel_launcher_fast(int b, int c, int n, int npoints,
|
||||||
|
const float *grad_out, const int *idx, float *grad_points, cudaStream_t stream);
|
||||||
|
|
||||||
|
|
||||||
|
int furthest_point_sampling_wrapper(int b, int n, int m,
|
||||||
|
at::Tensor points_tensor, at::Tensor temp_tensor, at::Tensor idx_tensor);
|
||||||
|
|
||||||
|
void furthest_point_sampling_kernel_launcher(int b, int n, int m,
|
||||||
|
const float *dataset, float *temp, int *idxs, cudaStream_t stream);
|
||||||
|
|
||||||
|
#endif
|
2
modules/module_lib/pointnet2_utils/tools/_init_path.py
Normal file
2
modules/module_lib/pointnet2_utils/tools/_init_path.py
Normal file
@ -0,0 +1,2 @@
|
|||||||
|
import os, sys
|
||||||
|
sys.path.insert(0, os.path.join(os.path.dirname(os.path.abspath(__file__)), '../'))
|
188
modules/module_lib/pointnet2_utils/tools/dataset.py
Normal file
188
modules/module_lib/pointnet2_utils/tools/dataset.py
Normal file
@ -0,0 +1,188 @@
|
|||||||
|
import os
|
||||||
|
import numpy as np
|
||||||
|
import torch.utils.data as torch_data
|
||||||
|
import kitti_utils
|
||||||
|
import cv2
|
||||||
|
from PIL import Image
|
||||||
|
|
||||||
|
|
||||||
|
USE_INTENSITY = False
|
||||||
|
|
||||||
|
|
||||||
|
class KittiDataset(torch_data.Dataset):
|
||||||
|
def __init__(self, root_dir, split='train', mode='TRAIN'):
|
||||||
|
self.split = split
|
||||||
|
self.mode = mode
|
||||||
|
self.classes = ['Car']
|
||||||
|
is_test = self.split == 'test'
|
||||||
|
self.imageset_dir = os.path.join(root_dir, 'KITTI', 'object', 'testing' if is_test else 'training')
|
||||||
|
|
||||||
|
split_dir = os.path.join(root_dir, 'KITTI', 'ImageSets', split + '.txt')
|
||||||
|
self.image_idx_list = [x.strip() for x in open(split_dir).readlines()]
|
||||||
|
self.sample_id_list = [int(sample_id) for sample_id in self.image_idx_list]
|
||||||
|
self.num_sample = self.image_idx_list.__len__()
|
||||||
|
|
||||||
|
self.npoints = 16384
|
||||||
|
|
||||||
|
self.image_dir = os.path.join(self.imageset_dir, 'image_2')
|
||||||
|
self.lidar_dir = os.path.join(self.imageset_dir, 'velodyne')
|
||||||
|
self.calib_dir = os.path.join(self.imageset_dir, 'calib')
|
||||||
|
self.label_dir = os.path.join(self.imageset_dir, 'label_2')
|
||||||
|
self.plane_dir = os.path.join(self.imageset_dir, 'planes')
|
||||||
|
|
||||||
|
def get_image(self, idx):
|
||||||
|
img_file = os.path.join(self.image_dir, '%06d.png' % idx)
|
||||||
|
assert os.path.exists(img_file)
|
||||||
|
return cv2.imread(img_file) # (H, W, 3) BGR mode
|
||||||
|
|
||||||
|
def get_image_shape(self, idx):
|
||||||
|
img_file = os.path.join(self.image_dir, '%06d.png' % idx)
|
||||||
|
assert os.path.exists(img_file)
|
||||||
|
im = Image.open(img_file)
|
||||||
|
width, height = im.size
|
||||||
|
return height, width, 3
|
||||||
|
|
||||||
|
def get_lidar(self, idx):
|
||||||
|
lidar_file = os.path.join(self.lidar_dir, '%06d.bin' % idx)
|
||||||
|
assert os.path.exists(lidar_file)
|
||||||
|
return np.fromfile(lidar_file, dtype=np.float32).reshape(-1, 4)
|
||||||
|
|
||||||
|
def get_calib(self, idx):
|
||||||
|
calib_file = os.path.join(self.calib_dir, '%06d.txt' % idx)
|
||||||
|
assert os.path.exists(calib_file)
|
||||||
|
return kitti_utils.Calibration(calib_file)
|
||||||
|
|
||||||
|
def get_label(self, idx):
|
||||||
|
label_file = os.path.join(self.label_dir, '%06d.txt' % idx)
|
||||||
|
assert os.path.exists(label_file)
|
||||||
|
return kitti_utils.get_objects_from_label(label_file)
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def get_valid_flag(pts_rect, pts_img, pts_rect_depth, img_shape):
|
||||||
|
val_flag_1 = np.logical_and(pts_img[:, 0] >= 0, pts_img[:, 0] < img_shape[1])
|
||||||
|
val_flag_2 = np.logical_and(pts_img[:, 1] >= 0, pts_img[:, 1] < img_shape[0])
|
||||||
|
val_flag_merge = np.logical_and(val_flag_1, val_flag_2)
|
||||||
|
pts_valid_flag = np.logical_and(val_flag_merge, pts_rect_depth >= 0)
|
||||||
|
return pts_valid_flag
|
||||||
|
|
||||||
|
def filtrate_objects(self, obj_list):
|
||||||
|
type_whitelist = self.classes
|
||||||
|
if self.mode == 'TRAIN':
|
||||||
|
type_whitelist = list(self.classes)
|
||||||
|
if 'Car' in self.classes:
|
||||||
|
type_whitelist.append('Van')
|
||||||
|
|
||||||
|
valid_obj_list = []
|
||||||
|
for obj in obj_list:
|
||||||
|
if obj.cls_type not in type_whitelist:
|
||||||
|
continue
|
||||||
|
|
||||||
|
valid_obj_list.append(obj)
|
||||||
|
return valid_obj_list
|
||||||
|
|
||||||
|
def __len__(self):
|
||||||
|
return len(self.sample_id_list)
|
||||||
|
|
||||||
|
def __getitem__(self, index):
|
||||||
|
sample_id = int(self.sample_id_list[index])
|
||||||
|
calib = self.get_calib(sample_id)
|
||||||
|
img_shape = self.get_image_shape(sample_id)
|
||||||
|
pts_lidar = self.get_lidar(sample_id)
|
||||||
|
|
||||||
|
# get valid point (projected points should be in image)
|
||||||
|
pts_rect = calib.lidar_to_rect(pts_lidar[:, 0:3])
|
||||||
|
pts_intensity = pts_lidar[:, 3]
|
||||||
|
|
||||||
|
pts_img, pts_rect_depth = calib.rect_to_img(pts_rect)
|
||||||
|
pts_valid_flag = self.get_valid_flag(pts_rect, pts_img, pts_rect_depth, img_shape)
|
||||||
|
|
||||||
|
pts_rect = pts_rect[pts_valid_flag][:, 0:3]
|
||||||
|
pts_intensity = pts_intensity[pts_valid_flag]
|
||||||
|
|
||||||
|
if self.npoints < len(pts_rect):
|
||||||
|
pts_depth = pts_rect[:, 2]
|
||||||
|
pts_near_flag = pts_depth < 40.0
|
||||||
|
far_idxs_choice = np.where(pts_near_flag == 0)[0]
|
||||||
|
near_idxs = np.where(pts_near_flag == 1)[0]
|
||||||
|
near_idxs_choice = np.random.choice(near_idxs, self.npoints - len(far_idxs_choice), replace=False)
|
||||||
|
|
||||||
|
choice = np.concatenate((near_idxs_choice, far_idxs_choice), axis=0) \
|
||||||
|
if len(far_idxs_choice) > 0 else near_idxs_choice
|
||||||
|
np.random.shuffle(choice)
|
||||||
|
else:
|
||||||
|
choice = np.arange(0, len(pts_rect), dtype=np.int32)
|
||||||
|
if self.npoints > len(pts_rect):
|
||||||
|
extra_choice = np.random.choice(choice, self.npoints - len(pts_rect), replace=False)
|
||||||
|
choice = np.concatenate((choice, extra_choice), axis=0)
|
||||||
|
np.random.shuffle(choice)
|
||||||
|
|
||||||
|
ret_pts_rect = pts_rect[choice, :]
|
||||||
|
ret_pts_intensity = pts_intensity[choice] - 0.5 # translate intensity to [-0.5, 0.5]
|
||||||
|
|
||||||
|
pts_features = [ret_pts_intensity.reshape(-1, 1)]
|
||||||
|
ret_pts_features = np.concatenate(pts_features, axis=1) if pts_features.__len__() > 1 else pts_features[0]
|
||||||
|
|
||||||
|
sample_info = {'sample_id': sample_id}
|
||||||
|
|
||||||
|
if self.mode == 'TEST':
|
||||||
|
if USE_INTENSITY:
|
||||||
|
pts_input = np.concatenate((ret_pts_rect, ret_pts_features), axis=1) # (N, C)
|
||||||
|
else:
|
||||||
|
pts_input = ret_pts_rect
|
||||||
|
sample_info['pts_input'] = pts_input
|
||||||
|
sample_info['pts_rect'] = ret_pts_rect
|
||||||
|
sample_info['pts_features'] = ret_pts_features
|
||||||
|
return sample_info
|
||||||
|
|
||||||
|
gt_obj_list = self.filtrate_objects(self.get_label(sample_id))
|
||||||
|
|
||||||
|
gt_boxes3d = kitti_utils.objs_to_boxes3d(gt_obj_list)
|
||||||
|
|
||||||
|
# prepare input
|
||||||
|
if USE_INTENSITY:
|
||||||
|
pts_input = np.concatenate((ret_pts_rect, ret_pts_features), axis=1) # (N, C)
|
||||||
|
else:
|
||||||
|
pts_input = ret_pts_rect
|
||||||
|
|
||||||
|
# generate training labels
|
||||||
|
cls_labels = self.generate_training_labels(ret_pts_rect, gt_boxes3d)
|
||||||
|
sample_info['pts_input'] = pts_input
|
||||||
|
sample_info['pts_rect'] = ret_pts_rect
|
||||||
|
sample_info['cls_labels'] = cls_labels
|
||||||
|
return sample_info
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def generate_training_labels(pts_rect, gt_boxes3d):
|
||||||
|
cls_label = np.zeros((pts_rect.shape[0]), dtype=np.int32)
|
||||||
|
gt_corners = kitti_utils.boxes3d_to_corners3d(gt_boxes3d, rotate=True)
|
||||||
|
extend_gt_boxes3d = kitti_utils.enlarge_box3d(gt_boxes3d, extra_width=0.2)
|
||||||
|
extend_gt_corners = kitti_utils.boxes3d_to_corners3d(extend_gt_boxes3d, rotate=True)
|
||||||
|
for k in range(gt_boxes3d.shape[0]):
|
||||||
|
box_corners = gt_corners[k]
|
||||||
|
fg_pt_flag = kitti_utils.in_hull(pts_rect, box_corners)
|
||||||
|
cls_label[fg_pt_flag] = 1
|
||||||
|
|
||||||
|
# enlarge the bbox3d, ignore nearby points
|
||||||
|
extend_box_corners = extend_gt_corners[k]
|
||||||
|
fg_enlarge_flag = kitti_utils.in_hull(pts_rect, extend_box_corners)
|
||||||
|
ignore_flag = np.logical_xor(fg_pt_flag, fg_enlarge_flag)
|
||||||
|
cls_label[ignore_flag] = -1
|
||||||
|
|
||||||
|
return cls_label
|
||||||
|
|
||||||
|
def collate_batch(self, batch):
|
||||||
|
batch_size = batch.__len__()
|
||||||
|
ans_dict = {}
|
||||||
|
|
||||||
|
for key in batch[0].keys():
|
||||||
|
if isinstance(batch[0][key], np.ndarray):
|
||||||
|
ans_dict[key] = np.concatenate([batch[k][key][np.newaxis, ...] for k in range(batch_size)], axis=0)
|
||||||
|
|
||||||
|
else:
|
||||||
|
ans_dict[key] = [batch[k][key] for k in range(batch_size)]
|
||||||
|
if isinstance(batch[0][key], int):
|
||||||
|
ans_dict[key] = np.array(ans_dict[key], dtype=np.int32)
|
||||||
|
elif isinstance(batch[0][key], float):
|
||||||
|
ans_dict[key] = np.array(ans_dict[key], dtype=np.float32)
|
||||||
|
|
||||||
|
return ans_dict
|
229
modules/module_lib/pointnet2_utils/tools/kitti_utils.py
Normal file
229
modules/module_lib/pointnet2_utils/tools/kitti_utils.py
Normal file
@ -0,0 +1,229 @@
|
|||||||
|
import numpy as np
|
||||||
|
from scipy.spatial import Delaunay
|
||||||
|
import scipy
|
||||||
|
|
||||||
|
|
||||||
|
def cls_type_to_id(cls_type):
|
||||||
|
type_to_id = {'Car': 1, 'Pedestrian': 2, 'Cyclist': 3, 'Van': 4}
|
||||||
|
if cls_type not in type_to_id.keys():
|
||||||
|
return -1
|
||||||
|
return type_to_id[cls_type]
|
||||||
|
|
||||||
|
|
||||||
|
class Object3d(object):
|
||||||
|
def __init__(self, line):
|
||||||
|
label = line.strip().split(' ')
|
||||||
|
self.src = line
|
||||||
|
self.cls_type = label[0]
|
||||||
|
self.cls_id = cls_type_to_id(self.cls_type)
|
||||||
|
self.trucation = float(label[1])
|
||||||
|
self.occlusion = float(label[2]) # 0:fully visible 1:partly occluded 2:largely occluded 3:unknown
|
||||||
|
self.alpha = float(label[3])
|
||||||
|
self.box2d = np.array((float(label[4]), float(label[5]), float(label[6]), float(label[7])), dtype=np.float32)
|
||||||
|
self.h = float(label[8])
|
||||||
|
self.w = float(label[9])
|
||||||
|
self.l = float(label[10])
|
||||||
|
self.pos = np.array((float(label[11]), float(label[12]), float(label[13])), dtype=np.float32)
|
||||||
|
self.dis_to_cam = np.linalg.norm(self.pos)
|
||||||
|
self.ry = float(label[14])
|
||||||
|
self.score = float(label[15]) if label.__len__() == 16 else -1.0
|
||||||
|
self.level_str = None
|
||||||
|
self.level = self.get_obj_level()
|
||||||
|
|
||||||
|
def get_obj_level(self):
|
||||||
|
height = float(self.box2d[3]) - float(self.box2d[1]) + 1
|
||||||
|
|
||||||
|
if height >= 40 and self.trucation <= 0.15 and self.occlusion <= 0:
|
||||||
|
self.level_str = 'Easy'
|
||||||
|
return 1 # Easy
|
||||||
|
elif height >= 25 and self.trucation <= 0.3 and self.occlusion <= 1:
|
||||||
|
self.level_str = 'Moderate'
|
||||||
|
return 2 # Moderate
|
||||||
|
elif height >= 25 and self.trucation <= 0.5 and self.occlusion <= 2:
|
||||||
|
self.level_str = 'Hard'
|
||||||
|
return 3 # Hard
|
||||||
|
else:
|
||||||
|
self.level_str = 'UnKnown'
|
||||||
|
return 4
|
||||||
|
|
||||||
|
def generate_corners3d(self):
|
||||||
|
"""
|
||||||
|
generate corners3d representation for this object
|
||||||
|
:return corners_3d: (8, 3) corners of box3d in camera coord
|
||||||
|
"""
|
||||||
|
l, h, w = self.l, self.h, self.w
|
||||||
|
x_corners = [l / 2, l / 2, -l / 2, -l / 2, l / 2, l / 2, -l / 2, -l / 2]
|
||||||
|
y_corners = [0, 0, 0, 0, -h, -h, -h, -h]
|
||||||
|
z_corners = [w / 2, -w / 2, -w / 2, w / 2, w / 2, -w / 2, -w / 2, w / 2]
|
||||||
|
|
||||||
|
R = np.array([[np.cos(self.ry), 0, np.sin(self.ry)],
|
||||||
|
[0, 1, 0],
|
||||||
|
[-np.sin(self.ry), 0, np.cos(self.ry)]])
|
||||||
|
corners3d = np.vstack([x_corners, y_corners, z_corners]) # (3, 8)
|
||||||
|
corners3d = np.dot(R, corners3d).T
|
||||||
|
corners3d = corners3d + self.pos
|
||||||
|
return corners3d
|
||||||
|
|
||||||
|
def to_str(self):
|
||||||
|
print_str = '%s %.3f %.3f %.3f box2d: %s hwl: [%.3f %.3f %.3f] pos: %s ry: %.3f' \
|
||||||
|
% (self.cls_type, self.trucation, self.occlusion, self.alpha, self.box2d, self.h, self.w, self.l,
|
||||||
|
self.pos, self.ry)
|
||||||
|
return print_str
|
||||||
|
|
||||||
|
def to_kitti_format(self):
|
||||||
|
kitti_str = '%s %.2f %d %.2f %.2f %.2f %.2f %.2f %.2f %.2f %.2f %.2f %.2f %.2f %.2f' \
|
||||||
|
% (self.cls_type, self.trucation, int(self.occlusion), self.alpha, self.box2d[0], self.box2d[1],
|
||||||
|
self.box2d[2], self.box2d[3], self.h, self.w, self.l, self.pos[0], self.pos[1], self.pos[2],
|
||||||
|
self.ry)
|
||||||
|
return kitti_str
|
||||||
|
|
||||||
|
|
||||||
|
def get_calib_from_file(calib_file):
|
||||||
|
with open(calib_file) as f:
|
||||||
|
lines = f.readlines()
|
||||||
|
|
||||||
|
obj = lines[2].strip().split(' ')[1:]
|
||||||
|
P2 = np.array(obj, dtype=np.float32)
|
||||||
|
obj = lines[3].strip().split(' ')[1:]
|
||||||
|
P3 = np.array(obj, dtype=np.float32)
|
||||||
|
obj = lines[4].strip().split(' ')[1:]
|
||||||
|
R0 = np.array(obj, dtype=np.float32)
|
||||||
|
obj = lines[5].strip().split(' ')[1:]
|
||||||
|
Tr_velo_to_cam = np.array(obj, dtype=np.float32)
|
||||||
|
|
||||||
|
return {'P2': P2.reshape(3, 4),
|
||||||
|
'P3': P3.reshape(3, 4),
|
||||||
|
'R0': R0.reshape(3, 3),
|
||||||
|
'Tr_velo2cam': Tr_velo_to_cam.reshape(3, 4)}
|
||||||
|
|
||||||
|
|
||||||
|
class Calibration(object):
|
||||||
|
def __init__(self, calib_file):
|
||||||
|
if isinstance(calib_file, str):
|
||||||
|
calib = get_calib_from_file(calib_file)
|
||||||
|
else:
|
||||||
|
calib = calib_file
|
||||||
|
|
||||||
|
self.P2 = calib['P2'] # 3 x 4
|
||||||
|
self.R0 = calib['R0'] # 3 x 3
|
||||||
|
self.V2C = calib['Tr_velo2cam'] # 3 x 4
|
||||||
|
|
||||||
|
def cart_to_hom(self, pts):
|
||||||
|
"""
|
||||||
|
:param pts: (N, 3 or 2)
|
||||||
|
:return pts_hom: (N, 4 or 3)
|
||||||
|
"""
|
||||||
|
pts_hom = np.hstack((pts, np.ones((pts.shape[0], 1), dtype=np.float32)))
|
||||||
|
return pts_hom
|
||||||
|
|
||||||
|
def lidar_to_rect(self, pts_lidar):
|
||||||
|
"""
|
||||||
|
:param pts_lidar: (N, 3)
|
||||||
|
:return pts_rect: (N, 3)
|
||||||
|
"""
|
||||||
|
pts_lidar_hom = self.cart_to_hom(pts_lidar)
|
||||||
|
pts_rect = np.dot(pts_lidar_hom, np.dot(self.V2C.T, self.R0.T))
|
||||||
|
return pts_rect
|
||||||
|
|
||||||
|
def rect_to_img(self, pts_rect):
|
||||||
|
"""
|
||||||
|
:param pts_rect: (N, 3)
|
||||||
|
:return pts_img: (N, 2)
|
||||||
|
"""
|
||||||
|
pts_rect_hom = self.cart_to_hom(pts_rect)
|
||||||
|
pts_2d_hom = np.dot(pts_rect_hom, self.P2.T)
|
||||||
|
pts_img = (pts_2d_hom[:, 0:2].T / pts_rect_hom[:, 2]).T # (N, 2)
|
||||||
|
pts_rect_depth = pts_2d_hom[:, 2] - self.P2.T[3, 2] # depth in rect camera coord
|
||||||
|
return pts_img, pts_rect_depth
|
||||||
|
|
||||||
|
def lidar_to_img(self, pts_lidar):
|
||||||
|
"""
|
||||||
|
:param pts_lidar: (N, 3)
|
||||||
|
:return pts_img: (N, 2)
|
||||||
|
"""
|
||||||
|
pts_rect = self.lidar_to_rect(pts_lidar)
|
||||||
|
pts_img, pts_depth = self.rect_to_img(pts_rect)
|
||||||
|
return pts_img, pts_depth
|
||||||
|
|
||||||
|
|
||||||
|
def get_objects_from_label(label_file):
|
||||||
|
with open(label_file, 'r') as f:
|
||||||
|
lines = f.readlines()
|
||||||
|
objects = [Object3d(line) for line in lines]
|
||||||
|
return objects
|
||||||
|
|
||||||
|
|
||||||
|
def objs_to_boxes3d(obj_list):
|
||||||
|
boxes3d = np.zeros((obj_list.__len__(), 7), dtype=np.float32)
|
||||||
|
for k, obj in enumerate(obj_list):
|
||||||
|
boxes3d[k, 0:3], boxes3d[k, 3], boxes3d[k, 4], boxes3d[k, 5], boxes3d[k, 6] \
|
||||||
|
= obj.pos, obj.h, obj.w, obj.l, obj.ry
|
||||||
|
return boxes3d
|
||||||
|
|
||||||
|
|
||||||
|
def boxes3d_to_corners3d(boxes3d, rotate=True):
|
||||||
|
"""
|
||||||
|
:param boxes3d: (N, 7) [x, y, z, h, w, l, ry]
|
||||||
|
:param rotate:
|
||||||
|
:return: corners3d: (N, 8, 3)
|
||||||
|
"""
|
||||||
|
boxes_num = boxes3d.shape[0]
|
||||||
|
h, w, l = boxes3d[:, 3], boxes3d[:, 4], boxes3d[:, 5]
|
||||||
|
x_corners = np.array([l / 2., l / 2., -l / 2., -l / 2., l / 2., l / 2., -l / 2., -l / 2.], dtype=np.float32).T # (N, 8)
|
||||||
|
z_corners = np.array([w / 2., -w / 2., -w / 2., w / 2., w / 2., -w / 2., -w / 2., w / 2.], dtype=np.float32).T # (N, 8)
|
||||||
|
|
||||||
|
y_corners = np.zeros((boxes_num, 8), dtype=np.float32)
|
||||||
|
y_corners[:, 4:8] = -h.reshape(boxes_num, 1).repeat(4, axis=1) # (N, 8)
|
||||||
|
|
||||||
|
if rotate:
|
||||||
|
ry = boxes3d[:, 6]
|
||||||
|
zeros, ones = np.zeros(ry.size, dtype=np.float32), np.ones(ry.size, dtype=np.float32)
|
||||||
|
rot_list = np.array([[np.cos(ry), zeros, -np.sin(ry)],
|
||||||
|
[zeros, ones, zeros],
|
||||||
|
[np.sin(ry), zeros, np.cos(ry)]]) # (3, 3, N)
|
||||||
|
R_list = np.transpose(rot_list, (2, 0, 1)) # (N, 3, 3)
|
||||||
|
|
||||||
|
temp_corners = np.concatenate((x_corners.reshape(-1, 8, 1), y_corners.reshape(-1, 8, 1),
|
||||||
|
z_corners.reshape(-1, 8, 1)), axis=2) # (N, 8, 3)
|
||||||
|
rotated_corners = np.matmul(temp_corners, R_list) # (N, 8, 3)
|
||||||
|
x_corners, y_corners, z_corners = rotated_corners[:, :, 0], rotated_corners[:, :, 1], rotated_corners[:, :, 2]
|
||||||
|
|
||||||
|
x_loc, y_loc, z_loc = boxes3d[:, 0], boxes3d[:, 1], boxes3d[:, 2]
|
||||||
|
|
||||||
|
x = x_loc.reshape(-1, 1) + x_corners.reshape(-1, 8)
|
||||||
|
y = y_loc.reshape(-1, 1) + y_corners.reshape(-1, 8)
|
||||||
|
z = z_loc.reshape(-1, 1) + z_corners.reshape(-1, 8)
|
||||||
|
|
||||||
|
corners = np.concatenate((x.reshape(-1, 8, 1), y.reshape(-1, 8, 1), z.reshape(-1, 8, 1)), axis=2)
|
||||||
|
|
||||||
|
return corners.astype(np.float32)
|
||||||
|
|
||||||
|
|
||||||
|
def enlarge_box3d(boxes3d, extra_width):
|
||||||
|
"""
|
||||||
|
:param boxes3d: (N, 7) [x, y, z, h, w, l, ry]
|
||||||
|
"""
|
||||||
|
if isinstance(boxes3d, np.ndarray):
|
||||||
|
large_boxes3d = boxes3d.copy()
|
||||||
|
else:
|
||||||
|
large_boxes3d = boxes3d.clone()
|
||||||
|
large_boxes3d[:, 3:6] += extra_width * 2
|
||||||
|
large_boxes3d[:, 1] += extra_width
|
||||||
|
return large_boxes3d
|
||||||
|
|
||||||
|
|
||||||
|
def in_hull(p, hull):
|
||||||
|
"""
|
||||||
|
:param p: (N, K) test points
|
||||||
|
:param hull: (M, K) M corners of a box
|
||||||
|
:return (N) bool
|
||||||
|
"""
|
||||||
|
try:
|
||||||
|
if not isinstance(hull, Delaunay):
|
||||||
|
hull = Delaunay(hull)
|
||||||
|
flag = hull.find_simplex(p) >= 0
|
||||||
|
except scipy.spatial.qhull.QhullError:
|
||||||
|
print('Warning: not a hull %s' % str(hull))
|
||||||
|
flag = np.zeros(p.shape[0], dtype=np.bool)
|
||||||
|
|
||||||
|
return flag
|
102
modules/module_lib/pointnet2_utils/tools/pointnet2_msg.py
Normal file
102
modules/module_lib/pointnet2_utils/tools/pointnet2_msg.py
Normal file
@ -0,0 +1,102 @@
|
|||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
import sys
|
||||||
|
sys.path.append('..')
|
||||||
|
from pointnet2.pointnet2_modules import PointnetFPModule, PointnetSAModuleMSG
|
||||||
|
import pointnet2.pytorch_utils as pt_utils
|
||||||
|
|
||||||
|
|
||||||
|
def get_model(input_channels=0):
|
||||||
|
return Pointnet2MSG(input_channels=input_channels)
|
||||||
|
|
||||||
|
|
||||||
|
NPOINTS = [4096, 1024, 256, 64]
|
||||||
|
RADIUS = [[0.1, 0.5], [0.5, 1.0], [1.0, 2.0], [2.0, 4.0]]
|
||||||
|
NSAMPLE = [[16, 32], [16, 32], [16, 32], [16, 32]]
|
||||||
|
MLPS = [[[16, 16, 32], [32, 32, 64]], [[64, 64, 128], [64, 96, 128]],
|
||||||
|
[[128, 196, 256], [128, 196, 256]], [[256, 256, 512], [256, 384, 512]]]
|
||||||
|
FP_MLPS = [[128, 128], [256, 256], [512, 512], [512, 512]]
|
||||||
|
CLS_FC = [128]
|
||||||
|
DP_RATIO = 0.5
|
||||||
|
|
||||||
|
|
||||||
|
class Pointnet2MSG(nn.Module):
|
||||||
|
def __init__(self, input_channels=6):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
self.SA_modules = nn.ModuleList()
|
||||||
|
channel_in = input_channels
|
||||||
|
|
||||||
|
skip_channel_list = [input_channels]
|
||||||
|
for k in range(NPOINTS.__len__()):
|
||||||
|
mlps = MLPS[k].copy()
|
||||||
|
channel_out = 0
|
||||||
|
for idx in range(mlps.__len__()):
|
||||||
|
mlps[idx] = [channel_in] + mlps[idx]
|
||||||
|
channel_out += mlps[idx][-1]
|
||||||
|
|
||||||
|
self.SA_modules.append(
|
||||||
|
PointnetSAModuleMSG(
|
||||||
|
npoint=NPOINTS[k],
|
||||||
|
radii=RADIUS[k],
|
||||||
|
nsamples=NSAMPLE[k],
|
||||||
|
mlps=mlps,
|
||||||
|
use_xyz=True,
|
||||||
|
bn=True
|
||||||
|
)
|
||||||
|
)
|
||||||
|
skip_channel_list.append(channel_out)
|
||||||
|
channel_in = channel_out
|
||||||
|
|
||||||
|
self.FP_modules = nn.ModuleList()
|
||||||
|
|
||||||
|
for k in range(FP_MLPS.__len__()):
|
||||||
|
pre_channel = FP_MLPS[k + 1][-1] if k + 1 < len(FP_MLPS) else channel_out
|
||||||
|
self.FP_modules.append(
|
||||||
|
PointnetFPModule(mlp=[pre_channel + skip_channel_list[k]] + FP_MLPS[k])
|
||||||
|
)
|
||||||
|
|
||||||
|
cls_layers = []
|
||||||
|
pre_channel = FP_MLPS[0][-1]
|
||||||
|
for k in range(0, CLS_FC.__len__()):
|
||||||
|
cls_layers.append(pt_utils.Conv1d(pre_channel, CLS_FC[k], bn=True))
|
||||||
|
pre_channel = CLS_FC[k]
|
||||||
|
cls_layers.append(pt_utils.Conv1d(pre_channel, 1, activation=None))
|
||||||
|
cls_layers.insert(1, nn.Dropout(0.5))
|
||||||
|
self.cls_layer = nn.Sequential(*cls_layers)
|
||||||
|
|
||||||
|
def _break_up_pc(self, pc):
|
||||||
|
xyz = pc[..., 0:3].contiguous()
|
||||||
|
features = (
|
||||||
|
pc[..., 3:].transpose(1, 2).contiguous()
|
||||||
|
if pc.size(-1) > 3 else None
|
||||||
|
)
|
||||||
|
|
||||||
|
return xyz, features
|
||||||
|
|
||||||
|
def forward(self, pointcloud: torch.cuda.FloatTensor):
|
||||||
|
xyz, features = self._break_up_pc(pointcloud)
|
||||||
|
|
||||||
|
l_xyz, l_features = [xyz], [features]
|
||||||
|
for i in range(len(self.SA_modules)):
|
||||||
|
li_xyz, li_features = self.SA_modules[i](l_xyz[i], l_features[i])
|
||||||
|
|
||||||
|
print(li_xyz.shape, li_features.shape)
|
||||||
|
|
||||||
|
l_xyz.append(li_xyz)
|
||||||
|
l_features.append(li_features)
|
||||||
|
|
||||||
|
for i in range(-1, -(len(self.FP_modules) + 1), -1):
|
||||||
|
l_features[i - 1] = self.FP_modules[i](
|
||||||
|
l_xyz[i - 1], l_xyz[i], l_features[i - 1], l_features[i]
|
||||||
|
)
|
||||||
|
|
||||||
|
pred_cls = self.cls_layer(l_features[0]).transpose(1, 2).contiguous() # (B, N, 1)
|
||||||
|
return pred_cls
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
net = Pointnet2MSG(0).cuda()
|
||||||
|
pts = torch.randn(2, 1024, 3).cuda()
|
||||||
|
|
||||||
|
pre = net(pts)
|
||||||
|
print(pre.shape)
|
217
modules/module_lib/pointnet2_utils/tools/train_and_eval.py
Normal file
217
modules/module_lib/pointnet2_utils/tools/train_and_eval.py
Normal file
@ -0,0 +1,217 @@
|
|||||||
|
import _init_path
|
||||||
|
import numpy as np
|
||||||
|
import os
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
import torch.optim as optim
|
||||||
|
import torch.optim.lr_scheduler as lr_sched
|
||||||
|
from torch.nn.utils import clip_grad_norm_
|
||||||
|
from torch.utils.data import DataLoader
|
||||||
|
import tensorboard_logger as tb_log
|
||||||
|
from dataset import KittiDataset
|
||||||
|
import argparse
|
||||||
|
import importlib
|
||||||
|
|
||||||
|
parser = argparse.ArgumentParser(description="Arg parser")
|
||||||
|
parser.add_argument("--batch_size", type=int, default=8)
|
||||||
|
parser.add_argument("--epochs", type=int, default=100)
|
||||||
|
parser.add_argument("--ckpt_save_interval", type=int, default=5)
|
||||||
|
parser.add_argument('--workers', type=int, default=4)
|
||||||
|
parser.add_argument("--mode", type=str, default='train')
|
||||||
|
parser.add_argument("--ckpt", type=str, default='None')
|
||||||
|
|
||||||
|
parser.add_argument("--net", type=str, default='pointnet2_msg')
|
||||||
|
|
||||||
|
parser.add_argument('--lr', type=float, default=0.002)
|
||||||
|
parser.add_argument('--lr_decay', type=float, default=0.2)
|
||||||
|
parser.add_argument('--lr_clip', type=float, default=0.000001)
|
||||||
|
parser.add_argument('--decay_step_list', type=list, default=[50, 70, 80, 90])
|
||||||
|
parser.add_argument('--weight_decay', type=float, default=0.001)
|
||||||
|
|
||||||
|
parser.add_argument("--output_dir", type=str, default='output')
|
||||||
|
parser.add_argument("--extra_tag", type=str, default='default')
|
||||||
|
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
FG_THRESH = 0.3
|
||||||
|
|
||||||
|
|
||||||
|
def log_print(info, log_f=None):
|
||||||
|
print(info)
|
||||||
|
if log_f is not None:
|
||||||
|
print(info, file=log_f)
|
||||||
|
|
||||||
|
|
||||||
|
class DiceLoss(nn.Module):
|
||||||
|
def __init__(self, ignore_target=-1):
|
||||||
|
super().__init__()
|
||||||
|
self.ignore_target = ignore_target
|
||||||
|
|
||||||
|
def forward(self, input, target):
|
||||||
|
"""
|
||||||
|
:param input: (N), logit
|
||||||
|
:param target: (N), {0, 1}
|
||||||
|
:return:
|
||||||
|
"""
|
||||||
|
input = torch.sigmoid(input.view(-1))
|
||||||
|
target = target.float().view(-1)
|
||||||
|
mask = (target != self.ignore_target).float()
|
||||||
|
return 1.0 - (torch.min(input, target) * mask).sum() / torch.clamp((torch.max(input, target) * mask).sum(), min=1.0)
|
||||||
|
|
||||||
|
|
||||||
|
def train_one_epoch(model, train_loader, optimizer, epoch, lr_scheduler, total_it, tb_log, log_f):
|
||||||
|
model.train()
|
||||||
|
log_print('===============TRAIN EPOCH %d================' % epoch, log_f=log_f)
|
||||||
|
loss_func = DiceLoss(ignore_target=-1)
|
||||||
|
|
||||||
|
for it, batch in enumerate(train_loader):
|
||||||
|
optimizer.zero_grad()
|
||||||
|
|
||||||
|
pts_input, cls_labels = batch['pts_input'], batch['cls_labels']
|
||||||
|
pts_input = torch.from_numpy(pts_input).cuda(non_blocking=True).float()
|
||||||
|
cls_labels = torch.from_numpy(cls_labels).cuda(non_blocking=True).long().view(-1)
|
||||||
|
|
||||||
|
pred_cls = model(pts_input)
|
||||||
|
pred_cls = pred_cls.view(-1)
|
||||||
|
|
||||||
|
loss = loss_func(pred_cls, cls_labels)
|
||||||
|
loss.backward()
|
||||||
|
clip_grad_norm_(model.parameters(), 1.0)
|
||||||
|
optimizer.step()
|
||||||
|
|
||||||
|
total_it += 1
|
||||||
|
|
||||||
|
pred_class = (torch.sigmoid(pred_cls) > FG_THRESH)
|
||||||
|
fg_mask = cls_labels > 0
|
||||||
|
correct = ((pred_class.long() == cls_labels) & fg_mask).float().sum()
|
||||||
|
union = fg_mask.sum().float() + (pred_class > 0).sum().float() - correct
|
||||||
|
iou = correct / torch.clamp(union, min=1.0)
|
||||||
|
|
||||||
|
cur_lr = lr_scheduler.get_lr()[0]
|
||||||
|
tb_log.log_value('learning_rate', cur_lr, epoch)
|
||||||
|
if tb_log is not None:
|
||||||
|
tb_log.log_value('train_loss', loss, total_it)
|
||||||
|
tb_log.log_value('train_fg_iou', iou, total_it)
|
||||||
|
|
||||||
|
log_print('training epoch %d: it=%d/%d, total_it=%d, loss=%.5f, fg_iou=%.3f, lr=%f' %
|
||||||
|
(epoch, it, len(train_loader), total_it, loss.item(), iou.item(), cur_lr), log_f=log_f)
|
||||||
|
|
||||||
|
return total_it
|
||||||
|
|
||||||
|
|
||||||
|
def eval_one_epoch(model, eval_loader, epoch, tb_log=None, log_f=None):
|
||||||
|
model.train()
|
||||||
|
log_print('===============EVAL EPOCH %d================' % epoch, log_f=log_f)
|
||||||
|
|
||||||
|
iou_list = []
|
||||||
|
for it, batch in enumerate(eval_loader):
|
||||||
|
pts_input, cls_labels = batch['pts_input'], batch['cls_labels']
|
||||||
|
pts_input = torch.from_numpy(pts_input).cuda(non_blocking=True).float()
|
||||||
|
cls_labels = torch.from_numpy(cls_labels).cuda(non_blocking=True).long().view(-1)
|
||||||
|
|
||||||
|
pred_cls = model(pts_input)
|
||||||
|
pred_cls = pred_cls.view(-1)
|
||||||
|
|
||||||
|
pred_class = (torch.sigmoid(pred_cls) > FG_THRESH)
|
||||||
|
fg_mask = cls_labels > 0
|
||||||
|
correct = ((pred_class.long() == cls_labels) & fg_mask).float().sum()
|
||||||
|
union = fg_mask.sum().float() + (pred_class > 0).sum().float() - correct
|
||||||
|
iou = correct / torch.clamp(union, min=1.0)
|
||||||
|
|
||||||
|
iou_list.append(iou.item())
|
||||||
|
log_print('EVAL: it=%d/%d, iou=%.3f' % (it, len(eval_loader), iou), log_f=log_f)
|
||||||
|
|
||||||
|
iou_list = np.array(iou_list)
|
||||||
|
avg_iou = iou_list.mean()
|
||||||
|
if tb_log is not None:
|
||||||
|
tb_log.log_value('eval_fg_iou', avg_iou, epoch)
|
||||||
|
|
||||||
|
log_print('\nEpoch %d: Average IoU (samples=%d): %.6f' % (epoch, iou_list.__len__(), avg_iou), log_f=log_f)
|
||||||
|
return avg_iou
|
||||||
|
|
||||||
|
|
||||||
|
def save_checkpoint(model, epoch, ckpt_name):
|
||||||
|
if isinstance(model, torch.nn.DataParallel):
|
||||||
|
model_state = model.module.state_dict()
|
||||||
|
else:
|
||||||
|
model_state = model.state_dict()
|
||||||
|
|
||||||
|
state = {'epoch': epoch, 'model_state': model_state}
|
||||||
|
ckpt_name = '{}.pth'.format(ckpt_name)
|
||||||
|
torch.save(state, ckpt_name)
|
||||||
|
|
||||||
|
|
||||||
|
def load_checkpoint(model, filename):
|
||||||
|
if os.path.isfile(filename):
|
||||||
|
log_print("==> Loading from checkpoint %s" % filename)
|
||||||
|
checkpoint = torch.load(filename)
|
||||||
|
epoch = checkpoint['epoch']
|
||||||
|
model.load_state_dict(checkpoint['model_state'])
|
||||||
|
log_print("==> Done")
|
||||||
|
else:
|
||||||
|
raise FileNotFoundError
|
||||||
|
|
||||||
|
return epoch
|
||||||
|
|
||||||
|
|
||||||
|
def train_and_eval(model, train_loader, eval_loader, tb_log, ckpt_dir, log_f):
|
||||||
|
model.cuda()
|
||||||
|
optimizer = optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
|
||||||
|
|
||||||
|
def lr_lbmd(cur_epoch):
|
||||||
|
cur_decay = 1
|
||||||
|
for decay_step in args.decay_step_list:
|
||||||
|
if cur_epoch >= decay_step:
|
||||||
|
cur_decay = cur_decay * args.lr_decay
|
||||||
|
return max(cur_decay, args.lr_clip / args.lr)
|
||||||
|
|
||||||
|
lr_scheduler = lr_sched.LambdaLR(optimizer, lr_lbmd)
|
||||||
|
|
||||||
|
total_it = 0
|
||||||
|
for epoch in range(1, args.epochs + 1):
|
||||||
|
lr_scheduler.step(epoch)
|
||||||
|
total_it = train_one_epoch(model, train_loader, optimizer, epoch, lr_scheduler, total_it, tb_log, log_f)
|
||||||
|
|
||||||
|
if epoch % args.ckpt_save_interval == 0:
|
||||||
|
with torch.no_grad():
|
||||||
|
avg_iou = eval_one_epoch(model, eval_loader, epoch, tb_log, log_f)
|
||||||
|
ckpt_name = os.path.join(ckpt_dir, 'checkpoint_epoch_%d' % epoch)
|
||||||
|
save_checkpoint(model, epoch, ckpt_name)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
MODEL = importlib.import_module(args.net) # import network module
|
||||||
|
model = MODEL.get_model(input_channels=0)
|
||||||
|
|
||||||
|
eval_set = KittiDataset(root_dir='./data', mode='EVAL', split='val')
|
||||||
|
eval_loader = DataLoader(eval_set, batch_size=args.batch_size, shuffle=False, pin_memory=True,
|
||||||
|
num_workers=args.workers, collate_fn=eval_set.collate_batch)
|
||||||
|
|
||||||
|
if args.mode == 'train':
|
||||||
|
train_set = KittiDataset(root_dir='./data', mode='TRAIN', split='train')
|
||||||
|
train_loader = DataLoader(train_set, batch_size=args.batch_size, shuffle=True, pin_memory=True,
|
||||||
|
num_workers=args.workers, collate_fn=train_set.collate_batch)
|
||||||
|
# output dir config
|
||||||
|
output_dir = os.path.join(args.output_dir, args.extra_tag)
|
||||||
|
os.makedirs(output_dir, exist_ok=True)
|
||||||
|
tb_log.configure(os.path.join(output_dir, 'tensorboard'))
|
||||||
|
ckpt_dir = os.path.join(output_dir, 'ckpt')
|
||||||
|
os.makedirs(ckpt_dir, exist_ok=True)
|
||||||
|
|
||||||
|
log_file = os.path.join(output_dir, 'log.txt')
|
||||||
|
log_f = open(log_file, 'w')
|
||||||
|
|
||||||
|
for key, val in vars(args).items():
|
||||||
|
log_print("{:16} {}".format(key, val), log_f=log_f)
|
||||||
|
|
||||||
|
# train and eval
|
||||||
|
train_and_eval(model, train_loader, eval_loader, tb_log, ckpt_dir, log_f)
|
||||||
|
log_f.close()
|
||||||
|
elif args.mode == 'eval':
|
||||||
|
epoch = load_checkpoint(model, args.ckpt)
|
||||||
|
model.cuda()
|
||||||
|
with torch.no_grad():
|
||||||
|
avg_iou = eval_one_epoch(model, eval_loader, epoch)
|
||||||
|
else:
|
||||||
|
raise NotImplementedError
|
||||||
|
|
119
modules/pointnet++_encoder.py
Normal file
119
modules/pointnet++_encoder.py
Normal file
@ -0,0 +1,119 @@
|
|||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
import os
|
||||||
|
import sys
|
||||||
|
path = os.path.abspath(__file__)
|
||||||
|
for i in range(2):
|
||||||
|
path = os.path.dirname(path)
|
||||||
|
PROJECT_ROOT = path
|
||||||
|
sys.path.append(PROJECT_ROOT)
|
||||||
|
from modules.module_lib.pointnet2_utils.pointnet2.pointnet2_modules import PointnetSAModuleMSG
|
||||||
|
|
||||||
|
ClsMSG_CFG_Dense = {
|
||||||
|
'NPOINTS': [512, 256, 128, None],
|
||||||
|
'RADIUS': [[0.02, 0.04], [0.04, 0.08], [0.08, 0.16], [None, None]],
|
||||||
|
'NSAMPLE': [[32, 64], [16, 32], [8, 16], [None, None]],
|
||||||
|
'MLPS': [[[16, 16, 32], [32, 32, 64]],
|
||||||
|
[[64, 64, 128], [64, 96, 128]],
|
||||||
|
[[128, 196, 256], [128, 196, 256]],
|
||||||
|
[[256, 256, 512], [256, 384, 512]]],
|
||||||
|
'DP_RATIO': 0.5,
|
||||||
|
}
|
||||||
|
|
||||||
|
ClsMSG_CFG_Light = {
|
||||||
|
'NPOINTS': [512, 256, 128, None],
|
||||||
|
'RADIUS': [[0.02, 0.04], [0.04, 0.08], [0.08, 0.16], [None, None]],
|
||||||
|
'NSAMPLE': [[16, 32], [16, 32], [16, 32], [None, None]],
|
||||||
|
'MLPS': [[[16, 16, 32], [32, 32, 64]],
|
||||||
|
[[64, 64, 128], [64, 96, 128]],
|
||||||
|
[[128, 196, 256], [128, 196, 256]],
|
||||||
|
[[256, 256, 512], [256, 384, 512]]],
|
||||||
|
'DP_RATIO': 0.5,
|
||||||
|
}
|
||||||
|
|
||||||
|
ClsMSG_CFG_Lighter = {
|
||||||
|
'NPOINTS': [512, 256, 128, 64, None],
|
||||||
|
'RADIUS': [[0.01], [0.02], [0.04], [0.08], [None]],
|
||||||
|
'NSAMPLE': [[64], [32], [16], [8], [None]],
|
||||||
|
'MLPS': [[[32, 32, 64]],
|
||||||
|
[[64, 64, 128]],
|
||||||
|
[[128, 196, 256]],
|
||||||
|
[[256, 256, 512]],
|
||||||
|
[[512, 512, 1024]]],
|
||||||
|
'DP_RATIO': 0.5,
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
def select_params(name):
|
||||||
|
if name == 'light':
|
||||||
|
return ClsMSG_CFG_Light
|
||||||
|
elif name == 'lighter':
|
||||||
|
return ClsMSG_CFG_Lighter
|
||||||
|
elif name == 'dense':
|
||||||
|
return ClsMSG_CFG_Dense
|
||||||
|
else:
|
||||||
|
raise NotImplementedError
|
||||||
|
|
||||||
|
|
||||||
|
def break_up_pc(pc):
|
||||||
|
xyz = pc[..., 0:3].contiguous()
|
||||||
|
features = (
|
||||||
|
pc[..., 3:].transpose(1, 2).contiguous()
|
||||||
|
if pc.size(-1) > 3 else None
|
||||||
|
)
|
||||||
|
|
||||||
|
return xyz, features
|
||||||
|
|
||||||
|
|
||||||
|
class PointNet2Encoder(nn.Module):
|
||||||
|
def encode_points(self, pts):
|
||||||
|
return self.forward(pts)
|
||||||
|
|
||||||
|
def __init__(self, config:dict):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
input_channels = config.get("in_dim", 0)
|
||||||
|
params_name = config.get("params_name", "light")
|
||||||
|
|
||||||
|
self.SA_modules = nn.ModuleList()
|
||||||
|
channel_in = input_channels
|
||||||
|
selected_params = select_params(params_name)
|
||||||
|
for k in range(selected_params['NPOINTS'].__len__()):
|
||||||
|
mlps = selected_params['MLPS'][k].copy()
|
||||||
|
channel_out = 0
|
||||||
|
for idx in range(mlps.__len__()):
|
||||||
|
mlps[idx] = [channel_in] + mlps[idx]
|
||||||
|
channel_out += mlps[idx][-1]
|
||||||
|
|
||||||
|
self.SA_modules.append(
|
||||||
|
PointnetSAModuleMSG(
|
||||||
|
npoint=selected_params['NPOINTS'][k],
|
||||||
|
radii=selected_params['RADIUS'][k],
|
||||||
|
nsamples=selected_params['NSAMPLE'][k],
|
||||||
|
mlps=mlps,
|
||||||
|
use_xyz=True,
|
||||||
|
bn=True
|
||||||
|
)
|
||||||
|
)
|
||||||
|
channel_in = channel_out
|
||||||
|
|
||||||
|
def forward(self, point_cloud: torch.cuda.FloatTensor):
|
||||||
|
xyz, features = break_up_pc(point_cloud)
|
||||||
|
|
||||||
|
l_xyz, l_features = [xyz], [features]
|
||||||
|
for i in range(len(self.SA_modules)):
|
||||||
|
li_xyz, li_features = self.SA_modules[i](l_xyz[i], l_features[i])
|
||||||
|
l_xyz.append(li_xyz)
|
||||||
|
l_features.append(li_features)
|
||||||
|
return l_features[-1].squeeze(-1)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
seed = 100
|
||||||
|
torch.manual_seed(seed)
|
||||||
|
torch.cuda.manual_seed(seed)
|
||||||
|
net = PointNet2Encoder(config={"in_dim": 0, "params_name": "light"}).cuda()
|
||||||
|
pts = torch.randn(2, 1024, 3).cuda()
|
||||||
|
print(torch.mean(pts, dim=1))
|
||||||
|
pre = net.encode_points(pts)
|
||||||
|
print(pre.shape)
|
@ -142,6 +142,7 @@ class Inferencer(Runner):
|
|||||||
voxel_downsampled_combined_scanned_pts_np, inverse = self.voxel_downsample_with_mapping(combined_scanned_pts, voxel_threshold)
|
voxel_downsampled_combined_scanned_pts_np, inverse = self.voxel_downsample_with_mapping(combined_scanned_pts, voxel_threshold)
|
||||||
output = self.pipeline(input_data)
|
output = self.pipeline(input_data)
|
||||||
pred_pose_9d = output["pred_pose_9d"]
|
pred_pose_9d = output["pred_pose_9d"]
|
||||||
|
import ipdb; ipdb.set_trace()
|
||||||
pred_pose = torch.eye(4, device=pred_pose_9d.device)
|
pred_pose = torch.eye(4, device=pred_pose_9d.device)
|
||||||
|
|
||||||
pred_pose[:3,:3] = PoseUtil.rotation_6d_to_matrix_tensor_batch(pred_pose_9d[:,:6])[0]
|
pred_pose[:3,:3] = PoseUtil.rotation_6d_to_matrix_tensor_batch(pred_pose_9d[:,:6])[0]
|
||||||
|
Loading…
x
Reference in New Issue
Block a user