upd
This commit is contained in:
commit
6ce3760471
@ -14,30 +14,30 @@ runner:
|
|||||||
dataset_list:
|
dataset_list:
|
||||||
- OmniObject3d_test
|
- OmniObject3d_test
|
||||||
|
|
||||||
blender_script_path: "/data/hofee/project/nbv_rec/blender/data_renderer.py"
|
blender_script_path: "/media/hofee/data/project/python/nbv_reconstruction/blender/data_renderer.py"
|
||||||
output_dir: "/data/hofee/data/inference_global_full_on_testset"
|
output_dir: "/media/hofee/data/data/new_inference_test_output"
|
||||||
pipeline: nbv_reconstruction_pipeline
|
pipeline: nbv_reconstruction_pipeline
|
||||||
voxel_size: 0.003
|
voxel_size: 0.003
|
||||||
|
min_new_area: 1.0
|
||||||
dataset:
|
dataset:
|
||||||
OmniObject3d_train:
|
# OmniObject3d_train:
|
||||||
root_dir: "/data/hofee/data/new_full_data"
|
# root_dir: "C:\\Document\\Datasets\\inference_test1"
|
||||||
model_dir: "/data/hofee/data/scaled_object_meshes"
|
# model_dir: "C:\\Document\\Datasets\\scaled_object_meshes"
|
||||||
source: seq_reconstruction_dataset
|
# source: seq_reconstruction_dataset_preprocessed
|
||||||
split_file: "/data/hofee/data/sample.txt"
|
# split_file: "C:\\Document\\Datasets\\data_list\\sample.txt"
|
||||||
type: test
|
# type: test
|
||||||
filter_degree: 75
|
# filter_degree: 75
|
||||||
ratio: 1
|
# ratio: 1
|
||||||
batch_size: 1
|
# batch_size: 1
|
||||||
num_workers: 12
|
# num_workers: 12
|
||||||
pts_num: 8192
|
# pts_num: 8192
|
||||||
load_from_preprocess: True
|
# load_from_preprocess: True
|
||||||
|
|
||||||
OmniObject3d_test:
|
OmniObject3d_test:
|
||||||
root_dir: "/data/hofee/data/new_full_data"
|
root_dir: "/media/hofee/data/data/new_testset_output"
|
||||||
model_dir: "/data/hofee/data/scaled_object_meshes"
|
model_dir: "/media/hofee/data/data/scaled_object_meshes"
|
||||||
source: seq_reconstruction_dataset
|
source: seq_reconstruction_dataset_preprocessed
|
||||||
split_file: "/data/hofee/data/new_full_data_list/OmniObject3d_test.txt"
|
# split_file: "C:\\Document\\Datasets\\data_list\\OmniObject3d_test.txt"
|
||||||
type: test
|
type: test
|
||||||
filter_degree: 75
|
filter_degree: 75
|
||||||
eval_list:
|
eval_list:
|
||||||
|
@ -8,11 +8,11 @@ runner:
|
|||||||
root_dir: experiments
|
root_dir: experiments
|
||||||
generate:
|
generate:
|
||||||
port: 5002
|
port: 5002
|
||||||
from: 600
|
from: 1
|
||||||
to: -1 # -1 means all
|
to: 50 # -1 means all
|
||||||
object_dir: /media/hofee/data/data/object_meshes_part1
|
object_dir: C:\\Document\\Datasets\\scaled_object_meshes
|
||||||
table_model_path: "/media/hofee/data/data/others/table.obj"
|
table_model_path: C:\\Document\\Datasets\\table.obj
|
||||||
output_dir: /media/hofee/repository/data_part_1
|
output_dir: C:\\Document\\Datasets\\debug_generate_view
|
||||||
binocular_vision: true
|
binocular_vision: true
|
||||||
plane_size: 10
|
plane_size: 10
|
||||||
max_views: 512
|
max_views: 512
|
||||||
|
@ -8,7 +8,7 @@ import torch
|
|||||||
import os
|
import os
|
||||||
import sys
|
import sys
|
||||||
|
|
||||||
sys.path.append(r"/data/hofee/project/nbv_rec/nbv_reconstruction")
|
sys.path.append(r"/media/hofee/data/project/python/nbv_reconstruction/nbv_reconstruction")
|
||||||
|
|
||||||
from utils.data_load import DataLoadUtil
|
from utils.data_load import DataLoadUtil
|
||||||
from utils.pose import PoseUtil
|
from utils.pose import PoseUtil
|
||||||
@ -47,6 +47,8 @@ class SeqReconstructionDataset(BaseDataset):
|
|||||||
with open(self.split_file_path, "r") as f:
|
with open(self.split_file_path, "r") as f:
|
||||||
for line in f:
|
for line in f:
|
||||||
scene_name = line.strip()
|
scene_name = line.strip()
|
||||||
|
if not os.path.exists(os.path.join(self.root_dir, scene_name)):
|
||||||
|
continue
|
||||||
scene_name_list.append(scene_name)
|
scene_name_list.append(scene_name)
|
||||||
return scene_name_list
|
return scene_name_list
|
||||||
|
|
||||||
@ -59,29 +61,19 @@ class SeqReconstructionDataset(BaseDataset):
|
|||||||
total = len(self.scene_name_list)
|
total = len(self.scene_name_list)
|
||||||
for idx, scene_name in enumerate(self.scene_name_list):
|
for idx, scene_name in enumerate(self.scene_name_list):
|
||||||
print(f"processing {scene_name} ({idx}/{total})")
|
print(f"processing {scene_name} ({idx}/{total})")
|
||||||
seq_num = DataLoadUtil.get_label_num(self.root_dir, scene_name)
|
|
||||||
scene_max_coverage_rate = 0
|
|
||||||
max_coverage_rate_list = []
|
|
||||||
scene_max_cr_idx = 0
|
scene_max_cr_idx = 0
|
||||||
for seq_idx in range(seq_num):
|
frame_len = DataLoadUtil.get_scene_seq_length(self.root_dir, scene_name)
|
||||||
label_path = DataLoadUtil.get_label_path(
|
|
||||||
self.root_dir, scene_name, seq_idx
|
for i in range(frame_len):
|
||||||
)
|
path = DataLoadUtil.get_path(self.root_dir, scene_name, i)
|
||||||
label_data = DataLoadUtil.load_label(label_path)
|
pts = DataLoadUtil.load_from_preprocessed_pts(path, "npy")
|
||||||
max_coverage_rate = label_data["max_coverage_rate"]
|
if pts.shape[0] == 0:
|
||||||
if max_coverage_rate > scene_max_coverage_rate:
|
continue
|
||||||
scene_max_coverage_rate = max_coverage_rate
|
|
||||||
scene_max_cr_idx = seq_idx
|
|
||||||
max_coverage_rate_list.append(max_coverage_rate)
|
|
||||||
best_label_path = DataLoadUtil.get_label_path(self.root_dir, scene_name, scene_max_cr_idx)
|
|
||||||
best_label_data = DataLoadUtil.load_label(best_label_path)
|
|
||||||
first_frame = best_label_data["best_sequence"][0]
|
|
||||||
best_seq_len = len(best_label_data["best_sequence"])
|
|
||||||
datalist.append({
|
datalist.append({
|
||||||
"scene_name": scene_name,
|
"scene_name": scene_name,
|
||||||
"first_frame": first_frame,
|
"first_frame": i,
|
||||||
"best_seq_len": best_seq_len,
|
"best_seq_len": -1,
|
||||||
"max_coverage_rate": scene_max_coverage_rate,
|
"max_coverage_rate": 1.0,
|
||||||
"label_idx": scene_max_cr_idx,
|
"label_idx": scene_max_cr_idx,
|
||||||
})
|
})
|
||||||
return datalist
|
return datalist
|
||||||
@ -132,8 +124,7 @@ class SeqReconstructionDataset(BaseDataset):
|
|||||||
scanned_n_to_world_pose,
|
scanned_n_to_world_pose,
|
||||||
) = ([], [], [])
|
) = ([], [], [])
|
||||||
view = data_item_info["first_frame"]
|
view = data_item_info["first_frame"]
|
||||||
frame_idx = view[0]
|
frame_idx = view
|
||||||
coverage_rate = view[1]
|
|
||||||
view_path = DataLoadUtil.get_path(self.root_dir, scene_name, frame_idx)
|
view_path = DataLoadUtil.get_path(self.root_dir, scene_name, frame_idx)
|
||||||
cam_info = DataLoadUtil.load_cam_info(view_path, binocular=True)
|
cam_info = DataLoadUtil.load_cam_info(view_path, binocular=True)
|
||||||
|
|
||||||
@ -145,7 +136,7 @@ class SeqReconstructionDataset(BaseDataset):
|
|||||||
target_point_cloud, self.pts_num
|
target_point_cloud, self.pts_num
|
||||||
)
|
)
|
||||||
scanned_views_pts.append(downsampled_target_point_cloud)
|
scanned_views_pts.append(downsampled_target_point_cloud)
|
||||||
scanned_coverages_rate.append(coverage_rate)
|
|
||||||
n_to_world_6d = PoseUtil.matrix_to_rotation_6d_numpy(
|
n_to_world_6d = PoseUtil.matrix_to_rotation_6d_numpy(
|
||||||
np.asarray(n_to_world_pose[:3, :3])
|
np.asarray(n_to_world_pose[:3, :3])
|
||||||
)
|
)
|
||||||
@ -162,7 +153,6 @@ class SeqReconstructionDataset(BaseDataset):
|
|||||||
gt_pts = self.seq_combined_pts(scene_name, frame_list)
|
gt_pts = self.seq_combined_pts(scene_name, frame_list)
|
||||||
data_item = {
|
data_item = {
|
||||||
"first_scanned_pts": np.asarray(scanned_views_pts, dtype=np.float32), # Ndarray(S x Nv x 3)
|
"first_scanned_pts": np.asarray(scanned_views_pts, dtype=np.float32), # Ndarray(S x Nv x 3)
|
||||||
"first_scanned_coverage_rate": scanned_coverages_rate, # List(S): Float, range(0, 1)
|
|
||||||
"first_scanned_n_to_world_pose_9d": np.asarray(scanned_n_to_world_pose, dtype=np.float32), # Ndarray(S x 9)
|
"first_scanned_n_to_world_pose_9d": np.asarray(scanned_n_to_world_pose, dtype=np.float32), # Ndarray(S x 9)
|
||||||
"seq_max_coverage_rate": max_coverage_rate, # Float, range(0, 1)
|
"seq_max_coverage_rate": max_coverage_rate, # Float, range(0, 1)
|
||||||
"best_seq_len": best_seq_len, # Int
|
"best_seq_len": best_seq_len, # Int
|
||||||
@ -190,9 +180,9 @@ if __name__ == "__main__":
|
|||||||
np.random.seed(seed)
|
np.random.seed(seed)
|
||||||
|
|
||||||
config = {
|
config = {
|
||||||
"root_dir": "/data/hofee/data/new_full_data",
|
"root_dir": "/media/hofee/data/data/new_testset",
|
||||||
"source": "seq_reconstruction_dataset",
|
"source": "seq_reconstruction_dataset",
|
||||||
"split_file": "/data/hofee/data/new_full_data_list/OmniObject3d_test.txt",
|
"split_file": "/media/hofee/data/data/OmniObject3d_test.txt",
|
||||||
"load_from_preprocess": True,
|
"load_from_preprocess": True,
|
||||||
"filter_degree": 75,
|
"filter_degree": 75,
|
||||||
"num_workers": 0,
|
"num_workers": 0,
|
||||||
@ -200,22 +190,16 @@ if __name__ == "__main__":
|
|||||||
"type": namespace.Mode.TEST,
|
"type": namespace.Mode.TEST,
|
||||||
}
|
}
|
||||||
|
|
||||||
output_dir = "/data/hofee/trash_can/output_inference_test"
|
output_dir = "/media/hofee/data/data/new_testset_output"
|
||||||
new_output_dir = "/data/hofee/inference_test"
|
|
||||||
os.makedirs(output_dir, exist_ok=True)
|
os.makedirs(output_dir, exist_ok=True)
|
||||||
os.makedirs(new_output_dir, exist_ok=True)
|
|
||||||
|
|
||||||
ds = SeqReconstructionDataset(config)
|
ds = SeqReconstructionDataset(config)
|
||||||
for i in tqdm(range(len(ds)), desc="processing dataset"):
|
for i in tqdm(range(len(ds)), desc="processing dataset"):
|
||||||
output_path = os.path.join(output_dir, f"item_{i}.pkl")
|
output_path = os.path.join(output_dir, f"item_{i}.pkl")
|
||||||
if os.path.exists(output_path):
|
item = ds.__getitem__(i)
|
||||||
item = pickle.load(open(output_path, "rb"))
|
|
||||||
else:
|
|
||||||
item = ds.__getitem__(i)
|
|
||||||
for key, value in item.items():
|
for key, value in item.items():
|
||||||
if isinstance(value, np.ndarray):
|
if isinstance(value, np.ndarray):
|
||||||
item[key] = value.tolist()
|
item[key] = value.tolist()
|
||||||
new_output_path = os.path.join(new_output_dir, f"item_{i}.pkl")
|
#import ipdb; ipdb.set_trace()
|
||||||
with open(new_output_path, "wb") as f:
|
with open(output_path, "wb") as f:
|
||||||
pickle.dump(item, f)
|
pickle.dump(item, f)
|
||||||
|
|
||||||
|
82
core/seq_dataset_preprocessed.py
Normal file
82
core/seq_dataset_preprocessed.py
Normal file
@ -0,0 +1,82 @@
|
|||||||
|
import numpy as np
|
||||||
|
from PytorchBoot.dataset import BaseDataset
|
||||||
|
import PytorchBoot.namespace as namespace
|
||||||
|
import PytorchBoot.stereotype as stereotype
|
||||||
|
from PytorchBoot.config import ConfigManager
|
||||||
|
from PytorchBoot.utils.log_util import Log
|
||||||
|
import pickle
|
||||||
|
import torch
|
||||||
|
import os
|
||||||
|
import sys
|
||||||
|
|
||||||
|
sys.path.append(r"C:\Document\Local Project\nbv_rec\nbv_reconstruction")
|
||||||
|
|
||||||
|
from utils.data_load import DataLoadUtil
|
||||||
|
from utils.pose import PoseUtil
|
||||||
|
from utils.pts import PtsUtil
|
||||||
|
|
||||||
|
@stereotype.dataset("seq_reconstruction_dataset_preprocessed")
|
||||||
|
class SeqReconstructionDatasetPreprocessed(BaseDataset):
|
||||||
|
def __init__(self, config):
|
||||||
|
super(SeqReconstructionDatasetPreprocessed, self).__init__(config)
|
||||||
|
self.config = config
|
||||||
|
self.root_dir = config["root_dir"]
|
||||||
|
self.real_root_dir = r"/media/hofee/data/data/new_testset"
|
||||||
|
self.item_list = os.listdir(self.root_dir)
|
||||||
|
|
||||||
|
def __getitem__(self, index):
|
||||||
|
data = pickle.load(open(os.path.join(self.root_dir, self.item_list[index]), "rb"))
|
||||||
|
data_item = {
|
||||||
|
"first_scanned_pts": np.asarray(data["first_scanned_pts"], dtype=np.float32), # Ndarray(S x Nv x 3)
|
||||||
|
"first_scanned_n_to_world_pose_9d": np.asarray(data["first_scanned_n_to_world_pose_9d"], dtype=np.float32), # Ndarray(S x 9)
|
||||||
|
"seq_max_coverage_rate": data["seq_max_coverage_rate"], # Float, range(0, 1)
|
||||||
|
"best_seq_len": data["best_seq_len"], # Int
|
||||||
|
"scene_name": data["scene_name"], # String
|
||||||
|
"gt_pts": np.asarray(data["gt_pts"], dtype=np.float32), # Ndarray(N x 3)
|
||||||
|
"scene_path": os.path.join(self.real_root_dir, data["scene_name"]), # String
|
||||||
|
"O_to_L_pose": np.asarray(data["O_to_L_pose"], dtype=np.float32),
|
||||||
|
}
|
||||||
|
return data_item
|
||||||
|
|
||||||
|
def __len__(self):
|
||||||
|
return len(self.item_list)
|
||||||
|
|
||||||
|
# -------------- Debug ---------------- #
|
||||||
|
if __name__ == "__main__":
|
||||||
|
import torch
|
||||||
|
|
||||||
|
seed = 0
|
||||||
|
torch.manual_seed(seed)
|
||||||
|
np.random.seed(seed)
|
||||||
|
'''
|
||||||
|
OmniObject3d_test:
|
||||||
|
root_dir: "H:\\AI\\Datasets\\packed_test_data"
|
||||||
|
model_dir: "H:\\AI\\Datasets\\scaled_object_meshes"
|
||||||
|
source: seq_reconstruction_dataset
|
||||||
|
split_file: "H:\\AI\\Datasets\\data_list\\OmniObject3d_test.txt"
|
||||||
|
type: test
|
||||||
|
filter_degree: 75
|
||||||
|
eval_list:
|
||||||
|
- pose_diff
|
||||||
|
- coverage_rate_increase
|
||||||
|
ratio: 0.1
|
||||||
|
batch_size: 1
|
||||||
|
num_workers: 12
|
||||||
|
pts_num: 8192
|
||||||
|
load_from_preprocess: True
|
||||||
|
'''
|
||||||
|
config = {
|
||||||
|
"root_dir": "H:\\AI\\Datasets\\packed_test_data",
|
||||||
|
"source": "seq_reconstruction_dataset",
|
||||||
|
"split_file": "H:\\AI\\Datasets\\data_list\\OmniObject3d_test.txt",
|
||||||
|
"load_from_preprocess": True,
|
||||||
|
"ratio": 1,
|
||||||
|
"filter_degree": 75,
|
||||||
|
"num_workers": 0,
|
||||||
|
"pts_num": 8192,
|
||||||
|
"type": "test",
|
||||||
|
}
|
||||||
|
ds = SeqReconstructionDataset(config)
|
||||||
|
print(len(ds))
|
||||||
|
print(ds.__getitem__(10))
|
||||||
|
|
@ -41,17 +41,8 @@ class InferencerServer(Runner):
|
|||||||
fps_downsampled_combined_scanned_pts, fps_idx = PtsUtil.fps_downsample_point_cloud(
|
fps_downsampled_combined_scanned_pts, fps_idx = PtsUtil.fps_downsample_point_cloud(
|
||||||
voxel_downsampled_combined_scanned_pts, self.pts_num, require_idx=True
|
voxel_downsampled_combined_scanned_pts, self.pts_num, require_idx=True
|
||||||
)
|
)
|
||||||
# combined_scanned_views_pts_mask = np.zeros(len(scanned_pts), dtype=np.uint8)
|
|
||||||
# start_idx = 0
|
|
||||||
# for i in range(len(scanned_pts)):
|
|
||||||
# end_idx = start_idx + len(scanned_pts[i])
|
|
||||||
# combined_scanned_views_pts_mask[start_idx:end_idx] = i
|
|
||||||
# start_idx = end_idx
|
|
||||||
|
|
||||||
# fps_downsampled_combined_scanned_pts_mask = combined_scanned_views_pts_mask[fps_idx]
|
|
||||||
|
|
||||||
input_data["scanned_pts"] = scanned_pts
|
input_data["scanned_pts"] = scanned_pts
|
||||||
# input_data["scanned_pts_mask"] = np.asarray(fps_downsampled_combined_scanned_pts_mask, dtype=np.uint8)
|
|
||||||
input_data["scanned_n_to_world_pose_9d"] = np.asarray(scanned_n_to_world_pose_9d, dtype=np.float32)
|
input_data["scanned_n_to_world_pose_9d"] = np.asarray(scanned_n_to_world_pose_9d, dtype=np.float32)
|
||||||
input_data["combined_scanned_pts"] = np.asarray(fps_downsampled_combined_scanned_pts, dtype=np.float32)
|
input_data["combined_scanned_pts"] = np.asarray(fps_downsampled_combined_scanned_pts, dtype=np.float32)
|
||||||
return input_data
|
return input_data
|
||||||
|
@ -19,15 +19,19 @@ from PytorchBoot.dataset import BaseDataset
|
|||||||
from PytorchBoot.runners.runner import Runner
|
from PytorchBoot.runners.runner import Runner
|
||||||
from PytorchBoot.utils import Log
|
from PytorchBoot.utils import Log
|
||||||
from PytorchBoot.status import status_manager
|
from PytorchBoot.status import status_manager
|
||||||
|
from utils.data_load import DataLoadUtil
|
||||||
@stereotype.runner("inferencer")
|
@stereotype.runner("inferencer")
|
||||||
class Inferencer(Runner):
|
class Inferencer(Runner):
|
||||||
def __init__(self, config_path):
|
def __init__(self, config_path):
|
||||||
|
|
||||||
super().__init__(config_path)
|
super().__init__(config_path)
|
||||||
|
|
||||||
self.script_path = ConfigManager.get(namespace.Stereotype.RUNNER, "blender_script_path")
|
self.script_path = ConfigManager.get(namespace.Stereotype.RUNNER, "blender_script_path")
|
||||||
self.output_dir = ConfigManager.get(namespace.Stereotype.RUNNER, "output_dir")
|
self.output_dir = ConfigManager.get(namespace.Stereotype.RUNNER, "output_dir")
|
||||||
self.voxel_size = ConfigManager.get(namespace.Stereotype.RUNNER, "voxel_size")
|
self.voxel_size = ConfigManager.get(namespace.Stereotype.RUNNER, "voxel_size")
|
||||||
|
self.min_new_area = ConfigManager.get(namespace.Stereotype.RUNNER, "min_new_area")
|
||||||
|
CM = 0.01
|
||||||
|
self.min_new_pts_num = self.min_new_area * (CM / self.voxel_size) **2
|
||||||
''' Pipeline '''
|
''' Pipeline '''
|
||||||
self.pipeline_name = self.config[namespace.Stereotype.PIPELINE]
|
self.pipeline_name = self.config[namespace.Stereotype.PIPELINE]
|
||||||
self.pipeline:torch.nn.Module = ComponentFactory.create(namespace.Stereotype.PIPELINE, self.pipeline_name)
|
self.pipeline:torch.nn.Module = ComponentFactory.create(namespace.Stereotype.PIPELINE, self.pipeline_name)
|
||||||
@ -35,7 +39,12 @@ class Inferencer(Runner):
|
|||||||
|
|
||||||
''' Experiment '''
|
''' Experiment '''
|
||||||
self.load_experiment("nbv_evaluator")
|
self.load_experiment("nbv_evaluator")
|
||||||
self.stat_result = {}
|
self.stat_result_path = os.path.join(self.output_dir, "stat.json")
|
||||||
|
if os.path.exists(self.stat_result_path):
|
||||||
|
with open(self.stat_result_path, "r") as f:
|
||||||
|
self.stat_result = json.load(f)
|
||||||
|
else:
|
||||||
|
self.stat_result = {}
|
||||||
|
|
||||||
''' Test '''
|
''' Test '''
|
||||||
self.test_config = ConfigManager.get(namespace.Stereotype.RUNNER, namespace.Mode.TEST)
|
self.test_config = ConfigManager.get(namespace.Stereotype.RUNNER, namespace.Mode.TEST)
|
||||||
@ -68,22 +77,25 @@ class Inferencer(Runner):
|
|||||||
test_set_name = test_set.get_name()
|
test_set_name = test_set.get_name()
|
||||||
|
|
||||||
total=int(len(test_set))
|
total=int(len(test_set))
|
||||||
scene_name_list = test_set.get_scene_name_list()
|
for i in tqdm(range(total), desc=f"Processing {test_set_name}", ncols=100):
|
||||||
for i in range(total):
|
try:
|
||||||
scene_name = scene_name_list[i]
|
data = test_set.__getitem__(i)
|
||||||
inference_result_path = os.path.join(self.output_dir, test_set_name, f"{scene_name}.pkl")
|
scene_name = data["scene_name"]
|
||||||
if os.path.exists(inference_result_path):
|
inference_result_path = os.path.join(self.output_dir, test_set_name, f"{scene_name}.pkl")
|
||||||
Log.info(f"Inference result already exists for scene: {scene_name}")
|
if os.path.exists(inference_result_path):
|
||||||
|
Log.info(f"Inference result already exists for scene: {scene_name}")
|
||||||
|
continue
|
||||||
|
|
||||||
|
status_manager.set_progress("inference", "inferencer", f"Batch[{test_set_name}]", i+1, total)
|
||||||
|
output = self.predict_sequence(data)
|
||||||
|
self.save_inference_result(test_set_name, data["scene_name"], output)
|
||||||
|
except Exception as e:
|
||||||
|
Log.error(f"Error in scene {scene_name}, {e}")
|
||||||
continue
|
continue
|
||||||
data = test_set.__getitem__(i)
|
|
||||||
status_manager.set_progress("inference", "inferencer", f"Batch[{test_set_name}]", i+1, total)
|
|
||||||
scene_name = data["scene_name"]
|
|
||||||
output = self.predict_sequence(data)
|
|
||||||
self.save_inference_result(test_set_name, data["scene_name"], output)
|
|
||||||
|
|
||||||
status_manager.set_progress("inference", "inferencer", f"dataset", len(self.test_set_list), len(self.test_set_list))
|
status_manager.set_progress("inference", "inferencer", f"dataset", len(self.test_set_list), len(self.test_set_list))
|
||||||
|
|
||||||
def predict_sequence(self, data, cr_increase_threshold=0, max_iter=50, max_retry=5):
|
def predict_sequence(self, data, cr_increase_threshold=0, overlap_area_threshold=25, scan_points_threshold=10, max_iter=50, max_retry = 10, max_success=3):
|
||||||
scene_name = data["scene_name"]
|
scene_name = data["scene_name"]
|
||||||
Log.info(f"Processing scene: {scene_name}")
|
Log.info(f"Processing scene: {scene_name}")
|
||||||
status_manager.set_status("inference", "inferencer", "scene", scene_name)
|
status_manager.set_status("inference", "inferencer", "scene", scene_name)
|
||||||
@ -106,21 +118,27 @@ class Inferencer(Runner):
|
|||||||
input_data["scanned_n_to_world_pose_9d"] = [torch.tensor(data["first_scanned_n_to_world_pose_9d"], dtype=torch.float32).to(self.device)]
|
input_data["scanned_n_to_world_pose_9d"] = [torch.tensor(data["first_scanned_n_to_world_pose_9d"], dtype=torch.float32).to(self.device)]
|
||||||
input_data["mode"] = namespace.Mode.TEST
|
input_data["mode"] = namespace.Mode.TEST
|
||||||
input_pts_N = input_data["combined_scanned_pts"].shape[1]
|
input_pts_N = input_data["combined_scanned_pts"].shape[1]
|
||||||
first_frame_target_pts, first_frame_target_normals = RenderUtil.render_pts(first_frame_to_world, scene_path, self.script_path, voxel_threshold=voxel_threshold, filter_degree=filter_degree, nO_to_nL_pose=O_to_L_pose)
|
|
||||||
scanned_view_pts = [first_frame_target_pts]
|
|
||||||
last_pred_cr, added_pts_num = self.compute_coverage_rate(scanned_view_pts, None, down_sampled_model_pts, threshold=voxel_threshold)
|
|
||||||
|
|
||||||
|
root = os.path.dirname(scene_path)
|
||||||
|
display_table_info = DataLoadUtil.get_display_table_info(root, scene_name)
|
||||||
|
radius = display_table_info["radius"]
|
||||||
|
scan_points = np.asarray(ReconstructionUtil.generate_scan_points(display_table_top=0,display_table_radius=radius))
|
||||||
|
|
||||||
|
first_frame_target_pts, first_frame_target_normals, first_frame_scan_points_indices = RenderUtil.render_pts(first_frame_to_world, scene_path, self.script_path, scan_points, voxel_threshold=voxel_threshold, filter_degree=filter_degree, nO_to_nL_pose=O_to_L_pose)
|
||||||
|
scanned_view_pts = [first_frame_target_pts]
|
||||||
|
history_indices = [first_frame_scan_points_indices]
|
||||||
|
last_pred_cr, added_pts_num = self.compute_coverage_rate(scanned_view_pts, None, down_sampled_model_pts, threshold=voxel_threshold)
|
||||||
retry_duplication_pose = []
|
retry_duplication_pose = []
|
||||||
retry_no_pts_pose = []
|
retry_no_pts_pose = []
|
||||||
|
retry_overlap_pose = []
|
||||||
retry = 0
|
retry = 0
|
||||||
pred_cr_seq = [last_pred_cr]
|
pred_cr_seq = [last_pred_cr]
|
||||||
success = 0
|
success = 0
|
||||||
|
last_pts_num = PtsUtil.voxel_downsample_point_cloud(data["first_scanned_pts"][0], voxel_threshold).shape[0]
|
||||||
import time
|
import time
|
||||||
while len(pred_cr_seq) < max_iter and retry < max_retry:
|
while len(pred_cr_seq) < max_iter and retry < max_retry and success < max_success:
|
||||||
start_time = time.time()
|
Log.green(f"iter: {len(pred_cr_seq)}, retry: {retry}/{max_retry}, success: {success}/{max_success}")
|
||||||
output = self.pipeline(input_data)
|
output = self.pipeline(input_data)
|
||||||
end_time = time.time()
|
|
||||||
print(f"Time taken for inference: {end_time - start_time} seconds")
|
|
||||||
pred_pose_9d = output["pred_pose_9d"]
|
pred_pose_9d = output["pred_pose_9d"]
|
||||||
pred_pose = torch.eye(4, device=pred_pose_9d.device)
|
pred_pose = torch.eye(4, device=pred_pose_9d.device)
|
||||||
|
|
||||||
@ -128,12 +146,24 @@ class Inferencer(Runner):
|
|||||||
pred_pose[:3,3] = pred_pose_9d[0,6:]
|
pred_pose[:3,3] = pred_pose_9d[0,6:]
|
||||||
|
|
||||||
try:
|
try:
|
||||||
start_time = time.time()
|
new_target_pts, new_target_normals, new_scan_points_indices = RenderUtil.render_pts(pred_pose, scene_path, self.script_path, scan_points, voxel_threshold=voxel_threshold, filter_degree=filter_degree, nO_to_nL_pose=O_to_L_pose)
|
||||||
new_target_pts, new_target_normals = RenderUtil.render_pts(pred_pose, scene_path, self.script_path, voxel_threshold=voxel_threshold, filter_degree=filter_degree, nO_to_nL_pose=O_to_L_pose)
|
#import ipdb; ipdb.set_trace()
|
||||||
end_time = time.time()
|
if not ReconstructionUtil.check_scan_points_overlap(history_indices, new_scan_points_indices, scan_points_threshold):
|
||||||
print(f"Time taken for rendering: {end_time - start_time} seconds")
|
curr_overlap_area_threshold = overlap_area_threshold
|
||||||
|
else:
|
||||||
|
curr_overlap_area_threshold = overlap_area_threshold * 0.5
|
||||||
|
|
||||||
|
downsampled_new_target_pts = PtsUtil.voxel_downsample_point_cloud(new_target_pts, voxel_threshold)
|
||||||
|
overlap, _ = ReconstructionUtil.check_overlap(downsampled_new_target_pts, down_sampled_model_pts, overlap_area_threshold = curr_overlap_area_threshold, voxel_size=voxel_threshold, require_new_added_pts_num = True)
|
||||||
|
if not overlap:
|
||||||
|
Log.yellow("no overlap!")
|
||||||
|
retry += 1
|
||||||
|
retry_overlap_pose.append(pred_pose.cpu().numpy().tolist())
|
||||||
|
continue
|
||||||
|
|
||||||
|
history_indices.append(new_scan_points_indices)
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
Log.warning(f"Error in scene {scene_path}, {e}")
|
Log.error(f"Error in scene {scene_path}, {e}")
|
||||||
print("current pose: ", pred_pose)
|
print("current pose: ", pred_pose)
|
||||||
print("curr_pred_cr: ", last_pred_cr)
|
print("curr_pred_cr: ", last_pred_cr)
|
||||||
retry_no_pts_pose.append(pred_pose.cpu().numpy().tolist())
|
retry_no_pts_pose.append(pred_pose.cpu().numpy().tolist())
|
||||||
@ -141,42 +171,43 @@ class Inferencer(Runner):
|
|||||||
continue
|
continue
|
||||||
|
|
||||||
if new_target_pts.shape[0] == 0:
|
if new_target_pts.shape[0] == 0:
|
||||||
print("no pts in new target")
|
Log.red("no pts in new target")
|
||||||
retry_no_pts_pose.append(pred_pose.cpu().numpy().tolist())
|
retry_no_pts_pose.append(pred_pose.cpu().numpy().tolist())
|
||||||
retry += 1
|
retry += 1
|
||||||
continue
|
continue
|
||||||
|
|
||||||
start_time = time.time()
|
pred_cr, _ = self.compute_coverage_rate(scanned_view_pts, new_target_pts, down_sampled_model_pts, threshold=voxel_threshold)
|
||||||
pred_cr, new_added_pts_num = self.compute_coverage_rate(scanned_view_pts, new_target_pts, down_sampled_model_pts, threshold=voxel_threshold)
|
Log.yellow(f"{pred_cr}, {last_pred_cr}, max: , {data['seq_max_coverage_rate']}")
|
||||||
end_time = time.time()
|
|
||||||
print(f"Time taken for coverage rate computation: {end_time - start_time} seconds")
|
|
||||||
print(pred_cr, last_pred_cr, " max: ", data["seq_max_coverage_rate"])
|
|
||||||
if pred_cr >= data["seq_max_coverage_rate"] - 1e-3:
|
if pred_cr >= data["seq_max_coverage_rate"] - 1e-3:
|
||||||
print("max coverage rate reached!: ", pred_cr)
|
print("max coverage rate reached!: ", pred_cr)
|
||||||
success += 1
|
|
||||||
elif new_added_pts_num < 10:
|
|
||||||
print("min added pts num reached!: ", new_added_pts_num)
|
|
||||||
if pred_cr <= last_pred_cr + cr_increase_threshold:
|
|
||||||
retry += 1
|
|
||||||
retry_duplication_pose.append(pred_pose.cpu().numpy().tolist())
|
|
||||||
continue
|
|
||||||
|
|
||||||
retry = 0
|
|
||||||
|
|
||||||
pred_cr_seq.append(pred_cr)
|
pred_cr_seq.append(pred_cr)
|
||||||
scanned_view_pts.append(new_target_pts)
|
scanned_view_pts.append(new_target_pts)
|
||||||
down_sampled_new_pts_world = PtsUtil.random_downsample_point_cloud(new_target_pts, input_pts_N)
|
|
||||||
|
|
||||||
new_pts = down_sampled_new_pts_world
|
|
||||||
input_data["scanned_n_to_world_pose_9d"] = [torch.cat([input_data["scanned_n_to_world_pose_9d"][0], pred_pose_9d], dim=0)]
|
input_data["scanned_n_to_world_pose_9d"] = [torch.cat([input_data["scanned_n_to_world_pose_9d"][0], pred_pose_9d], dim=0)]
|
||||||
|
|
||||||
combined_scanned_pts = np.concatenate([input_data["combined_scanned_pts"][0].cpu().numpy(), new_pts], axis=0)
|
combined_scanned_pts = np.vstack(scanned_view_pts)
|
||||||
voxel_downsampled_combined_scanned_pts_np = PtsUtil.voxel_downsample_point_cloud(combined_scanned_pts, 0.002)
|
voxel_downsampled_combined_scanned_pts_np = PtsUtil.voxel_downsample_point_cloud(combined_scanned_pts, voxel_threshold)
|
||||||
random_downsampled_combined_scanned_pts_np = PtsUtil.random_downsample_point_cloud(voxel_downsampled_combined_scanned_pts_np, input_pts_N)
|
random_downsampled_combined_scanned_pts_np = PtsUtil.random_downsample_point_cloud(voxel_downsampled_combined_scanned_pts_np, input_pts_N)
|
||||||
input_data["combined_scanned_pts"] = torch.tensor(random_downsampled_combined_scanned_pts_np, dtype=torch.float32).unsqueeze(0).to(self.device)
|
input_data["combined_scanned_pts"] = torch.tensor(random_downsampled_combined_scanned_pts_np, dtype=torch.float32).unsqueeze(0).to(self.device)
|
||||||
|
|
||||||
if success > 3:
|
|
||||||
break
|
|
||||||
last_pred_cr = pred_cr
|
last_pred_cr = pred_cr
|
||||||
|
pts_num = voxel_downsampled_combined_scanned_pts_np.shape[0]
|
||||||
|
Log.info(f"delta pts num:,{pts_num - last_pts_num },{pts_num}, {last_pts_num}")
|
||||||
|
|
||||||
|
if pts_num - last_pts_num < self.min_new_pts_num and pred_cr <= data["seq_max_coverage_rate"] - 1e-2:
|
||||||
|
retry += 1
|
||||||
|
retry_duplication_pose.append(pred_pose.cpu().numpy().tolist())
|
||||||
|
Log.red(f"delta pts num < {self.min_new_pts_num}:, {pts_num}, {last_pts_num}")
|
||||||
|
elif pts_num - last_pts_num < self.min_new_pts_num and pred_cr > data["seq_max_coverage_rate"] - 1e-2:
|
||||||
|
success += 1
|
||||||
|
Log.success(f"delta pts num < {self.min_new_pts_num}:, {pts_num}, {last_pts_num}")
|
||||||
|
|
||||||
|
last_pts_num = pts_num
|
||||||
|
|
||||||
|
|
||||||
input_data["scanned_n_to_world_pose_9d"] = input_data["scanned_n_to_world_pose_9d"][0].cpu().numpy().tolist()
|
input_data["scanned_n_to_world_pose_9d"] = input_data["scanned_n_to_world_pose_9d"][0].cpu().numpy().tolist()
|
||||||
result = {
|
result = {
|
||||||
@ -189,6 +220,7 @@ class Inferencer(Runner):
|
|||||||
"scene_name": scene_name,
|
"scene_name": scene_name,
|
||||||
"retry_no_pts_pose": retry_no_pts_pose,
|
"retry_no_pts_pose": retry_no_pts_pose,
|
||||||
"retry_duplication_pose": retry_duplication_pose,
|
"retry_duplication_pose": retry_duplication_pose,
|
||||||
|
"retry_overlap_pose": retry_overlap_pose,
|
||||||
"best_seq_len": data["best_seq_len"],
|
"best_seq_len": data["best_seq_len"],
|
||||||
}
|
}
|
||||||
self.stat_result[scene_name] = {
|
self.stat_result[scene_name] = {
|
||||||
@ -216,7 +248,7 @@ class Inferencer(Runner):
|
|||||||
os.makedirs(dataset_dir)
|
os.makedirs(dataset_dir)
|
||||||
output_path = os.path.join(dataset_dir, f"{scene_name}.pkl")
|
output_path = os.path.join(dataset_dir, f"{scene_name}.pkl")
|
||||||
pickle.dump(output, open(output_path, "wb"))
|
pickle.dump(output, open(output_path, "wb"))
|
||||||
with open(os.path.join(dataset_dir, "stat.json"), "w") as f:
|
with open(self.stat_result_path, "w") as f:
|
||||||
json.dump(self.stat_result, f)
|
json.dump(self.stat_result, f)
|
||||||
|
|
||||||
|
|
||||||
|
@ -9,7 +9,7 @@ class ViewGenerator(Runner):
|
|||||||
self.config_path = config_path
|
self.config_path = config_path
|
||||||
|
|
||||||
def run(self):
|
def run(self):
|
||||||
result = subprocess.run(['/home/hofee/blender-4.0.2-linux-x64/blender', '-b', '-P', '../blender/run_blender.py', '--', self.config_path])
|
result = subprocess.run(['blender', '-b', '-P', '../blender/run_blender.py', '--', self.config_path])
|
||||||
print()
|
print()
|
||||||
|
|
||||||
def create_experiment(self, backup_name=None):
|
def create_experiment(self, backup_name=None):
|
||||||
|
@ -32,13 +32,15 @@ class ReconstructionUtil:
|
|||||||
|
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def check_overlap(new_point_cloud, combined_point_cloud, overlap_area_threshold=25, voxel_size=0.01):
|
def check_overlap(new_point_cloud, combined_point_cloud, overlap_area_threshold=25, voxel_size=0.01, require_new_added_pts_num=False):
|
||||||
kdtree = cKDTree(combined_point_cloud)
|
kdtree = cKDTree(combined_point_cloud)
|
||||||
distances, _ = kdtree.query(new_point_cloud)
|
distances, _ = kdtree.query(new_point_cloud)
|
||||||
overlapping_points = np.sum(distances < voxel_size*2)
|
overlapping_points_num = np.sum(distances < voxel_size*2)
|
||||||
cm = 0.01
|
cm = 0.01
|
||||||
voxel_size_cm = voxel_size / cm
|
voxel_size_cm = voxel_size / cm
|
||||||
overlap_area = overlapping_points * voxel_size_cm * voxel_size_cm
|
overlap_area = overlapping_points_num * voxel_size_cm * voxel_size_cm
|
||||||
|
if require_new_added_pts_num:
|
||||||
|
return overlap_area > overlap_area_threshold, len(new_point_cloud)-np.sum(distances < voxel_size*1.2)
|
||||||
return overlap_area > overlap_area_threshold
|
return overlap_area > overlap_area_threshold
|
||||||
|
|
||||||
|
|
||||||
|
@ -54,7 +54,22 @@ class RenderUtil:
|
|||||||
return points_camera_world
|
return points_camera_world
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def render_pts(cam_pose, scene_path, script_path, voxel_threshold=0.005, filter_degree=75, nO_to_nL_pose=None, require_full_scene=False):
|
def get_scan_points_indices(scan_points, mask, display_table_mask_label, cam_intrinsic, cam_extrinsic):
|
||||||
|
scan_points_homogeneous = np.hstack((scan_points, np.ones((scan_points.shape[0], 1))))
|
||||||
|
points_camera = np.dot(np.linalg.inv(cam_extrinsic), scan_points_homogeneous.T).T[:, :3]
|
||||||
|
points_image_homogeneous = np.dot(cam_intrinsic, points_camera.T).T
|
||||||
|
points_image_homogeneous /= points_image_homogeneous[:, 2:]
|
||||||
|
pixel_x = points_image_homogeneous[:, 0].astype(int)
|
||||||
|
pixel_y = points_image_homogeneous[:, 1].astype(int)
|
||||||
|
h, w = mask.shape[:2]
|
||||||
|
valid_indices = (pixel_x >= 0) & (pixel_x < w) & (pixel_y >= 0) & (pixel_y < h)
|
||||||
|
mask_colors = mask[pixel_y[valid_indices], pixel_x[valid_indices]]
|
||||||
|
selected_points_indices = np.where((mask_colors == display_table_mask_label).all(axis=-1))[0]
|
||||||
|
selected_points_indices = np.where(valid_indices)[0][selected_points_indices]
|
||||||
|
return selected_points_indices
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def render_pts(cam_pose, scene_path, script_path, scan_points, voxel_threshold=0.005, filter_degree=75, nO_to_nL_pose=None, require_full_scene=False):
|
||||||
|
|
||||||
nO_to_world_pose = DataLoadUtil.get_real_cam_O_from_cam_L(cam_pose, nO_to_nL_pose, scene_path=scene_path)
|
nO_to_world_pose = DataLoadUtil.get_real_cam_O_from_cam_L(cam_pose, nO_to_nL_pose, scene_path=scene_path)
|
||||||
|
|
||||||
@ -69,17 +84,10 @@ class RenderUtil:
|
|||||||
params_data_path = os.path.join(temp_dir, "params.json")
|
params_data_path = os.path.join(temp_dir, "params.json")
|
||||||
with open(params_data_path, 'w') as f:
|
with open(params_data_path, 'w') as f:
|
||||||
json.dump(params, f)
|
json.dump(params, f)
|
||||||
start_time = time.time()
|
|
||||||
result = subprocess.run([
|
result = subprocess.run([
|
||||||
'blender', '-b', '-P', script_path, '--', temp_dir
|
'/home/hofee/blender-4.0.2-linux-x64/blender', '-b', '-P', script_path, '--', temp_dir
|
||||||
], capture_output=True, text=True)
|
], capture_output=True, text=True)
|
||||||
end_time = time.time()
|
# print(result)
|
||||||
print(result)
|
|
||||||
print(f"-- Time taken for blender: {end_time - start_time} seconds")
|
|
||||||
if result.returncode != 0:
|
|
||||||
print("Blender script failed:")
|
|
||||||
print(result.stderr)
|
|
||||||
return None
|
|
||||||
path = os.path.join(temp_dir, "tmp")
|
path = os.path.join(temp_dir, "tmp")
|
||||||
cam_info = DataLoadUtil.load_cam_info(path, binocular=True)
|
cam_info = DataLoadUtil.load_cam_info(path, binocular=True)
|
||||||
depth_L, depth_R = DataLoadUtil.load_depth(
|
depth_L, depth_R = DataLoadUtil.load_depth(
|
||||||
@ -87,7 +95,6 @@ class RenderUtil:
|
|||||||
cam_info["far_plane"],
|
cam_info["far_plane"],
|
||||||
binocular=True
|
binocular=True
|
||||||
)
|
)
|
||||||
start_time = time.time()
|
|
||||||
mask_L, mask_R = DataLoadUtil.load_seg(path, binocular=True)
|
mask_L, mask_R = DataLoadUtil.load_seg(path, binocular=True)
|
||||||
normal_L = DataLoadUtil.load_normal(path, binocular=True, left_only=True)
|
normal_L = DataLoadUtil.load_normal(path, binocular=True, left_only=True)
|
||||||
''' target points '''
|
''' target points '''
|
||||||
@ -117,10 +124,12 @@ class RenderUtil:
|
|||||||
target_points, sampled_target_normal_L, cam_info["cam_to_world"], theta_limit = filter_degree, z_range=(RenderUtil.min_z, RenderUtil.max_z)
|
target_points, sampled_target_normal_L, cam_info["cam_to_world"], theta_limit = filter_degree, z_range=(RenderUtil.min_z, RenderUtil.max_z)
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
|
scan_points_indices_L = RenderUtil.get_scan_points_indices(scan_points, mask_img_L, RenderUtil.display_table_mask_label, cam_info["cam_intrinsic"], cam_info["cam_to_world"])
|
||||||
|
scan_points_indices_R = RenderUtil.get_scan_points_indices(scan_points, mask_img_R, RenderUtil.display_table_mask_label, cam_info["cam_intrinsic"], cam_info["cam_to_world_R"])
|
||||||
|
scan_points_indices = np.intersect1d(scan_points_indices_L, scan_points_indices_R)
|
||||||
if not has_points:
|
if not has_points:
|
||||||
target_points = np.zeros((0, 3))
|
target_points = np.zeros((0, 3))
|
||||||
target_normals = np.zeros((0, 3))
|
target_normals = np.zeros((0, 3))
|
||||||
end_time = time.time()
|
|
||||||
print(f"-- Time taken for processing: {end_time - start_time} seconds")
|
|
||||||
#import ipdb; ipdb.set_trace()
|
#import ipdb; ipdb.set_trace()
|
||||||
return target_points, target_normals
|
return target_points, target_normals, scan_points_indices
|
Loading…
x
Reference in New Issue
Block a user