debug new training
This commit is contained in:
parent
a883a31968
commit
63a246c0c8
@ -84,7 +84,7 @@ module:
|
|||||||
gf_view_finder:
|
gf_view_finder:
|
||||||
t_feat_dim: 128
|
t_feat_dim: 128
|
||||||
pose_feat_dim: 256
|
pose_feat_dim: 256
|
||||||
main_feat_dim: 2048
|
main_feat_dim: 3072
|
||||||
regression_head: Rx_Ry_and_T
|
regression_head: Rx_Ry_and_T
|
||||||
pose_mode: rot_matrix
|
pose_mode: rot_matrix
|
||||||
per_point_feature: False
|
per_point_feature: False
|
||||||
|
@ -7,7 +7,7 @@ runner:
|
|||||||
parallel: False
|
parallel: False
|
||||||
|
|
||||||
experiment:
|
experiment:
|
||||||
name: full_w_global_feat_wo_local_pts_feat
|
name: debug
|
||||||
root_dir: "experiments"
|
root_dir: "experiments"
|
||||||
use_checkpoint: False
|
use_checkpoint: False
|
||||||
epoch: -1 # -1 stands for last epoch
|
epoch: -1 # -1 stands for last epoch
|
||||||
@ -28,14 +28,14 @@ runner:
|
|||||||
- OmniObject3d_test
|
- OmniObject3d_test
|
||||||
- OmniObject3d_val
|
- OmniObject3d_val
|
||||||
|
|
||||||
pipeline: nbv_reconstruction_global_pts_pipeline
|
pipeline: nbv_reconstruction_global_pts_n_num_pipeline
|
||||||
|
|
||||||
dataset:
|
dataset:
|
||||||
OmniObject3d_train:
|
OmniObject3d_train:
|
||||||
root_dir: "/home/data/hofee/project/nbv_rec/data/nbv_rec_data_512_preproc_npy"
|
root_dir: "/home/data/hofee/project/nbv_rec/data/sample_for_training_new"
|
||||||
model_dir: "../data/scaled_object_meshes"
|
model_dir: "../data/scaled_object_meshes"
|
||||||
source: nbv_reconstruction_dataset
|
source: nbv_reconstruction_dataset
|
||||||
split_file: "/home/data/hofee/project/nbv_rec/data/OmniObject3d_train.txt"
|
split_file: "/home/data/hofee/project/nbv_rec/data/sample.txt"
|
||||||
type: train
|
type: train
|
||||||
cache: True
|
cache: True
|
||||||
ratio: 1
|
ratio: 1
|
||||||
@ -45,10 +45,10 @@ dataset:
|
|||||||
load_from_preprocess: True
|
load_from_preprocess: True
|
||||||
|
|
||||||
OmniObject3d_test:
|
OmniObject3d_test:
|
||||||
root_dir: "/home/data/hofee/project/nbv_rec/data/nbv_rec_data_512_preproc_npy"
|
root_dir: "/home/data/hofee/project/nbv_rec/data/sample_for_training_new"
|
||||||
model_dir: "../data/scaled_object_meshes"
|
model_dir: "../data/scaled_object_meshes"
|
||||||
source: nbv_reconstruction_dataset
|
source: nbv_reconstruction_dataset
|
||||||
split_file: "/home/data/hofee/project/nbv_rec/data/OmniObject3d_test.txt"
|
split_file: "/home/data/hofee/project/nbv_rec/data/sample.txt"
|
||||||
type: test
|
type: test
|
||||||
cache: True
|
cache: True
|
||||||
filter_degree: 75
|
filter_degree: 75
|
||||||
@ -61,10 +61,10 @@ dataset:
|
|||||||
load_from_preprocess: True
|
load_from_preprocess: True
|
||||||
|
|
||||||
OmniObject3d_val:
|
OmniObject3d_val:
|
||||||
root_dir: "/home/data/hofee/project/nbv_rec/data/nbv_rec_data_512_preproc_npy"
|
root_dir: "/home/data/hofee/project/nbv_rec/data/sample_for_training_new"
|
||||||
model_dir: "../data/scaled_object_meshes"
|
model_dir: "../data/scaled_object_meshes"
|
||||||
source: nbv_reconstruction_dataset
|
source: nbv_reconstruction_dataset
|
||||||
split_file: "/home/data/hofee/project/nbv_rec/data/OmniObject3d_train.txt"
|
split_file: "/home/data/hofee/project/nbv_rec/data/sample.txt"
|
||||||
type: test
|
type: test
|
||||||
cache: True
|
cache: True
|
||||||
filter_degree: 75
|
filter_degree: 75
|
||||||
@ -96,6 +96,15 @@ pipeline:
|
|||||||
eps: 1e-5
|
eps: 1e-5
|
||||||
global_scanned_feat: True
|
global_scanned_feat: True
|
||||||
|
|
||||||
|
nbv_reconstruction_global_pts_n_num_pipeline:
|
||||||
|
modules:
|
||||||
|
pts_encoder: pointnet_encoder
|
||||||
|
transformer_seq_encoder: transformer_seq_encoder
|
||||||
|
pose_encoder: pose_encoder
|
||||||
|
view_finder: gf_view_finder
|
||||||
|
pts_num_encoder: pts_num_encoder
|
||||||
|
eps: 1e-5
|
||||||
|
global_scanned_feat: True
|
||||||
|
|
||||||
|
|
||||||
module:
|
module:
|
||||||
@ -107,7 +116,7 @@ module:
|
|||||||
feature_transform: False
|
feature_transform: False
|
||||||
|
|
||||||
transformer_seq_encoder:
|
transformer_seq_encoder:
|
||||||
embed_dim: 1344
|
embed_dim: 384
|
||||||
num_heads: 4
|
num_heads: 4
|
||||||
ffn_dim: 256
|
ffn_dim: 256
|
||||||
num_layers: 3
|
num_layers: 3
|
||||||
@ -116,7 +125,7 @@ module:
|
|||||||
gf_view_finder:
|
gf_view_finder:
|
||||||
t_feat_dim: 128
|
t_feat_dim: 128
|
||||||
pose_feat_dim: 256
|
pose_feat_dim: 256
|
||||||
main_feat_dim: 2048
|
main_feat_dim: 3072
|
||||||
regression_head: Rx_Ry_and_T
|
regression_head: Rx_Ry_and_T
|
||||||
pose_mode: rot_matrix
|
pose_mode: rot_matrix
|
||||||
per_point_feature: False
|
per_point_feature: False
|
||||||
@ -128,6 +137,9 @@ module:
|
|||||||
pose_dim: 9
|
pose_dim: 9
|
||||||
out_dim: 256
|
out_dim: 256
|
||||||
|
|
||||||
|
pts_num_encoder:
|
||||||
|
out_dim: 64
|
||||||
|
|
||||||
loss_function:
|
loss_function:
|
||||||
gf_loss:
|
gf_loss:
|
||||||
|
|
||||||
|
@ -117,22 +117,21 @@ class NBVReconstructionGlobalPointsPipeline(nn.Module):
|
|||||||
for seq_idx in range(seq_len):
|
for seq_idx in range(seq_len):
|
||||||
partial_idx_in_combined_pts = scanned_mask == seq_idx # Ndarray(V), N->V idx mask
|
partial_idx_in_combined_pts = scanned_mask == seq_idx # Ndarray(V), N->V idx mask
|
||||||
partial_perpoint_feat = perpoint_scanned_feat[partial_idx_in_combined_pts] # Ndarray(V x Dl)
|
partial_perpoint_feat = perpoint_scanned_feat[partial_idx_in_combined_pts] # Ndarray(V x Dl)
|
||||||
partial_feat = torch.mean(partial_perpoint_feat, dim=0)[0] # Tensor(Dl)
|
partial_feat = torch.mean(partial_perpoint_feat, dim=0) # Tensor(Dl)
|
||||||
partial_feat_seq.append(partial_feat)
|
partial_feat_seq.append(partial_feat)
|
||||||
scanned_target_pts_num.append(partial_perpoint_feat.shape[0])
|
scanned_target_pts_num.append(partial_perpoint_feat.shape[0])
|
||||||
|
|
||||||
scanned_target_pts_num = torch.tensor(scanned_target_pts_num, dtype=torch.int32).to(device) # Tensor(S)
|
|
||||||
scanned_n_to_world_pose_9d = scanned_n_to_world_pose_9d.to(device) # Tensor(S x 9)
|
|
||||||
|
|
||||||
|
|
||||||
|
scanned_target_pts_num = torch.tensor(scanned_target_pts_num, dtype=torch.float32).unsqueeze(-1).to(device) # Tensor(S x 1)
|
||||||
|
scanned_n_to_world_pose_9d = scanned_n_to_world_pose_9d.to(device) # Tensor(S x 9)
|
||||||
pose_feat_seq = self.pose_encoder.encode_pose(scanned_n_to_world_pose_9d) # Tensor(S x Dp)
|
pose_feat_seq = self.pose_encoder.encode_pose(scanned_n_to_world_pose_9d) # Tensor(S x Dp)
|
||||||
pts_num_feat_seq = self.pts_num_encoder.encode_pts_num(scanned_target_pts_num) # Tensor(S x Dn)
|
pts_num_feat_seq = self.pts_num_encoder.encode_pts_num(scanned_target_pts_num) # Tensor(S x Dn)
|
||||||
partial_feat_seq = torch.stack(partial_feat_seq) # Tensor(S x Dl)
|
partial_feat_seq = torch.stack(partial_feat_seq) # Tensor(S x Dl)
|
||||||
|
|
||||||
seq_embedding = torch.cat([pose_feat_seq, pts_num_feat_seq, partial_feat_seq], dim=-1) # Tensor(S x (Dp+Dn+Dl))
|
seq_embedding = torch.cat([pose_feat_seq, pts_num_feat_seq, partial_feat_seq], dim=-1) # Tensor(S x (Dp+Dn+Dl))
|
||||||
embedding_list_batch.append(seq_embedding) # List(B): Tensor(S x (Dp+Dn+Dl))
|
embedding_list_batch.append(seq_embedding) # List(B): Tensor(S x (Dp+Dn+Dl))
|
||||||
|
|
||||||
|
|
||||||
seq_feat = self.transformer_seq_encoder.encode_sequence(embedding_list_batch) # Tensor(B x Ds)
|
seq_feat = self.transformer_seq_encoder.encode_sequence(embedding_list_batch) # Tensor(B x Ds)
|
||||||
|
|
||||||
main_feat = torch.cat([seq_feat, global_scanned_feat], dim=-1) # Tensor(B x (Ds+Dg))
|
main_feat = torch.cat([seq_feat, global_scanned_feat], dim=-1) # Tensor(B x (Ds+Dg))
|
||||||
|
|
||||||
if torch.isnan(main_feat).any():
|
if torch.isnan(main_feat).any():
|
||||||
|
@ -34,7 +34,7 @@ class NBVReconstructionDataset(BaseDataset):
|
|||||||
self.model_dir = config["model_dir"]
|
self.model_dir = config["model_dir"]
|
||||||
self.filter_degree = config["filter_degree"]
|
self.filter_degree = config["filter_degree"]
|
||||||
if self.type == namespace.Mode.TRAIN:
|
if self.type == namespace.Mode.TRAIN:
|
||||||
scale_ratio = 1
|
scale_ratio = 100
|
||||||
self.datalist = self.datalist*scale_ratio
|
self.datalist = self.datalist*scale_ratio
|
||||||
if self.cache:
|
if self.cache:
|
||||||
expr_root = ConfigManager.get("runner", "experiment", "root_dir")
|
expr_root = ConfigManager.get("runner", "experiment", "root_dir")
|
||||||
@ -122,7 +122,7 @@ class NBVReconstructionDataset(BaseDataset):
|
|||||||
scanned_views_pts,
|
scanned_views_pts,
|
||||||
scanned_coverages_rate,
|
scanned_coverages_rate,
|
||||||
scanned_n_to_world_pose,
|
scanned_n_to_world_pose,
|
||||||
) = ([], [], [], [])
|
) = ([], [], [])
|
||||||
for view in scanned_views:
|
for view in scanned_views:
|
||||||
frame_idx = view[0]
|
frame_idx = view[0]
|
||||||
coverage_rate = view[1]
|
coverage_rate = view[1]
|
||||||
@ -164,7 +164,7 @@ class NBVReconstructionDataset(BaseDataset):
|
|||||||
combined_scanned_views_pts, self.pts_num, require_idx=True
|
combined_scanned_views_pts, self.pts_num, require_idx=True
|
||||||
)
|
)
|
||||||
|
|
||||||
combined_scanned_views_pts_mask = np.zeros(len(scanned_views_pts), dtype=np.uint8)
|
combined_scanned_views_pts_mask = np.zeros(len(combined_scanned_views_pts), dtype=np.uint8)
|
||||||
|
|
||||||
start_idx = 0
|
start_idx = 0
|
||||||
for i in range(len(scanned_views_pts)):
|
for i in range(len(scanned_views_pts)):
|
||||||
@ -174,9 +174,6 @@ class NBVReconstructionDataset(BaseDataset):
|
|||||||
|
|
||||||
fps_downsampled_combined_scanned_pts_mask = combined_scanned_views_pts_mask[fps_idx]
|
fps_downsampled_combined_scanned_pts_mask = combined_scanned_views_pts_mask[fps_idx]
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
data_item = {
|
data_item = {
|
||||||
"scanned_pts": np.asarray(scanned_views_pts, dtype=np.float32), # Ndarray(S x Nv x 3)
|
"scanned_pts": np.asarray(scanned_views_pts, dtype=np.float32), # Ndarray(S x Nv x 3)
|
||||||
"scanned_pts_mask": np.asarray(fps_downsampled_combined_scanned_pts_mask,dtype=np.uint8), # Ndarray(N), range(0, S)
|
"scanned_pts_mask": np.asarray(fps_downsampled_combined_scanned_pts_mask,dtype=np.uint8), # Ndarray(N), range(0, S)
|
||||||
|
Loading…
x
Reference in New Issue
Block a user