diff --git a/configs/local/inference_config.yaml b/configs/local/inference_config.yaml index 70be656..384e912 100644 --- a/configs/local/inference_config.yaml +++ b/configs/local/inference_config.yaml @@ -6,16 +6,16 @@ runner: cuda_visible_devices: "0,1,2,3,4,5,6,7" experiment: - name: train_ab_global_only_p++_wp + name: train_ab_global_only_dense root_dir: "experiments" - epoch: 922 # -1 stands for last epoch + epoch: 441 # -1 stands for last epoch test: dataset_list: - OmniObject3d_test blender_script_path: "/media/hofee/data/project/python/nbv_reconstruction/blender/data_renderer.py" - output_dir: "/media/hofee/data/data/p++_wp_temp_cluster" + output_dir: "/media/hofee/data/data/p++_dense" pipeline: nbv_reconstruction_pipeline voxel_size: 0.003 min_new_area: 1.0 @@ -62,6 +62,7 @@ pipeline: module: pointnet++_encoder: in_dim: 3 + params_name: dense pointnet_encoder: in_dim: 3 diff --git a/runners/inference_server.py b/runners/inference_server.py index ac62fc9..35ec910 100644 --- a/runners/inference_server.py +++ b/runners/inference_server.py @@ -12,6 +12,7 @@ from PytorchBoot.runners.runner import Runner from PytorchBoot.utils import Log from utils.pts import PtsUtil +from beans.predict_result import PredictResult @stereotype.runner("inferencer_server") class InferencerServer(Runner): @@ -50,6 +51,7 @@ class InferencerServer(Runner): def get_result(self, output_data): pred_pose_9d = output_data["pred_pose_9d"] + pred_pose_9d = np.asarray(PredictResult(pred_pose_9d.cpu().numpy(), None, cluster_params=dict(eps=0.25, min_samples=3)).candidate_9d_poses, dtype=np.float32) result = { "pred_pose_9d": pred_pose_9d.tolist() } diff --git a/runners/inferencer.py b/runners/inferencer.py index f5cea35..68bf1f8 100644 --- a/runners/inferencer.py +++ b/runners/inferencer.py @@ -156,7 +156,12 @@ class Inferencer(Runner): # np.save(pred_9d_path, pred_pose_9d.cpu().numpy()) # np.savetxt(pts_path, np_combined_scanned_pts) # # ----- ----- ----- - pred_pose_9d_candidates = PredictResult(pred_pose_9d.cpu().numpy(), input_pts=input_data["combined_scanned_pts"][0].cpu().numpy(), cluster_params=dict(eps=0.25, min_samples=3)).candidate_9d_poses + predict_result = PredictResult(pred_pose_9d.cpu().numpy(), input_pts=input_data["combined_scanned_pts"][0].cpu().numpy(), cluster_params=dict(eps=0.25, min_samples=3)) + # ----------------------- + # import ipdb; ipdb.set_trace() + # predict_result.visualize() + # ----------------------- + pred_pose_9d_candidates = predict_result.candidate_9d_poses for pred_pose_9d in pred_pose_9d_candidates: #import ipdb; ipdb.set_trace() pred_pose_9d = torch.tensor(pred_pose_9d, dtype=torch.float32).to(self.device).unsqueeze(0)