fix bug for training
This commit is contained in:
112
core/dataset.py
112
core/dataset.py
@@ -1,10 +1,10 @@
|
||||
import numpy as np
|
||||
from PytorchBoot.dataset import BaseDataset
|
||||
import PytorchBoot.stereotype as stereotype
|
||||
from torch.nn.utils.rnn import pad_sequence
|
||||
import torch
|
||||
|
||||
import sys
|
||||
sys.path.append(r"C:\Document\Local Project\nbv_rec\nbv_reconstruction")
|
||||
sys.path.append(r"/media/hofee/data/project/python/nbv_reconstruction/nbv_reconstruction")
|
||||
|
||||
from utils.data_load import DataLoadUtil
|
||||
from utils.pose import PoseUtil
|
||||
@@ -56,18 +56,25 @@ class NBVReconstructionDataset(BaseDataset):
|
||||
scene_name = data_item_info["scene_name"]
|
||||
scanned_views_pts, scanned_coverages_rate, scanned_n_to_1_pose = [], [], []
|
||||
first_frame_idx = scanned_views[0][0]
|
||||
first_frame_to_world = DataLoadUtil.load_cam_info(DataLoadUtil.get_path(self.root_dir, scene_name, first_frame_idx))["cam_to_world"]
|
||||
first_cam_info = DataLoadUtil.load_cam_info(DataLoadUtil.get_path(self.root_dir, scene_name, first_frame_idx), binocular=True)
|
||||
first_frame_to_world = first_cam_info["cam_to_world"]
|
||||
for view in scanned_views:
|
||||
frame_idx = view[0]
|
||||
coverage_rate = view[1]
|
||||
view_path = DataLoadUtil.get_path(self.root_dir, scene_name, frame_idx)
|
||||
depth = DataLoadUtil.load_depth(view_path)
|
||||
cam_info = DataLoadUtil.load_cam_info(view_path)
|
||||
mask = DataLoadUtil.load_seg(view_path)
|
||||
frame_curr_to_world = cam_info["cam_to_world"]
|
||||
n_to_1_pose = np.dot(np.linalg.inv(first_frame_to_world), frame_curr_to_world)
|
||||
target_point_cloud = DataLoadUtil.get_target_point_cloud(depth, cam_info["cam_intrinsic"], n_to_1_pose, mask)["points_world"]
|
||||
downsampled_target_point_cloud = PtsUtil.random_downsample_point_cloud(target_point_cloud, self.pts_num)
|
||||
cam_info = DataLoadUtil.load_cam_info(view_path, binocular=True)
|
||||
n_to_world_pose = cam_info["cam_to_world"]
|
||||
nR_to_world_pose = cam_info["cam_to_world_R"]
|
||||
n_to_1_pose = np.dot(np.linalg.inv(first_frame_to_world), n_to_world_pose)
|
||||
nR_to_1_pose = np.dot(np.linalg.inv(first_frame_to_world), nR_to_world_pose)
|
||||
depth_L, depth_R = DataLoadUtil.load_depth(view_path, cam_info['near_plane'], cam_info['far_plane'], binocular=True)
|
||||
point_cloud_L = DataLoadUtil.get_point_cloud(depth_L, cam_info['cam_intrinsic'], n_to_1_pose)['points_world']
|
||||
point_cloud_R = DataLoadUtil.get_point_cloud(depth_R, cam_info['cam_intrinsic'], nR_to_1_pose)['points_world']
|
||||
|
||||
point_cloud_L = PtsUtil.random_downsample_point_cloud(point_cloud_L, 65536)
|
||||
point_cloud_R = PtsUtil.random_downsample_point_cloud(point_cloud_R, 65536)
|
||||
overlap_points = DataLoadUtil.get_overlapping_points(point_cloud_L, point_cloud_R)
|
||||
downsampled_target_point_cloud = PtsUtil.random_downsample_point_cloud(overlap_points, self.pts_num)
|
||||
scanned_views_pts.append(downsampled_target_point_cloud)
|
||||
scanned_coverages_rate.append(coverage_rate)
|
||||
n_to_1_6d = PoseUtil.matrix_to_rotation_6d_numpy(np.asarray(n_to_1_pose[:3,:3]))
|
||||
@@ -86,10 +93,10 @@ class NBVReconstructionDataset(BaseDataset):
|
||||
|
||||
data_item = {
|
||||
"scanned_pts": np.asarray(scanned_views_pts,dtype=np.float32),
|
||||
"scanned_coverage_rate": np.asarray(scanned_coverages_rate,dtype=np.float32),
|
||||
"scanned_coverage_rate": scanned_coverages_rate,
|
||||
"scanned_n_to_1_pose_9d": np.asarray(scanned_n_to_1_pose,dtype=np.float32),
|
||||
"best_coverage_rate": nbv_coverage_rate,
|
||||
"best_to_1_pose_9d": best_to_1_9d,
|
||||
"best_to_1_pose_9d": np.asarray(best_to_1_9d,dtype=np.float32),
|
||||
"max_coverage_rate": max_coverage_rate,
|
||||
"scene_name": scene_name
|
||||
}
|
||||
@@ -101,23 +108,14 @@ class NBVReconstructionDataset(BaseDataset):
|
||||
|
||||
def get_collate_fn(self):
|
||||
def collate_fn(batch):
|
||||
scanned_pts = [item['scanned_pts'] for item in batch]
|
||||
scanned_n_to_1_pose_9d = [item['scanned_n_to_1_pose_9d'] for item in batch]
|
||||
rest = {}
|
||||
collate_data = {}
|
||||
collate_data["scanned_pts"] = [torch.tensor(item['scanned_pts']) for item in batch]
|
||||
collate_data["scanned_n_to_1_pose_9d"] = [torch.tensor(item['scanned_n_to_1_pose_9d']) for item in batch]
|
||||
collate_data["best_to_1_pose_9d"] = torch.stack([torch.tensor(item['best_to_1_pose_9d']) for item in batch])
|
||||
for key in batch[0].keys():
|
||||
if key in ['scanned_pts', 'scanned_n_to_1_pose_9d']:
|
||||
continue
|
||||
if isinstance(batch[0][key], torch.Tensor):
|
||||
rest[key] = torch.stack([item[key] for item in batch])
|
||||
elif isinstance(batch[0][key], str):
|
||||
rest[key] = [item[key] for item in batch]
|
||||
else:
|
||||
rest[key] = [item[key] for item in batch]
|
||||
return {
|
||||
'scanned_pts': scanned_pts,
|
||||
'scanned_n_to_1_pose_9d': scanned_n_to_1_pose_9d,
|
||||
**rest
|
||||
}
|
||||
if key not in ["scanned_pts", "scanned_n_to_1_pose_9d", "best_to_1_pose_9d"]:
|
||||
collate_data[key] = [item[key] for item in batch]
|
||||
return collate_data
|
||||
return collate_fn
|
||||
|
||||
if __name__ == "__main__":
|
||||
@@ -126,36 +124,48 @@ if __name__ == "__main__":
|
||||
torch.manual_seed(seed)
|
||||
np.random.seed(seed)
|
||||
config = {
|
||||
"root_dir": "C:\\Document\\Local Project\\nbv_rec\\data\\sample",
|
||||
"split_file": "C:\\Document\\Local Project\\nbv_rec\\data\\OmniObject3d_train.txt",
|
||||
"root_dir": "/media/hofee/data/project/python/nbv_reconstruction/sample_for_training/scenes",
|
||||
"split_file": "/media/hofee/data/project/python/nbv_reconstruction/sample_for_training/OmniObject3d_train.txt",
|
||||
"ratio": 0.5,
|
||||
"batch_size": 2,
|
||||
"num_workers": 0,
|
||||
"pts_num": 2048
|
||||
"pts_num": 32684
|
||||
}
|
||||
ds = NBVReconstructionDataset(config)
|
||||
print(len(ds))
|
||||
#ds.__getitem__(10)
|
||||
dl = ds.get_loader(shuffle=True)
|
||||
for idx, data in enumerate(dl):
|
||||
cnt=0
|
||||
print(data["scene_name"])
|
||||
print(data["scanned_coverage_rate"])
|
||||
print(data["best_coverage_rate"])
|
||||
for pts in data["scanned_pts"][0]:
|
||||
#np.savetxt(f"pts_{cnt}.txt", pts)
|
||||
cnt+=1
|
||||
#np.savetxt("best_pts.txt", best_pts)
|
||||
for key, value in data.items():
|
||||
if isinstance(value, torch.Tensor):
|
||||
print(key, ":" ,value.shape)
|
||||
else:
|
||||
print(key, ":" ,len(value))
|
||||
if key == "scanned_n_to_1_pose_9d":
|
||||
for val in value:
|
||||
print(val.shape)
|
||||
if key == "scanned_pts":
|
||||
for val in value:
|
||||
print(val.shape)
|
||||
data = ds.process_batch(data, "cuda:0")
|
||||
print(data)
|
||||
break
|
||||
#
|
||||
# for idx, data in enumerate(dl):
|
||||
# cnt=0
|
||||
# print(data["scene_name"])
|
||||
# print(data["scanned_coverage_rate"])
|
||||
# print(data["best_coverage_rate"])
|
||||
# for pts in data["scanned_pts"][0]:
|
||||
# #np.savetxt(f"pts_{cnt}.txt", pts)
|
||||
# cnt+=1
|
||||
# #np.savetxt("best_pts.txt", best_pts)
|
||||
# for key, value in data.items():
|
||||
# if isinstance(value, torch.Tensor):
|
||||
# print(key, ":" ,value.shape)
|
||||
# else:
|
||||
# print(key, ":" ,len(value))
|
||||
# if key == "scanned_n_to_1_pose_9d":
|
||||
# for val in value:
|
||||
# print(val.shape)
|
||||
# if key == "scanned_pts":
|
||||
# print("scanned_pts")
|
||||
# for val in value:
|
||||
# print(val.shape)
|
||||
# cnt = 0
|
||||
# for v in val:
|
||||
# import ipdb;ipdb.set_trace()
|
||||
# np.savetxt(f"pts_{cnt}.txt", v)
|
||||
# cnt+=1
|
||||
|
||||
|
||||
print()
|
||||
# print()
|
Reference in New Issue
Block a user