upd infernce
This commit is contained in:
parent
04d3a359e1
commit
2b7243d1be
@ -14,17 +14,17 @@ runner:
|
||||
dataset_list:
|
||||
- OmniObject3d_test
|
||||
|
||||
blender_script_path: "/data/hofee/project/nbv_rec/blender/data_renderer.py"
|
||||
output_dir: "/data/hofee/data/inference_global_full_on_testset"
|
||||
blender_script_path: "C:\\Document\\Local Project\\nbv_rec\\blender\\data_renderer.py"
|
||||
output_dir: "C:\\Document\\Datasets\\inference_scan_pts_overlap_global_full_on_testset"
|
||||
pipeline: nbv_reconstruction_pipeline
|
||||
voxel_size: 0.003
|
||||
|
||||
dataset:
|
||||
OmniObject3d_train:
|
||||
root_dir: "/data/hofee/data/new_full_data"
|
||||
model_dir: "/data/hofee/data/scaled_object_meshes"
|
||||
source: seq_reconstruction_dataset
|
||||
split_file: "/data/hofee/data/sample.txt"
|
||||
root_dir: "C:\\Document\\Datasets\\inference_test"
|
||||
model_dir: "C:\\Document\\Datasets\\scaled_object_meshes"
|
||||
source: seq_reconstruction_dataset_preprocessed
|
||||
split_file: "C:\\Document\\Datasets\\data_list\\sample.txt"
|
||||
type: test
|
||||
filter_degree: 75
|
||||
ratio: 1
|
||||
@ -34,10 +34,10 @@ dataset:
|
||||
load_from_preprocess: True
|
||||
|
||||
OmniObject3d_test:
|
||||
root_dir: "/data/hofee/data/new_full_data"
|
||||
model_dir: "/data/hofee/data/scaled_object_meshes"
|
||||
source: seq_reconstruction_dataset
|
||||
split_file: "/data/hofee/data/new_full_data_list/OmniObject3d_test.txt"
|
||||
root_dir: "C:\\Document\\Datasets\\inference_test"
|
||||
model_dir: "C:\\Document\\Datasets\\scaled_object_meshes"
|
||||
source: seq_reconstruction_dataset_preprocessed
|
||||
split_file: "C:\\Document\\Datasets\\data_list\\OmniObject3d_test.txt"
|
||||
type: test
|
||||
filter_degree: 75
|
||||
eval_list:
|
||||
|
@ -8,7 +8,7 @@ import torch
|
||||
import os
|
||||
import sys
|
||||
|
||||
sys.path.append(r"/data/hofee/project/nbv_rec/nbv_reconstruction")
|
||||
sys.path.append(r"C:\Document\Local Project\nbv_rec\nbv_reconstruction")
|
||||
|
||||
from utils.data_load import DataLoadUtil
|
||||
from utils.pose import PoseUtil
|
||||
@ -55,7 +55,9 @@ class SeqReconstructionDataset(BaseDataset):
|
||||
|
||||
def get_datalist(self):
|
||||
datalist = []
|
||||
for scene_name in self.scene_name_list:
|
||||
total = len(self.scene_name_list)
|
||||
for idx, scene_name in enumerate(self.scene_name_list):
|
||||
print(f"processing {scene_name} ({idx}/{total})")
|
||||
seq_num = DataLoadUtil.get_label_num(self.root_dir, scene_name)
|
||||
scene_max_coverage_rate = 0
|
||||
max_coverage_rate_list = []
|
||||
@ -182,17 +184,33 @@ if __name__ == "__main__":
|
||||
seed = 0
|
||||
torch.manual_seed(seed)
|
||||
np.random.seed(seed)
|
||||
'''
|
||||
OmniObject3d_test:
|
||||
root_dir: "H:\\AI\\Datasets\\packed_test_data"
|
||||
model_dir: "H:\\AI\\Datasets\\scaled_object_meshes"
|
||||
source: seq_reconstruction_dataset
|
||||
split_file: "H:\\AI\\Datasets\\data_list\\OmniObject3d_test.txt"
|
||||
type: test
|
||||
filter_degree: 75
|
||||
eval_list:
|
||||
- pose_diff
|
||||
- coverage_rate_increase
|
||||
ratio: 0.1
|
||||
batch_size: 1
|
||||
num_workers: 12
|
||||
pts_num: 8192
|
||||
load_from_preprocess: True
|
||||
'''
|
||||
config = {
|
||||
"root_dir": "/data/hofee/data/new_full_data",
|
||||
"root_dir": "H:\\AI\\Datasets\\packed_test_data",
|
||||
"source": "seq_reconstruction_dataset",
|
||||
"split_file": "/data/hofee/data/sample.txt",
|
||||
"split_file": "H:\\AI\\Datasets\\data_list\\OmniObject3d_test.txt",
|
||||
"load_from_preprocess": True,
|
||||
"ratio": 0.5,
|
||||
"batch_size": 2,
|
||||
"ratio": 1,
|
||||
"filter_degree": 75,
|
||||
"num_workers": 0,
|
||||
"pts_num": 4096,
|
||||
"type": namespace.Mode.TRAIN,
|
||||
"pts_num": 8192,
|
||||
"type": "test",
|
||||
}
|
||||
ds = SeqReconstructionDataset(config)
|
||||
print(len(ds))
|
||||
|
85
core/seq_dataset_preprocessed.py
Normal file
85
core/seq_dataset_preprocessed.py
Normal file
@ -0,0 +1,85 @@
|
||||
import numpy as np
|
||||
from PytorchBoot.dataset import BaseDataset
|
||||
import PytorchBoot.namespace as namespace
|
||||
import PytorchBoot.stereotype as stereotype
|
||||
from PytorchBoot.config import ConfigManager
|
||||
from PytorchBoot.utils.log_util import Log
|
||||
import pickle
|
||||
import torch
|
||||
import os
|
||||
import sys
|
||||
|
||||
sys.path.append(r"C:\Document\Local Project\nbv_rec\nbv_reconstruction")
|
||||
|
||||
from utils.data_load import DataLoadUtil
|
||||
from utils.pose import PoseUtil
|
||||
from utils.pts import PtsUtil
|
||||
|
||||
|
||||
@stereotype.dataset("seq_reconstruction_dataset_preprocessed")
|
||||
class SeqReconstructionDatasetPreprocessed(BaseDataset):
|
||||
def __init__(self, config):
|
||||
super(SeqReconstructionDatasetPreprocessed, self).__init__(config)
|
||||
self.config = config
|
||||
self.root_dir = config["root_dir"]
|
||||
self.real_root_dir = r"H:\AI\Datasets\packed_test_data"
|
||||
self.item_list = os.listdir(self.root_dir)
|
||||
|
||||
def __getitem__(self, index):
|
||||
data = pickle.load(open(os.path.join(self.root_dir, self.item_list[index]), "rb"))
|
||||
data_item = {
|
||||
"first_scanned_pts": np.asarray(data["first_scanned_pts"], dtype=np.float32), # Ndarray(S x Nv x 3)
|
||||
"first_scanned_coverage_rate": data["first_scanned_coverage_rate"], # List(S): Float, range(0, 1)
|
||||
"first_scanned_n_to_world_pose_9d": np.asarray(data["first_scanned_n_to_world_pose_9d"], dtype=np.float32), # Ndarray(S x 9)
|
||||
"seq_max_coverage_rate": data["seq_max_coverage_rate"], # Float, range(0, 1)
|
||||
"best_seq_len": data["best_seq_len"], # Int
|
||||
"scene_name": data["scene_name"], # String
|
||||
"gt_pts": np.asarray(data["gt_pts"], dtype=np.float32), # Ndarray(N x 3)
|
||||
"scene_path": os.path.join(self.real_root_dir, data["scene_name"]), # String
|
||||
"O_to_L_pose": np.asarray(data["O_to_L_pose"], dtype=np.float32),
|
||||
}
|
||||
return data_item
|
||||
|
||||
def __len__(self):
|
||||
return len(self.item_list)
|
||||
|
||||
|
||||
# -------------- Debug ---------------- #
|
||||
if __name__ == "__main__":
|
||||
import torch
|
||||
|
||||
seed = 0
|
||||
torch.manual_seed(seed)
|
||||
np.random.seed(seed)
|
||||
'''
|
||||
OmniObject3d_test:
|
||||
root_dir: "H:\\AI\\Datasets\\packed_test_data"
|
||||
model_dir: "H:\\AI\\Datasets\\scaled_object_meshes"
|
||||
source: seq_reconstruction_dataset
|
||||
split_file: "H:\\AI\\Datasets\\data_list\\OmniObject3d_test.txt"
|
||||
type: test
|
||||
filter_degree: 75
|
||||
eval_list:
|
||||
- pose_diff
|
||||
- coverage_rate_increase
|
||||
ratio: 0.1
|
||||
batch_size: 1
|
||||
num_workers: 12
|
||||
pts_num: 8192
|
||||
load_from_preprocess: True
|
||||
'''
|
||||
config = {
|
||||
"root_dir": "H:\\AI\\Datasets\\packed_test_data",
|
||||
"source": "seq_reconstruction_dataset",
|
||||
"split_file": "H:\\AI\\Datasets\\data_list\\OmniObject3d_test.txt",
|
||||
"load_from_preprocess": True,
|
||||
"ratio": 1,
|
||||
"filter_degree": 75,
|
||||
"num_workers": 0,
|
||||
"pts_num": 8192,
|
||||
"type": "test",
|
||||
}
|
||||
ds = SeqReconstructionDataset(config)
|
||||
print(len(ds))
|
||||
print(ds.__getitem__(10))
|
||||
|
@ -19,7 +19,7 @@ from PytorchBoot.dataset import BaseDataset
|
||||
from PytorchBoot.runners.runner import Runner
|
||||
from PytorchBoot.utils import Log
|
||||
from PytorchBoot.status import status_manager
|
||||
|
||||
from utils.data_load import DataLoadUtil
|
||||
@stereotype.runner("inferencer")
|
||||
class Inferencer(Runner):
|
||||
def __init__(self, config_path):
|
||||
@ -35,7 +35,12 @@ class Inferencer(Runner):
|
||||
|
||||
''' Experiment '''
|
||||
self.load_experiment("nbv_evaluator")
|
||||
self.stat_result = {}
|
||||
self.stat_result_path = os.path.join(self.output_dir, "stat.json")
|
||||
if os.path.exists(self.stat_result_path):
|
||||
with open(self.stat_result_path, "r") as f:
|
||||
self.stat_result = json.load(f)
|
||||
else:
|
||||
self.stat_result = {}
|
||||
|
||||
''' Test '''
|
||||
self.test_config = ConfigManager.get(namespace.Stereotype.RUNNER, namespace.Mode.TEST)
|
||||
@ -68,22 +73,21 @@ class Inferencer(Runner):
|
||||
test_set_name = test_set.get_name()
|
||||
|
||||
total=int(len(test_set))
|
||||
scene_name_list = test_set.get_scene_name_list()
|
||||
for i in range(total):
|
||||
scene_name = scene_name_list[i]
|
||||
for i in tqdm(range(total), desc=f"Processing {test_set_name}", ncols=100):
|
||||
data = test_set.__getitem__(i)
|
||||
scene_name = data["scene_name"]
|
||||
inference_result_path = os.path.join(self.output_dir, test_set_name, f"{scene_name}.pkl")
|
||||
if os.path.exists(inference_result_path):
|
||||
Log.info(f"Inference result already exists for scene: {scene_name}")
|
||||
continue
|
||||
data = test_set.__getitem__(i)
|
||||
|
||||
status_manager.set_progress("inference", "inferencer", f"Batch[{test_set_name}]", i+1, total)
|
||||
scene_name = data["scene_name"]
|
||||
output = self.predict_sequence(data)
|
||||
self.save_inference_result(test_set_name, data["scene_name"], output)
|
||||
|
||||
status_manager.set_progress("inference", "inferencer", f"dataset", len(self.test_set_list), len(self.test_set_list))
|
||||
|
||||
def predict_sequence(self, data, cr_increase_threshold=0, max_iter=50, max_retry=5):
|
||||
def predict_sequence(self, data, cr_increase_threshold=0.001, overlap_area_threshold=25, scan_points_threshold=10, max_iter=50, max_retry = 7):
|
||||
scene_name = data["scene_name"]
|
||||
Log.info(f"Processing scene: {scene_name}")
|
||||
status_manager.set_status("inference", "inferencer", "scene", scene_name)
|
||||
@ -102,16 +106,23 @@ class Inferencer(Runner):
|
||||
|
||||
''' data for inference '''
|
||||
input_data = {}
|
||||
scanned_pts = []
|
||||
input_data["combined_scanned_pts"] = torch.tensor(data["first_scanned_pts"][0], dtype=torch.float32).to(self.device).unsqueeze(0)
|
||||
input_data["scanned_n_to_world_pose_9d"] = [torch.tensor(data["first_scanned_n_to_world_pose_9d"], dtype=torch.float32).to(self.device)]
|
||||
input_data["mode"] = namespace.Mode.TEST
|
||||
input_pts_N = input_data["combined_scanned_pts"].shape[1]
|
||||
first_frame_target_pts, first_frame_target_normals = RenderUtil.render_pts(first_frame_to_world, scene_path, self.script_path, voxel_threshold=voxel_threshold, filter_degree=filter_degree, nO_to_nL_pose=O_to_L_pose)
|
||||
root = os.path.dirname(scene_path)
|
||||
display_table_info = DataLoadUtil.get_display_table_info(root, scene_name)
|
||||
radius = display_table_info["radius"]
|
||||
scan_points = np.asarray(ReconstructionUtil.generate_scan_points(display_table_top=0,display_table_radius=radius))
|
||||
first_frame_target_pts, first_frame_target_normals, first_frame_scan_points_indices = RenderUtil.render_pts(first_frame_to_world, scene_path, self.script_path, scan_points, voxel_threshold=voxel_threshold, filter_degree=filter_degree, nO_to_nL_pose=O_to_L_pose)
|
||||
scanned_view_pts = [first_frame_target_pts]
|
||||
history_indices = [first_frame_scan_points_indices]
|
||||
last_pred_cr, added_pts_num = self.compute_coverage_rate(scanned_view_pts, None, down_sampled_model_pts, threshold=voxel_threshold)
|
||||
|
||||
scanned_pts.append(first_frame_target_pts)
|
||||
retry_duplication_pose = []
|
||||
retry_no_pts_pose = []
|
||||
retry_overlap_pose = []
|
||||
retry = 0
|
||||
pred_cr_seq = [last_pred_cr]
|
||||
success = 0
|
||||
@ -129,7 +140,22 @@ class Inferencer(Runner):
|
||||
|
||||
try:
|
||||
start_time = time.time()
|
||||
new_target_pts, new_target_normals = RenderUtil.render_pts(pred_pose, scene_path, self.script_path, voxel_threshold=voxel_threshold, filter_degree=filter_degree, nO_to_nL_pose=O_to_L_pose)
|
||||
new_target_pts, new_target_normals, new_scan_points_indices = RenderUtil.render_pts(pred_pose, scene_path, self.script_path, scan_points, voxel_threshold=voxel_threshold, filter_degree=filter_degree, nO_to_nL_pose=O_to_L_pose)
|
||||
#import ipdb; ipdb.set_trace()
|
||||
if not ReconstructionUtil.check_scan_points_overlap(history_indices, new_scan_points_indices, scan_points_threshold):
|
||||
curr_overlap_area_threshold = overlap_area_threshold
|
||||
else:
|
||||
curr_overlap_area_threshold = overlap_area_threshold * 0.5
|
||||
|
||||
downsampled_new_target_pts = PtsUtil.voxel_downsample_point_cloud(new_target_pts, voxel_threshold)
|
||||
overlap, new_added_pts_num = ReconstructionUtil.check_overlap(downsampled_new_target_pts, down_sampled_model_pts, overlap_area_threshold = curr_overlap_area_threshold, voxel_size=voxel_threshold, require_new_added_pts_num = True)
|
||||
if not overlap:
|
||||
retry += 1
|
||||
retry_overlap_pose.append(pred_pose.cpu().numpy().tolist())
|
||||
continue
|
||||
|
||||
scanned_pts.append(new_target_pts)
|
||||
history_indices.append(new_scan_points_indices)
|
||||
end_time = time.time()
|
||||
print(f"Time taken for rendering: {end_time - start_time} seconds")
|
||||
except Exception as e:
|
||||
@ -147,14 +173,16 @@ class Inferencer(Runner):
|
||||
continue
|
||||
|
||||
start_time = time.time()
|
||||
pred_cr, new_added_pts_num = self.compute_coverage_rate(scanned_view_pts, new_target_pts, down_sampled_model_pts, threshold=voxel_threshold)
|
||||
pred_cr, covered_pts_num = self.compute_coverage_rate(scanned_view_pts, new_target_pts, down_sampled_model_pts, threshold=voxel_threshold)
|
||||
end_time = time.time()
|
||||
print(f"Time taken for coverage rate computation: {end_time - start_time} seconds")
|
||||
print(pred_cr, last_pred_cr, " max: ", data["seq_max_coverage_rate"])
|
||||
print("new added pts num: ", new_added_pts_num)
|
||||
if pred_cr >= data["seq_max_coverage_rate"] - 1e-3:
|
||||
print("max coverage rate reached!: ", pred_cr)
|
||||
success += 1
|
||||
elif new_added_pts_num < 10:
|
||||
elif new_added_pts_num < 5:
|
||||
success += 1
|
||||
print("min added pts num reached!: ", new_added_pts_num)
|
||||
if pred_cr <= last_pred_cr + cr_increase_threshold:
|
||||
retry += 1
|
||||
@ -180,6 +208,7 @@ class Inferencer(Runner):
|
||||
|
||||
input_data["scanned_n_to_world_pose_9d"] = input_data["scanned_n_to_world_pose_9d"][0].cpu().numpy().tolist()
|
||||
result = {
|
||||
"scanned_pts": scanned_pts,
|
||||
"pred_pose_9d_seq": input_data["scanned_n_to_world_pose_9d"],
|
||||
"combined_scanned_pts": input_data["combined_scanned_pts"],
|
||||
"target_pts_seq": scanned_view_pts,
|
||||
@ -189,6 +218,7 @@ class Inferencer(Runner):
|
||||
"scene_name": scene_name,
|
||||
"retry_no_pts_pose": retry_no_pts_pose,
|
||||
"retry_duplication_pose": retry_duplication_pose,
|
||||
"retry_overlap_pose": retry_overlap_pose,
|
||||
"best_seq_len": data["best_seq_len"],
|
||||
}
|
||||
self.stat_result[scene_name] = {
|
||||
@ -216,7 +246,7 @@ class Inferencer(Runner):
|
||||
os.makedirs(dataset_dir)
|
||||
output_path = os.path.join(dataset_dir, f"{scene_name}.pkl")
|
||||
pickle.dump(output, open(output_path, "wb"))
|
||||
with open(os.path.join(dataset_dir, "stat.json"), "w") as f:
|
||||
with open(self.stat_result_path, "w") as f:
|
||||
json.dump(self.stat_result, f)
|
||||
|
||||
|
||||
|
@ -32,13 +32,15 @@ class ReconstructionUtil:
|
||||
|
||||
|
||||
@staticmethod
|
||||
def check_overlap(new_point_cloud, combined_point_cloud, overlap_area_threshold=25, voxel_size=0.01):
|
||||
def check_overlap(new_point_cloud, combined_point_cloud, overlap_area_threshold=25, voxel_size=0.01, require_new_added_pts_num=False):
|
||||
kdtree = cKDTree(combined_point_cloud)
|
||||
distances, _ = kdtree.query(new_point_cloud)
|
||||
overlapping_points = np.sum(distances < voxel_size*2)
|
||||
overlapping_points_num = np.sum(distances < voxel_size*2)
|
||||
cm = 0.01
|
||||
voxel_size_cm = voxel_size / cm
|
||||
overlap_area = overlapping_points * voxel_size_cm * voxel_size_cm
|
||||
overlap_area = overlapping_points_num * voxel_size_cm * voxel_size_cm
|
||||
if require_new_added_pts_num:
|
||||
return overlap_area > overlap_area_threshold, len(new_point_cloud)-np.sum(distances < voxel_size*1.2)
|
||||
return overlap_area > overlap_area_threshold
|
||||
|
||||
|
||||
|
@ -54,7 +54,22 @@ class RenderUtil:
|
||||
return points_camera_world
|
||||
|
||||
@staticmethod
|
||||
def render_pts(cam_pose, scene_path, script_path, voxel_threshold=0.005, filter_degree=75, nO_to_nL_pose=None, require_full_scene=False):
|
||||
def get_scan_points_indices(scan_points, mask, display_table_mask_label, cam_intrinsic, cam_extrinsic):
|
||||
scan_points_homogeneous = np.hstack((scan_points, np.ones((scan_points.shape[0], 1))))
|
||||
points_camera = np.dot(np.linalg.inv(cam_extrinsic), scan_points_homogeneous.T).T[:, :3]
|
||||
points_image_homogeneous = np.dot(cam_intrinsic, points_camera.T).T
|
||||
points_image_homogeneous /= points_image_homogeneous[:, 2:]
|
||||
pixel_x = points_image_homogeneous[:, 0].astype(int)
|
||||
pixel_y = points_image_homogeneous[:, 1].astype(int)
|
||||
h, w = mask.shape[:2]
|
||||
valid_indices = (pixel_x >= 0) & (pixel_x < w) & (pixel_y >= 0) & (pixel_y < h)
|
||||
mask_colors = mask[pixel_y[valid_indices], pixel_x[valid_indices]]
|
||||
selected_points_indices = np.where((mask_colors == display_table_mask_label).all(axis=-1))[0]
|
||||
selected_points_indices = np.where(valid_indices)[0][selected_points_indices]
|
||||
return selected_points_indices
|
||||
|
||||
@staticmethod
|
||||
def render_pts(cam_pose, scene_path, script_path, scan_points, voxel_threshold=0.005, filter_degree=75, nO_to_nL_pose=None, require_full_scene=False):
|
||||
|
||||
nO_to_world_pose = DataLoadUtil.get_real_cam_O_from_cam_L(cam_pose, nO_to_nL_pose, scene_path=scene_path)
|
||||
|
||||
@ -74,12 +89,7 @@ class RenderUtil:
|
||||
'blender', '-b', '-P', script_path, '--', temp_dir
|
||||
], capture_output=True, text=True)
|
||||
end_time = time.time()
|
||||
print(result)
|
||||
print(f"-- Time taken for blender: {end_time - start_time} seconds")
|
||||
if result.returncode != 0:
|
||||
print("Blender script failed:")
|
||||
print(result.stderr)
|
||||
return None
|
||||
path = os.path.join(temp_dir, "tmp")
|
||||
cam_info = DataLoadUtil.load_cam_info(path, binocular=True)
|
||||
depth_L, depth_R = DataLoadUtil.load_depth(
|
||||
@ -117,10 +127,14 @@ class RenderUtil:
|
||||
target_points, sampled_target_normal_L, cam_info["cam_to_world"], theta_limit = filter_degree, z_range=(RenderUtil.min_z, RenderUtil.max_z)
|
||||
)
|
||||
|
||||
|
||||
scan_points_indices_L = RenderUtil.get_scan_points_indices(scan_points, mask_img_L, RenderUtil.display_table_mask_label, cam_info["cam_intrinsic"], cam_info["cam_to_world"])
|
||||
scan_points_indices_R = RenderUtil.get_scan_points_indices(scan_points, mask_img_R, RenderUtil.display_table_mask_label, cam_info["cam_intrinsic"], cam_info["cam_to_world_R"])
|
||||
scan_points_indices = np.intersect1d(scan_points_indices_L, scan_points_indices_R)
|
||||
if not has_points:
|
||||
target_points = np.zeros((0, 3))
|
||||
target_normals = np.zeros((0, 3))
|
||||
end_time = time.time()
|
||||
print(f"-- Time taken for processing: {end_time - start_time} seconds")
|
||||
#import ipdb; ipdb.set_trace()
|
||||
return target_points, target_normals
|
||||
return target_points, target_normals, scan_points_indices
|
Loading…
x
Reference in New Issue
Block a user