From 26c3cb4c7a15bc7759bd089525253ce312f907e0 Mon Sep 17 00:00:00 2001 From: hofee Date: Tue, 29 Oct 2024 17:12:24 +0000 Subject: [PATCH] global_and_local: debug --- configs/server/server_train_config.yaml | 2 +- core/nbv_dataset.py | 5 +---- core/pipeline.py | 6 +++--- 3 files changed, 5 insertions(+), 8 deletions(-) diff --git a/configs/server/server_train_config.yaml b/configs/server/server_train_config.yaml index 2b69702..77a922f 100644 --- a/configs/server/server_train_config.yaml +++ b/configs/server/server_train_config.yaml @@ -106,7 +106,7 @@ module: gf_view_finder: t_feat_dim: 128 pose_feat_dim: 256 - main_feat_dim: 2048 + main_feat_dim: 2560 regression_head: Rx_Ry_and_T pose_mode: rot_matrix per_point_feature: False diff --git a/core/nbv_dataset.py b/core/nbv_dataset.py index d47975a..f17e68b 100644 --- a/core/nbv_dataset.py +++ b/core/nbv_dataset.py @@ -34,7 +34,7 @@ class NBVReconstructionDataset(BaseDataset): #self.model_dir = config["model_dir"] self.filter_degree = config["filter_degree"] if self.type == namespace.Mode.TRAIN: - scale_ratio = 100 + scale_ratio = 50 self.datalist = self.datalist*scale_ratio if self.cache: expr_root = ConfigManager.get("runner", "experiment", "root_dir") @@ -206,9 +206,6 @@ class NBVReconstructionDataset(BaseDataset): collate_data["combined_scanned_pts"] = torch.stack( [torch.tensor(item["combined_scanned_pts"]) for item in batch] ) - collate_data["scanned_pts_mask"] = torch.stack( - [torch.tensor(item["scanned_pts_mask"]) for item in batch] - ) for key in batch[0].keys(): if key not in [ diff --git a/core/pipeline.py b/core/pipeline.py index ec05e32..afd391b 100644 --- a/core/pipeline.py +++ b/core/pipeline.py @@ -20,8 +20,8 @@ class NBVReconstructionPipeline(nn.Module): self.pose_encoder = ComponentFactory.create( namespace.Stereotype.MODULE, self.module_config["pose_encoder"] ) - self.transformer_seq_encoder = ComponentFactory.create( - namespace.Stereotype.MODULE, self.module_config["transformer_seq_encoder"] + self.seq_encoder = ComponentFactory.create( + namespace.Stereotype.MODULE, self.module_config["seq_encoder"] ) self.view_finder = ComponentFactory.create( namespace.Stereotype.MODULE, self.module_config["view_finder"] @@ -112,7 +112,7 @@ class NBVReconstructionPipeline(nn.Module): seq_embedding = torch.cat([pose_feat_seq, pts_feat_seq], dim=-1) # Tensor(S x (Dp+Dl)) embedding_list_batch.append(seq_embedding) # List(B): Tensor(S x (Dp+Dl)) - seq_feat = self.transformer_seq_encoder.encode_sequence(embedding_list_batch) # Tensor(B x Ds) + seq_feat = self.seq_encoder.encode_sequence(embedding_list_batch) # Tensor(B x Ds) main_feat = torch.cat([seq_feat, global_scanned_feat], dim=-1) # Tensor(B x (Ds+Dg)) if torch.isnan(main_feat).any():