nbv_reconstruction/utils/data_load.py

135 lines
4.7 KiB
Python
Raw Normal View History

2024-08-21 17:11:56 +08:00
import os
import OpenEXR
import Imath
import numpy as np
import json
import cv2
class DataLoadUtil:
@staticmethod
def get_path(root, scene_idx, frame_idx):
path = os.path.join(root, f"sequence.{scene_idx}", f"step{frame_idx}")
return path
@staticmethod
def read_exr_depth(depth_path):
file = OpenEXR.InputFile(depth_path)
dw = file.header()['dataWindow']
width = dw.max.x - dw.min.x + 1
height = dw.max.y - dw.min.y + 1
pix_type = Imath.PixelType(Imath.PixelType.FLOAT)
depth_map = np.frombuffer(file.channel('R', pix_type), dtype=np.float32)
depth_map.shape = (height, width)
return depth_map
@staticmethod
def load_depth(path):
depth_path = path + ".camera.Depth.exr"
depth_map = DataLoadUtil.read_exr_depth(depth_path)
return depth_map
@staticmethod
def load_rgb(path):
rgb_path = path + ".camera.png"
rgb_image = cv2.imread(rgb_path, cv2.IMREAD_COLOR)
return rgb_image
@staticmethod
def load_seg(path):
seg_path = path + ".camera.semantic segmentation.png"
seg_image = cv2.imread(seg_path, cv2.IMREAD_COLOR)
return seg_image
@staticmethod
def load_cam_info(path):
label_path = path + ".camera_params.json"
with open(label_path, 'r') as f:
label_data = json.load(f)
cam_transform = np.asarray(label_data['cam_to_world']).reshape(
(4, 4)
).T
offset = np.asarray([
[1, 0, 0, 0],
[0, -1, 0, 0],
[0, 0, 1, 0],
[0, 0, 0, 1]])
cam_to_world = cam_transform @ offset
f_x = label_data['f_x']
f_y = label_data['f_y']
c_x = label_data['c_x']
c_y = label_data['c_y']
cam_intrinsic = np.array([[f_x, 0, c_x], [0, f_y, c_y], [0, 0, 1]])
return {
"cam_to_world": cam_to_world,
"cam_intrinsic": cam_intrinsic
}
@staticmethod
def get_target_point_cloud(depth, cam_intrinsic, cam_extrinsic, mask, target_mask_label=(255,255,255)):
h, w = depth.shape
i, j = np.meshgrid(np.arange(w), np.arange(h), indexing='xy')
z = depth
x = (i - cam_intrinsic[0, 2]) * z / cam_intrinsic[0, 0]
y = (j - cam_intrinsic[1, 2]) * z / cam_intrinsic[1, 1]
points_camera = np.stack((x, y, z), axis=-1).reshape(-1, 3)
points_camera_aug = np.concatenate([points_camera, np.ones((points_camera.shape[0], 1))], axis=-1)
points_world = np.dot(cam_extrinsic, points_camera_aug.T).T[:, :3]
mask = mask.reshape(-1, 3)
target_mask = np.all(mask == target_mask_label, axis=-1)
return {
"points_world": points_world[target_mask],
"points_camera": points_camera[target_mask]
}
@staticmethod
def get_target_point_cloud(depth, cam_intrinsic, cam_extrinsic, mask, target_mask_label=(255,255,255)):
h, w = depth.shape
i, j = np.meshgrid(np.arange(w), np.arange(h), indexing='xy')
z = depth
x = (i - cam_intrinsic[0, 2]) * z / cam_intrinsic[0, 0]
y = (j - cam_intrinsic[1, 2]) * z / cam_intrinsic[1, 1]
points_camera = np.stack((x, y, z), axis=-1).reshape(-1, 3)
points_camera_aug = np.concatenate([points_camera, np.ones((points_camera.shape[0], 1))], axis=-1)
points_world = np.dot(cam_extrinsic, points_camera_aug.T).T[:, :3]
mask = mask.reshape(-1, 3)
target_mask = np.all(mask == target_mask_label, axis=-1)
return {
"points_world": points_world[target_mask],
"points_camera": points_camera[target_mask]
}
@staticmethod
def get_point_cloud_world_from_path(path):
cam_info = DataLoadUtil.load_cam_info(path)
depth = DataLoadUtil.load_depth(path)
mask = DataLoadUtil.load_seg(path)
point_cloud = DataLoadUtil.get_target_point_cloud(depth, cam_info['cam_intrinsic'], cam_info['cam_to_world'], mask)
return point_cloud['points_world']
@staticmethod
def get_point_cloud_list_from_seq(root, seq_idx, num_frames):
point_cloud_list = []
for idx in range(num_frames):
path = DataLoadUtil.get_path(root, seq_idx, idx)
point_cloud = DataLoadUtil.get_point_cloud_world_from_path(path)
point_cloud_list.append(point_cloud)
return point_cloud_list