nbv_reconstruction/core/nbv_dataset.py

265 lines
11 KiB
Python
Raw Normal View History

2024-08-22 22:28:20 +08:00
import numpy as np
2024-08-22 20:27:21 +08:00
from PytorchBoot.dataset import BaseDataset
2024-09-18 06:49:59 +00:00
import PytorchBoot.namespace as namespace
2024-08-22 20:27:21 +08:00
import PytorchBoot.stereotype as stereotype
2024-09-18 06:49:59 +00:00
from PytorchBoot.config import ConfigManager
from PytorchBoot.utils.log_util import Log
2024-09-12 15:11:09 +08:00
import torch
2024-09-18 06:49:59 +00:00
import os
import sys
2024-09-29 18:11:55 +08:00
2024-10-21 07:33:32 +00:00
sys.path.append(r"/data/hofee/project/nbv_rec/nbv_reconstruction")
2024-08-22 20:27:21 +08:00
from utils.data_load import DataLoadUtil
from utils.pose import PoseUtil
2024-08-30 19:21:18 +08:00
from utils.pts import PtsUtil
2024-09-18 06:49:59 +00:00
2024-08-22 22:28:20 +08:00
2024-08-30 19:21:18 +08:00
@stereotype.dataset("nbv_reconstruction_dataset")
2024-08-22 20:27:21 +08:00
class NBVReconstructionDataset(BaseDataset):
def __init__(self, config):
super(NBVReconstructionDataset, self).__init__(config)
self.config = config
2024-08-22 22:28:20 +08:00
self.root_dir = config["root_dir"]
2024-09-02 18:21:38 +08:00
self.split_file_path = config["split_file"]
self.scene_name_list = self.load_scene_name_list()
2024-08-22 22:28:20 +08:00
self.datalist = self.get_datalist()
2024-09-18 06:49:59 +00:00
self.pts_num = config["pts_num"]
2024-09-18 06:49:59 +00:00
self.type = config["type"]
2024-09-19 00:14:26 +08:00
self.cache = config.get("cache")
self.load_from_preprocess = config.get("load_from_preprocess", False)
2024-09-23 17:45:01 +08:00
2024-09-18 06:49:59 +00:00
if self.type == namespace.Mode.TEST:
2024-10-21 07:33:32 +00:00
#self.model_dir = config["model_dir"]
2024-09-18 06:49:59 +00:00
self.filter_degree = config["filter_degree"]
if self.type == namespace.Mode.TRAIN:
2024-10-28 19:15:48 +00:00
scale_ratio = 100
2024-09-23 17:45:01 +08:00
self.datalist = self.datalist*scale_ratio
2024-09-18 06:49:59 +00:00
if self.cache:
expr_root = ConfigManager.get("runner", "experiment", "root_dir")
expr_name = ConfigManager.get("runner", "experiment", "name")
self.cache_dir = os.path.join(expr_root, expr_name, "cache")
2024-09-29 18:11:55 +08:00
# self.preprocess_cache()
2024-08-22 22:28:20 +08:00
2024-09-02 18:21:38 +08:00
def load_scene_name_list(self):
scene_name_list = []
with open(self.split_file_path, "r") as f:
for line in f:
scene_name = line.strip()
scene_name_list.append(scene_name)
return scene_name_list
2024-09-29 18:11:55 +08:00
2024-08-22 20:27:21 +08:00
def get_datalist(self):
2024-08-22 22:28:20 +08:00
datalist = []
2024-09-02 18:21:38 +08:00
for scene_name in self.scene_name_list:
2024-09-24 09:10:25 +00:00
seq_num = DataLoadUtil.get_label_num(self.root_dir, scene_name)
scene_max_coverage_rate = 0
max_coverage_rate_list = []
for seq_idx in range(seq_num):
2024-09-29 18:11:55 +08:00
label_path = DataLoadUtil.get_label_path(
self.root_dir, scene_name, seq_idx
)
2024-09-24 09:10:25 +00:00
label_data = DataLoadUtil.load_label(label_path)
2024-08-22 22:28:20 +08:00
max_coverage_rate = label_data["max_coverage_rate"]
2024-09-24 09:10:25 +00:00
if max_coverage_rate > scene_max_coverage_rate:
scene_max_coverage_rate = max_coverage_rate
max_coverage_rate_list.append(max_coverage_rate)
2024-10-21 07:33:32 +00:00
if max_coverage_rate_list:
mean_coverage_rate = np.mean(max_coverage_rate_list)
2024-09-24 09:10:25 +00:00
for seq_idx in range(seq_num):
2024-09-29 18:11:55 +08:00
label_path = DataLoadUtil.get_label_path(
self.root_dir, scene_name, seq_idx
)
2024-09-24 09:10:25 +00:00
label_data = DataLoadUtil.load_label(label_path)
if max_coverage_rate_list[seq_idx] > mean_coverage_rate - 0.1:
for data_pair in label_data["data_pairs"]:
scanned_views = data_pair[0]
next_best_view = data_pair[1]
2024-09-29 18:11:55 +08:00
datalist.append(
{
"scanned_views": scanned_views,
"next_best_view": next_best_view,
"seq_max_coverage_rate": max_coverage_rate,
"scene_name": scene_name,
"label_idx": seq_idx,
"scene_max_coverage_rate": scene_max_coverage_rate,
}
)
2024-08-22 22:28:20 +08:00
return datalist
def preprocess_cache(self):
Log.info("preprocessing cache...")
for item_idx in range(len(self.datalist)):
self.__getitem__(item_idx)
Log.success("finish preprocessing cache.")
2024-09-29 18:11:55 +08:00
def load_from_cache(self, scene_name, curr_frame_idx):
cache_name = f"{scene_name}_{curr_frame_idx}.txt"
2024-09-18 06:49:59 +00:00
cache_path = os.path.join(self.cache_dir, cache_name)
if os.path.exists(cache_path):
data = np.loadtxt(cache_path)
return data
else:
return None
2024-09-29 18:11:55 +08:00
def save_to_cache(self, scene_name, curr_frame_idx, data):
cache_name = f"{scene_name}_{curr_frame_idx}.txt"
2024-09-18 06:49:59 +00:00
cache_path = os.path.join(self.cache_dir, cache_name)
try:
np.savetxt(cache_path, data)
except Exception as e:
Log.error(f"Save cache failed: {e}")
2024-09-29 18:11:55 +08:00
2024-08-22 22:28:20 +08:00
def __getitem__(self, index):
data_item_info = self.datalist[index]
scanned_views = data_item_info["scanned_views"]
nbv = data_item_info["next_best_view"]
2024-09-24 09:10:25 +00:00
max_coverage_rate = data_item_info["seq_max_coverage_rate"]
scene_name = data_item_info["scene_name"]
2024-09-29 18:11:55 +08:00
(
scanned_views_pts,
scanned_coverages_rate,
scanned_n_to_world_pose,
2024-10-21 07:33:32 +00:00
) = ([], [], [])
2024-08-22 22:28:20 +08:00
for view in scanned_views:
frame_idx = view[0]
coverage_rate = view[1]
view_path = DataLoadUtil.get_path(self.root_dir, scene_name, frame_idx)
2024-09-12 15:11:09 +08:00
cam_info = DataLoadUtil.load_cam_info(view_path, binocular=True)
n_to_world_pose = cam_info["cam_to_world"]
target_point_cloud = (
DataLoadUtil.load_from_preprocessed_pts(view_path)
)
downsampled_target_point_cloud = PtsUtil.random_downsample_point_cloud(
target_point_cloud, self.pts_num
)
2024-08-30 19:21:18 +08:00
scanned_views_pts.append(downsampled_target_point_cloud)
2024-09-29 18:11:55 +08:00
scanned_coverages_rate.append(coverage_rate)
n_to_world_6d = PoseUtil.matrix_to_rotation_6d_numpy(
np.asarray(n_to_world_pose[:3, :3])
)
n_to_world_trans = n_to_world_pose[:3, 3]
2024-09-19 00:20:26 +08:00
n_to_world_9d = np.concatenate([n_to_world_6d, n_to_world_trans], axis=0)
scanned_n_to_world_pose.append(n_to_world_9d)
2024-10-06 13:48:54 +08:00
2024-08-22 22:28:20 +08:00
nbv_idx, nbv_coverage_rate = nbv[0], nbv[1]
nbv_path = DataLoadUtil.get_path(self.root_dir, scene_name, nbv_idx)
2024-08-22 22:28:20 +08:00
cam_info = DataLoadUtil.load_cam_info(nbv_path)
2024-08-30 19:21:18 +08:00
best_frame_to_world = cam_info["cam_to_world"]
2024-09-29 18:11:55 +08:00
best_to_world_6d = PoseUtil.matrix_to_rotation_6d_numpy(
np.asarray(best_frame_to_world[:3, :3])
)
best_to_world_trans = best_frame_to_world[:3, 3]
best_to_world_9d = np.concatenate(
[best_to_world_6d, best_to_world_trans], axis=0
)
2024-09-24 09:10:25 +00:00
combined_scanned_views_pts = np.concatenate(scanned_views_pts, axis=0)
2024-10-06 13:48:54 +08:00
fps_downsampled_combined_scanned_pts, fps_idx = PtsUtil.fps_downsample_point_cloud(
combined_scanned_views_pts, self.pts_num, require_idx=True
2024-09-29 18:11:55 +08:00
)
2024-10-06 12:01:10 +08:00
2024-10-21 07:33:32 +00:00
combined_scanned_views_pts_mask = np.zeros(len(combined_scanned_views_pts), dtype=np.uint8)
2024-10-06 13:48:54 +08:00
start_idx = 0
for i in range(len(scanned_views_pts)):
end_idx = start_idx + len(scanned_views_pts[i])
combined_scanned_views_pts_mask[start_idx:end_idx] = i
start_idx = end_idx
fps_downsampled_combined_scanned_pts_mask = combined_scanned_views_pts_mask[fps_idx]
2024-08-22 22:28:20 +08:00
data_item = {
2024-10-06 13:48:54 +08:00
"scanned_pts": np.asarray(scanned_views_pts, dtype=np.float32), # Ndarray(S x Nv x 3)
"scanned_pts_mask": np.asarray(fps_downsampled_combined_scanned_pts_mask,dtype=np.uint8), # Ndarray(N), range(0, S)
"combined_scanned_pts": np.asarray(fps_downsampled_combined_scanned_pts, dtype=np.float32), # Ndarray(N x 3)
"scanned_coverage_rate": scanned_coverages_rate, # List(S): Float, range(0, 1)
"scanned_n_to_world_pose_9d": np.asarray(scanned_n_to_world_pose, dtype=np.float32), # Ndarray(S x 9)
"best_coverage_rate": nbv_coverage_rate, # Float, range(0, 1)
"best_to_world_pose_9d": np.asarray(best_to_world_9d, dtype=np.float32), # Ndarray(9)
"seq_max_coverage_rate": max_coverage_rate, # Float, range(0, 1)
"scene_name": scene_name, # String
2024-08-22 22:28:20 +08:00
}
2024-09-29 18:11:55 +08:00
2024-08-22 22:28:20 +08:00
return data_item
def __len__(self):
return len(self.datalist)
2024-09-29 18:11:55 +08:00
def get_collate_fn(self):
def collate_fn(batch):
2024-09-12 15:11:09 +08:00
collate_data = {}
2024-10-06 13:48:54 +08:00
''' ------ Varialbe Length ------ '''
2024-09-29 18:11:55 +08:00
collate_data["scanned_pts"] = [
torch.tensor(item["scanned_pts"]) for item in batch
]
collate_data["scanned_n_to_world_pose_9d"] = [
torch.tensor(item["scanned_n_to_world_pose_9d"]) for item in batch
]
2024-10-06 13:48:54 +08:00
''' ------ Fixed Length ------ '''
2024-09-29 18:11:55 +08:00
collate_data["best_to_world_pose_9d"] = torch.stack(
[torch.tensor(item["best_to_world_pose_9d"]) for item in batch]
)
collate_data["combined_scanned_pts"] = torch.stack(
[torch.tensor(item["combined_scanned_pts"]) for item in batch]
)
2024-10-06 13:48:54 +08:00
collate_data["scanned_pts_mask"] = torch.stack(
[torch.tensor(item["scanned_pts_mask"]) for item in batch]
)
for key in batch[0].keys():
2024-09-29 18:11:55 +08:00
if key not in [
"scanned_pts",
2024-10-06 12:01:10 +08:00
"scanned_pts_mask",
2024-09-29 18:11:55 +08:00
"scanned_n_to_world_pose_9d",
"best_to_world_pose_9d",
"combined_scanned_pts",
]:
2024-09-12 15:11:09 +08:00
collate_data[key] = [item[key] for item in batch]
return collate_data
2024-09-29 18:11:55 +08:00
return collate_fn
2024-08-22 22:28:20 +08:00
2024-09-18 15:55:34 +08:00
# -------------- Debug ---------------- #
2024-08-22 22:28:20 +08:00
if __name__ == "__main__":
import torch
2024-09-29 18:11:55 +08:00
2024-09-02 18:21:38 +08:00
seed = 0
torch.manual_seed(seed)
np.random.seed(seed)
2024-08-22 22:28:20 +08:00
config = {
2024-10-21 07:33:32 +00:00
"root_dir": "/data/hofee/data/packed_preprocessed_data",
2024-09-19 11:44:10 +00:00
"source": "nbv_reconstruction_dataset",
2024-10-21 07:33:32 +00:00
"split_file": "/data/hofee/data/OmniObject3d_train.txt",
2024-09-24 09:10:25 +00:00
"load_from_preprocess": True,
"ratio": 0.5,
"batch_size": 2,
2024-09-18 06:49:59 +00:00
"filter_degree": 75,
2024-08-22 22:28:20 +08:00
"num_workers": 0,
2024-09-19 11:44:10 +00:00
"pts_num": 4096,
"type": namespace.Mode.TRAIN,
2024-08-22 22:28:20 +08:00
}
ds = NBVReconstructionDataset(config)
2024-08-30 17:57:47 +08:00
print(len(ds))
2024-09-29 18:11:55 +08:00
# ds.__getitem__(10)
2024-08-22 22:28:20 +08:00
dl = ds.get_loader(shuffle=True)
for idx, data in enumerate(dl):
2024-09-12 15:11:09 +08:00
data = ds.process_batch(data, "cuda:0")
print(data)
2024-09-18 06:49:59 +00:00
# ------ Debug Start ------
2024-09-29 18:11:55 +08:00
import ipdb
ipdb.set_trace()
2024-09-18 06:49:59 +00:00
# ------ Debug End ------