nbv_reconstruction/core/pipeline.py

117 lines
4.2 KiB
Python
Raw Normal View History

2024-09-29 18:37:03 +08:00
import torch
2024-10-28 18:25:53 +00:00
import time
2024-09-29 18:37:03 +08:00
from torch import nn
import PytorchBoot.namespace as namespace
import PytorchBoot.stereotype as stereotype
from PytorchBoot.factory.component_factory import ComponentFactory
from PytorchBoot.utils import Log
2024-10-29 12:04:54 +00:00
@stereotype.pipeline("nbv_reconstruction_pipeline")
class NBVReconstructionPipeline(nn.Module):
2024-09-29 18:37:03 +08:00
def __init__(self, config):
2024-10-29 12:04:54 +00:00
super(NBVReconstructionPipeline, self).__init__()
2024-09-29 18:37:03 +08:00
self.config = config
self.module_config = config["modules"]
2024-10-06 13:48:54 +08:00
self.pts_encoder = ComponentFactory.create(
namespace.Stereotype.MODULE, self.module_config["pts_encoder"]
)
self.pose_encoder = ComponentFactory.create(
namespace.Stereotype.MODULE, self.module_config["pose_encoder"]
)
self.transformer_seq_encoder = ComponentFactory.create(
namespace.Stereotype.MODULE, self.module_config["transformer_seq_encoder"]
2024-10-06 13:48:54 +08:00
)
self.view_finder = ComponentFactory.create(
namespace.Stereotype.MODULE, self.module_config["view_finder"]
)
2024-10-06 13:48:54 +08:00
2024-09-29 18:37:03 +08:00
self.eps = float(self.config["eps"])
2024-10-06 13:48:54 +08:00
2024-09-29 18:37:03 +08:00
def forward(self, data):
mode = data["mode"]
2024-10-06 13:48:54 +08:00
2024-09-29 18:37:03 +08:00
if mode == namespace.Mode.TRAIN:
return self.forward_train(data)
elif mode == namespace.Mode.TEST:
return self.forward_test(data)
else:
Log.error("Unknown mode: {}".format(mode), True)
2024-10-06 13:48:54 +08:00
2024-09-29 18:37:03 +08:00
def pertube_data(self, gt_delta_9d):
bs = gt_delta_9d.shape[0]
2024-10-06 13:48:54 +08:00
random_t = (
torch.rand(bs, device=gt_delta_9d.device) * (1.0 - self.eps) + self.eps
)
2024-09-29 18:37:03 +08:00
random_t = random_t.unsqueeze(-1)
mu, std = self.view_finder.marginal_prob(gt_delta_9d, random_t)
std = std.view(-1, 1)
z = torch.randn_like(gt_delta_9d)
perturbed_x = mu + z * std
2024-10-06 13:48:54 +08:00
target_score = -z * std / (std**2)
2024-09-29 18:37:03 +08:00
return perturbed_x, random_t, target_score, std
2024-10-06 13:48:54 +08:00
2024-09-29 18:37:03 +08:00
def forward_train(self, data):
2024-10-28 18:25:53 +00:00
start_time = time.time()
2024-09-29 18:37:03 +08:00
main_feat = self.get_main_feat(data)
2024-10-28 18:25:53 +00:00
end_time = time.time()
print("get_main_feat time: ", end_time - start_time)
2024-10-06 13:48:54 +08:00
""" get std """
2024-09-29 18:37:03 +08:00
best_to_world_pose_9d_batch = data["best_to_world_pose_9d"]
2024-10-06 13:48:54 +08:00
perturbed_x, random_t, target_score, std = self.pertube_data(
best_to_world_pose_9d_batch
)
2024-09-29 18:37:03 +08:00
input_data = {
"sampled_pose": perturbed_x,
"t": random_t,
"main_feat": main_feat,
}
estimated_score = self.view_finder(input_data)
output = {
"estimated_score": estimated_score,
"target_score": target_score,
2024-10-06 13:48:54 +08:00
"std": std,
2024-09-29 18:37:03 +08:00
}
return output
2024-10-06 13:48:54 +08:00
def forward_test(self, data):
2024-09-29 18:37:03 +08:00
main_feat = self.get_main_feat(data)
2024-10-06 13:48:54 +08:00
estimated_delta_rot_9d, in_process_sample = self.view_finder.next_best_view(
main_feat
)
2024-09-29 18:37:03 +08:00
result = {
"pred_pose_9d": estimated_delta_rot_9d,
2024-10-06 13:48:54 +08:00
"in_process_sample": in_process_sample,
2024-09-29 18:37:03 +08:00
}
return result
2024-10-06 13:48:54 +08:00
2024-09-29 18:37:03 +08:00
def get_main_feat(self, data):
2024-10-06 13:48:54 +08:00
scanned_n_to_world_pose_9d_batch = data[
"scanned_n_to_world_pose_9d"
] # List(B): Tensor(S x 9)
2024-09-29 18:37:03 +08:00
device = next(self.parameters()).device
2024-09-30 00:55:34 +08:00
embedding_list_batch = []
2024-10-06 13:48:54 +08:00
combined_scanned_pts_batch = data["combined_scanned_pts"] # Tensor(B x N x 3)
2024-10-29 12:04:54 +00:00
global_scanned_feat = self.pts_encoder.encode_points(
combined_scanned_pts_batch, require_per_point_feat=False
) # global_scanned_feat: Tensor(B x Dg)
2024-10-06 13:48:54 +08:00
2024-10-29 12:04:54 +00:00
for scanned_n_to_world_pose_9d in scanned_n_to_world_pose_9d_batch:
2024-10-06 13:48:54 +08:00
scanned_n_to_world_pose_9d = scanned_n_to_world_pose_9d.to(device) # Tensor(S x 9)
2024-10-29 12:04:54 +00:00
pose_feat_seq = self.pose_encoder.encode_pose(scanned_n_to_world_pose_9d) # Tensor(S x Dp)
seq_embedding = pose_feat_seq
embedding_list_batch.append(seq_embedding) # List(B): Tensor(S x (Dp))
2024-10-28 19:15:48 +00:00
seq_feat = self.transformer_seq_encoder.encode_sequence(embedding_list_batch) # Tensor(B x Ds)
2024-10-06 13:48:54 +08:00
main_feat = torch.cat([seq_feat, global_scanned_feat], dim=-1) # Tensor(B x (Ds+Dg))
2024-09-29 18:37:03 +08:00
if torch.isnan(main_feat).any():
Log.error("nan in main_feat", True)
2024-10-06 13:48:54 +08:00
2024-09-29 18:37:03 +08:00
return main_feat