import numpy as np from frankapy import FrankaArm from autolab_core import RigidTransform from scipy.spatial.transform import Rotation as R import serial import time class ControlUtil: __fa:FrankaArm = None __ser: serial.Serial = None curr_rotation = 0 # BASE_TO_WORLD:np.ndarray = np.asarray([ # [1, 0, 0, -0.68834619], # [0, 1, 0, -0.01785319], # [0, 0, 1, -0.11924244], # [0, 0, 0, 1] # ]) # BASELINE_DIS = 0.1 # LEFT_TO_RIGHT_ANGLE = -25.0 # CAMERA_TO_LEFT_CAMERA:np.ndarray = np.asarray([ # [1, 0, 0, BASELINE_DIS/2 * np.cos(np.radians(-LEFT_TO_RIGHT_ANGLE/2))], # [0, 1, 0, 0], # [0, 0, 1, BASELINE_DIS/2 * np.sin(np.radians(-LEFT_TO_RIGHT_ANGLE/2))], # [0, 0, 0, 1] # ]) # CAMERA_TO_LEFT_CAMERA[:3, :3] = R.from_euler('y', LEFT_TO_RIGHT_ANGLE/2, degrees=True).as_matrix() CAMERA_CORRECTION_ANGLE = -13 CAMERA_CORRECTION:np.ndarray = np.eye(4) CAMERA_CORRECTION[:3, :3] = R.from_euler('y', CAMERA_CORRECTION_ANGLE, degrees=True).as_matrix() BASE_TO_WORLD:np.ndarray = np.asarray([ [1, 0, 0, -0.49602172], [0, 1, 0, 0.06688724], [0, 0, 1, -0.2488704 ], [0, 0, 0, 1] ]) CAMERA_TO_GRIPPER:np.ndarray = np.asarray( [[-0.00757086, -0.99984193, 0.01608569, 0.02644546], [ 0.99993362, -0.00770935, -0.00856502, -0.04860572], [ 0.00868767, 0.01601977, 0.99983391, -0.02169477], [ 0., 0. , 0. , 1. , ] ]) INIT_GRIPPER_POSE:np.ndarray = np.asarray( [[0.41869126 ,0.87596275 , 0.23951774 , 0.36005292], [ 0.70787907 ,-0.4800251 , 0.51813998 ,-0.26499909], [ 0.56884584, -0.04739109 ,-0.82107382 ,0.66881103], [ 0. , 0. , 0. , 1. ]]) # INIT_GRIPPER_POSE:np.ndarray = np.asarray( # [[1 ,0 , 0 , 0.5], # [ 0 ,-1 , 0 ,0], # [ 0, 0 ,-1 ,0.6], # [ 0. , 0. , 0. , 1. ]]) INIT_JOINTS:np.ndarray = np.asarray([-1.64987928,-0.73557812,-0.02676473,-2.08365335,0.01794927,1.5182423,0.73276058]) @staticmethod def connect_robot(): if ControlUtil.__fa is None: ControlUtil.__fa = FrankaArm(robot_num=1) if ControlUtil.__ser is None: ControlUtil.__ser = serial.Serial(port="/dev/ttyUSB0", baudrate=115200) @staticmethod def franka_reset() -> None: #ControlUtil.__fa.goto_joints(ControlUtil.INIT_JOINTS, duration=5, use_impedance=False, ignore_errors=False) ControlUtil.__fa.reset_joints() @staticmethod def init() -> None: ControlUtil.franka_reset() ControlUtil.set_gripper_pose(ControlUtil.INIT_GRIPPER_POSE) @staticmethod def get_pose() -> np.ndarray: gripper_to_base = ControlUtil.get_curr_gripper_to_base_pose() cam_to_world = ControlUtil.BASE_TO_WORLD @ gripper_to_base @ ControlUtil.CAMERA_TO_GRIPPER return cam_to_world @staticmethod def set_pose(cam_to_world: np.ndarray) -> None: gripper_to_base = ControlUtil.solve_gripper_to_base(cam_to_world) ControlUtil.set_gripper_pose(gripper_to_base) @staticmethod def rotate_display_table(degree): turn_directions = { "left": 1, "right": 0 } delta_degree = degree - ControlUtil.curr_rotation ControlUtil.curr_rotation = degree print(f"Table rotated {ControlUtil.curr_rotation} degree") if delta_degree >= 0: turn_angle = delta_degree turn_direction = turn_directions["left"] else: turn_angle = -delta_degree turn_direction = turn_directions["right"] write_len = ControlUtil.__ser.write(f"CT+TRUNSINGLE({turn_direction},{turn_angle});".encode('utf-8')) print(f"send command: CT+TRUNSINGLE({turn_direction},{turn_angle});") return delta_degree @staticmethod def get_curr_gripper_to_base_pose() -> np.ndarray: return ControlUtil.__fa.get_pose().matrix @staticmethod def get_curr_joints() -> np.ndarray: return ControlUtil.__fa.get_joints() @staticmethod def set_gripper_pose(gripper_to_base: np.ndarray) -> None: gripper_to_base = RigidTransform(rotation=gripper_to_base[:3, :3], translation=gripper_to_base[:3, 3], from_frame="franka_tool", to_frame="world") ControlUtil.__fa.goto_pose(gripper_to_base, duration=6, use_impedance=False, ignore_errors=False, ignore_virtual_walls=True) @staticmethod def solve_gripper_to_base(cam_to_world: np.ndarray) -> np.ndarray: return np.linalg.inv(ControlUtil.BASE_TO_WORLD) @ cam_to_world @ np.linalg.inv(ControlUtil.CAMERA_TO_GRIPPER) @staticmethod def sovle_cam_to_world(gripper_to_base: np.ndarray) -> np.ndarray: return ControlUtil.BASE_TO_WORLD @ gripper_to_base @ ControlUtil.CAMERA_TO_GRIPPER @staticmethod def check_limit(new_cam_to_world): if new_cam_to_world[0,3] > 0 or new_cam_to_world[1,3] > 0: # if new_cam_to_world[0,3] > 0: return False x = abs(new_cam_to_world[0,3]) y = abs(new_cam_to_world[1,3]) tan_y_x = y/x min_angle = 20 / 180 * np.pi max_angle = 50 / 180 * np.pi if tan_y_x < np.tan(min_angle) or tan_y_x > np.tan(max_angle): return False return True @staticmethod def solve_display_table_rot_and_cam_to_world(cam_to_world: np.ndarray) -> tuple: if ControlUtil.check_limit(cam_to_world): return 0, cam_to_world else: min_display_table_rot = 180 min_new_cam_to_world = None for display_table_rot in np.linspace(0.1,360, 1800): new_world_to_world = ControlUtil.get_z_axis_rot_mat(display_table_rot) new_cam_to_new_world = cam_to_world new_cam_to_world = new_world_to_world @ new_cam_to_new_world if ControlUtil.check_limit(new_cam_to_world): if display_table_rot < min_display_table_rot: min_display_table_rot, min_new_cam_to_world = display_table_rot, new_cam_to_world if abs(display_table_rot - 360) < min_display_table_rot: min_display_table_rot, min_new_cam_to_world = display_table_rot - 360, new_cam_to_world if min_new_cam_to_world is None: raise ValueError("No valid display table rotation found") return min_display_table_rot, min_new_cam_to_world @staticmethod def get_z_axis_rot_mat(degree): radian = np.radians(degree) return np.array([ [np.cos(radian), -np.sin(radian), 0, 0], [np.sin(radian), np.cos(radian), 0, 0], [0, 0, 1, 0], [0, 0, 0, 1] ]) @staticmethod def get_gripper_to_base_axis_angle(gripper_to_base: np.ndarray) -> bool: rot_mat = gripper_to_base[:3,:3] gripper_z_axis = rot_mat[:,2] base_x_axis = np.array([1,0,0]) angle = np.arccos(np.dot(gripper_z_axis, base_x_axis)) return angle @staticmethod def move_to(pose: np.ndarray): rot_degree, cam_to_world = ControlUtil.solve_display_table_rot_and_cam_to_world(pose) delta_degree = ControlUtil.rotate_display_table(rot_degree) exec_time = abs(delta_degree)/9 start_time = time.time() ControlUtil.set_pose(cam_to_world) end_time = time.time() print(f"Move to pose with rotation {rot_degree} degree, exec time: {end_time - start_time}|exec time: {exec_time}") if end_time - start_time < exec_time: time.sleep(exec_time - (end_time - start_time)) @staticmethod def absolute_rotate_display_table(degree): exec_time = abs(degree)/9 write_len = ControlUtil.__ser.write(f"CT+TRUNSINGLE({0},{degree});".encode('utf-8')) print(f"send command: CT+TRUNSINGLE({0},{degree});") time.sleep(exec_time) # ----------- Debug Test ------------- if __name__ == "__main__": ControlUtil.connect_robot() #ControlUtil.franka_reset() print(ControlUtil.get_curr_gripper_to_base_pose()) # ControlUtil.rotate_display_table(180) # ControlUtil.init() # ControlUtil.franka_reset() # def main_test(): # print(ControlUtil.get_curr_gripper_to_base_pose()) # ControlUtil.init() # def rotate_back(rotation): # ControlUtil.rotate_display_table(-rotation) # #main_test() # import sys; sys.path.append("/home/yan20/nbv_rec/project/franka_control") # from utils.communicate_util import CommunicateUtil # import ipdb # ControlUtil.init() # view_data_0 = CommunicateUtil.get_view_data(init=True) # depth_extrinsics_0 = view_data_0["depth_extrinsics"] # cam_to_world_0 = ControlUtil.get_pose() # print("cam_extrinsics_0") # print(depth_extrinsics_0) # print("cam_to_world_0") # print(cam_to_world_0) # ipdb.set_trace() # TEST_POSE:np.ndarray = np.asarray([ # [ 0.46532393, 0.62171798, 0.63002284, 0.30230963], # [ 0.43205618, -0.78075723, 0.45136491, -0.29127173], # [ 0.77251656, 0.06217437, -0.63193429, 0.559957 ], # [ 0. , 0. , 0. , 1. ], # ]) # TEST_POSE_CAM_TO_WORLD = ControlUtil.BASE_TO_WORLD @ TEST_POSE @ ControlUtil.CAMERA_TO_GRIPPER # ControlUtil.move_to(TEST_POSE_CAM_TO_WORLD) # view_data_1 = CommunicateUtil.get_view_data() # depth_extrinsics_1 = view_data_1["depth_extrinsics"] # depth_extrinsics_1[:3,3] = depth_extrinsics_1[:3,3] / 1000 # cam_to_world_1 = ControlUtil.get_pose() # print("cam_extrinsics_1") # print(depth_extrinsics_1) # print("cam_to_world_1") # print(TEST_POSE_CAM_TO_WORLD) # actual_cam_to_world_1 = cam_to_world_0 @ depth_extrinsics_1 # print("actual_cam_to_world_1") # print(actual_cam_to_world_1) # ipdb.set_trace() # TEST_POSE_2:np.ndarray = np.asarray( # [[ 0.74398544, -0.61922696, 0.251049, 0.47000935], # [-0.47287207, -0.75338888, -0.45692666, 0.20843903], # [ 0.47207883 , 0.22123272, -0.85334192, 0.57863381], # [ 0. , 0. , 0. , 1. , ]] # ) # TEST_POSE_CAM_TO_WORLD_2 = ControlUtil.BASE_TO_WORLD @ TEST_POSE_2 @ ControlUtil.CAMERA_TO_GRIPPER # #ControlUtil.move_to(TEST_POSE_CAM_TO_WORLD_2) # ControlUtil.set_pose(TEST_POSE_CAM_TO_WORLD_2) # view_data_2 = CommunicateUtil.get_view_data() # depth_extrinsics_2 = view_data_2["depth_extrinsics"] # depth_extrinsics_2[:3,3] = depth_extrinsics_2[:3,3] / 1000 # cam_to_world_2 = ControlUtil.get_pose() # print("cam_extrinsics_2") # print(depth_extrinsics_2) # print("cam_to_world_2") # print(TEST_POSE_CAM_TO_WORLD_2) # actual_cam_to_world_2 = cam_to_world_0 @ depth_extrinsics_2 # print("actual_cam_to_world_2") # print(actual_cam_to_world_2) # ipdb.set_trace()