Compare commits
20 Commits
07300696c4
...
master
Author | SHA1 | Date | |
---|---|---|---|
![]() |
307994c20d | ||
![]() |
20514be419 | ||
2f87a2626c | |||
41ee79db0c | |||
![]() |
07dcdb3452 | ||
8d43d4de60 | |||
3fe74eb6eb | |||
cd85fed3a0 | |||
![]() |
8fd2d6b1e1 | ||
![]() |
f6c4db859e | ||
ba36803fba | |||
![]() |
f8514564c1 | ||
![]() |
3ab046b134 | ||
3f1ae95ff8 | |||
![]() |
d9d2716ba7 | ||
![]() |
825f8652d5 | ||
![]() |
2209acce1b | ||
![]() |
dc769c5c1f | ||
e9dfde6b9c | |||
49fdb7f948 |
165
.gitignore
vendored
Normal file
165
.gitignore
vendored
Normal file
@@ -0,0 +1,165 @@
|
||||
# ---> Python
|
||||
# Byte-compiled / optimized / DLL files
|
||||
test/
|
||||
__pycache__/
|
||||
*.py[cod]
|
||||
*$py.class
|
||||
test_output/
|
||||
# C extensions
|
||||
*.so
|
||||
*.txt
|
||||
experiments/
|
||||
temp_output/
|
||||
# Distribution / packaging
|
||||
.Python
|
||||
build/
|
||||
develop-eggs/
|
||||
dist/
|
||||
downloads/
|
||||
eggs/
|
||||
.eggs/
|
||||
lib/
|
||||
lib64/
|
||||
parts/
|
||||
sdist/
|
||||
var/
|
||||
wheels/
|
||||
share/python-wheels/
|
||||
*.egg-info/
|
||||
.installed.cfg
|
||||
*.egg
|
||||
MANIFEST
|
||||
|
||||
# PyInstaller
|
||||
# Usually these files are written by a python script from a template
|
||||
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
||||
*.manifest
|
||||
*.spec
|
||||
|
||||
# Installer logs
|
||||
pip-log.txt
|
||||
pip-delete-this-directory.txt
|
||||
|
||||
# Unit test / coverage reports
|
||||
htmlcov/
|
||||
.tox/
|
||||
.nox/
|
||||
.coverage
|
||||
.coverage.*
|
||||
.cache
|
||||
nosetests.xml
|
||||
coverage.xml
|
||||
*.cover
|
||||
*.py,cover
|
||||
.hypothesis/
|
||||
.pytest_cache/
|
||||
cover/
|
||||
|
||||
# Translations
|
||||
*.mo
|
||||
*.pot
|
||||
|
||||
# Django stuff:
|
||||
*.log
|
||||
local_settings.py
|
||||
db.sqlite3
|
||||
db.sqlite3-journal
|
||||
|
||||
# Flask stuff:
|
||||
instance/
|
||||
.webassets-cache
|
||||
|
||||
# Scrapy stuff:
|
||||
.scrapy
|
||||
|
||||
# Sphinx documentation
|
||||
docs/_build/
|
||||
|
||||
# PyBuilder
|
||||
.pybuilder/
|
||||
target/
|
||||
|
||||
# Jupyter Notebook
|
||||
.ipynb_checkpoints
|
||||
|
||||
# IPython
|
||||
profile_default/
|
||||
ipython_config.py
|
||||
|
||||
# pyenv
|
||||
# For a library or package, you might want to ignore these files since the code is
|
||||
# intended to run in multiple environments; otherwise, check them in:
|
||||
# .python-version
|
||||
|
||||
# pipenv
|
||||
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
||||
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
||||
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
||||
# install all needed dependencies.
|
||||
#Pipfile.lock
|
||||
|
||||
# poetry
|
||||
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
||||
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
||||
# commonly ignored for libraries.
|
||||
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
||||
#poetry.lock
|
||||
|
||||
# pdm
|
||||
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
||||
#pdm.lock
|
||||
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
||||
# in version control.
|
||||
# https://pdm.fming.dev/#use-with-ide
|
||||
.pdm.toml
|
||||
|
||||
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
||||
__pypackages__/
|
||||
|
||||
# Celery stuff
|
||||
celerybeat-schedule
|
||||
celerybeat.pid
|
||||
|
||||
# SageMath parsed files
|
||||
*.sage.py
|
||||
|
||||
# Environments
|
||||
.env
|
||||
.venv
|
||||
env/
|
||||
venv/
|
||||
ENV/
|
||||
env.bak/
|
||||
venv.bak/
|
||||
|
||||
# Spyder project settings
|
||||
.spyderproject
|
||||
.spyproject
|
||||
|
||||
# Rope project settings
|
||||
.ropeproject
|
||||
|
||||
# mkdocs documentation
|
||||
/site
|
||||
|
||||
# mypy
|
||||
.mypy_cache/
|
||||
.dmypy.json
|
||||
dmypy.json
|
||||
|
||||
# Pyre type checker
|
||||
.pyre/
|
||||
|
||||
# pytype static type analyzer
|
||||
.pytype/
|
||||
|
||||
# Cython debug symbols
|
||||
cython_debug/
|
||||
|
||||
# PyCharm
|
||||
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
||||
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
||||
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
||||
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
||||
#.idea/
|
||||
|
16
app_cad.py
Normal file
16
app_cad.py
Normal file
@@ -0,0 +1,16 @@
|
||||
from PytorchBoot.application import PytorchBootApplication
|
||||
from runners.cad_open_loop_strategy import CADOpenLoopStrategyRunner
|
||||
from runners.cad_close_loop_strategy import CADCloseLoopStrategyRunner
|
||||
|
||||
|
||||
@PytorchBootApplication("cad_ol")
|
||||
class AppCADOpenLoopStrategy:
|
||||
@staticmethod
|
||||
def start():
|
||||
CADOpenLoopStrategyRunner("configs/cad_open_loop_config.yaml").run()
|
||||
|
||||
@PytorchBootApplication("cad_cl")
|
||||
class AppCADCloseLoopStrategy:
|
||||
@staticmethod
|
||||
def start():
|
||||
CADCloseLoopStrategyRunner("configs/cad_close_loop_config.yaml").run()
|
15
combine_all_pts.py
Normal file
15
combine_all_pts.py
Normal file
@@ -0,0 +1,15 @@
|
||||
import numpy as np
|
||||
import os
|
||||
|
||||
if __name__ == "__main__":
|
||||
pts_dir_path = "/home/yan20/nbv_rec/project/franka_control/temp_output/cad_model_world/pts"
|
||||
pts_dir = os.listdir(pts_dir_path)
|
||||
pts_list = []
|
||||
for i in range(len(pts_dir)):
|
||||
pts_path = os.path.join(pts_dir_path, pts_dir[i])
|
||||
pts = np.loadtxt(pts_path)
|
||||
pts_list.append(pts)
|
||||
combined_pts = np.vstack(pts_list)
|
||||
path = "/home/yan20/nbv_rec/project/franka_control"
|
||||
np.savetxt(os.path.join(path, "combined_pts.txt"), combined_pts)
|
||||
|
46
configs/cad_close_loop_config.yaml
Normal file
46
configs/cad_close_loop_config.yaml
Normal file
@@ -0,0 +1,46 @@
|
||||
|
||||
runner:
|
||||
general:
|
||||
seed: 1
|
||||
device: cpu
|
||||
cuda_visible_devices: "0,1,2,3,4,5,6,7"
|
||||
|
||||
experiment:
|
||||
name: debug
|
||||
root_dir: "experiments"
|
||||
|
||||
generate:
|
||||
blender_bin_path: /home/yan20/Desktop/nbv_rec/project/blender_app/blender-4.2.2-linux-x64/blender
|
||||
generator_script_path: /home/yan20/Desktop/nbv_rec/project/blender_app/data_generator.py
|
||||
model_dir: "/home/yan20/Desktop/nbv_rec/data/models"
|
||||
table_model_path: "/home/yan20/Desktop/nbv_rec/data/table.obj"
|
||||
model_start_idx: 0
|
||||
voxel_size: 0.002
|
||||
max_shot_view_num: 50
|
||||
min_shot_new_pts_num: 10
|
||||
min_coverage_increase: 0.001
|
||||
max_view: 64
|
||||
min_view: 32
|
||||
max_diag: 0.7
|
||||
min_diag: 0.01
|
||||
random_view_ratio: 0
|
||||
min_cam_table_included_degree: 20
|
||||
obj_name: "bear"
|
||||
light_and_camera_config:
|
||||
Camera:
|
||||
near_plane: 0.01
|
||||
far_plane: 5
|
||||
fov_vertical: 25
|
||||
resolution: [640,400]
|
||||
eye_distance: 0.15
|
||||
eye_angle: 25
|
||||
Light:
|
||||
location: [0,0,3.5]
|
||||
orientation: [0,0,0]
|
||||
power: 150
|
||||
|
||||
reconstruct:
|
||||
soft_overlap_threshold: 0.3
|
||||
hard_overlap_threshold: 0.6
|
||||
scan_points_threshold: 10
|
||||
|
43
configs/cad_open_loop_config.yaml
Normal file
43
configs/cad_open_loop_config.yaml
Normal file
@@ -0,0 +1,43 @@
|
||||
|
||||
runner:
|
||||
general:
|
||||
seed: 1
|
||||
device: cpu
|
||||
cuda_visible_devices: "0,1,2,3,4,5,6,7"
|
||||
|
||||
experiment:
|
||||
name: debug
|
||||
root_dir: "experiments"
|
||||
|
||||
generate:
|
||||
blender_bin_path: /home/yan20/Desktop/nbv_rec/project/blender_app/blender-4.2.2-linux-x64/blender
|
||||
generator_script_path: /home/yan20/Desktop/nbv_rec/project/blender_app/data_generator.py
|
||||
model_dir: "/home/yan20/Desktop/nbv_rec/data/models"
|
||||
table_model_path: "/home/yan20/Desktop/nbv_rec/data/table.obj"
|
||||
model_start_idx: 0
|
||||
voxel_size: 0.002
|
||||
max_view: 512
|
||||
min_view: 128
|
||||
max_diag: 0.7
|
||||
min_diag: 0.01
|
||||
random_view_ratio: 0
|
||||
min_cam_table_included_degree: 20
|
||||
obj_name: "bear"
|
||||
light_and_camera_config:
|
||||
Camera:
|
||||
near_plane: 0.01
|
||||
far_plane: 5
|
||||
fov_vertical: 25
|
||||
resolution: [640,400]
|
||||
eye_distance: 0.15
|
||||
eye_angle: 25
|
||||
Light:
|
||||
location: [0,0,3.5]
|
||||
orientation: [0,0,0]
|
||||
power: 150
|
||||
|
||||
reconstruct:
|
||||
soft_overlap_threshold: 0.3
|
||||
hard_overlap_threshold: 0.6
|
||||
scan_points_threshold: 10
|
||||
|
49
load_normal.py
Normal file
49
load_normal.py
Normal file
@@ -0,0 +1,49 @@
|
||||
import cv2
|
||||
import os
|
||||
import numpy as np
|
||||
|
||||
def load_normal(path, binocular=False, left_only=False):
|
||||
if binocular and not left_only:
|
||||
normal_path_L = os.path.join(
|
||||
os.path.dirname(path), "normal", os.path.basename(path) + "_L.png"
|
||||
)
|
||||
normal_image_L = cv2.imread(normal_path_L, cv2.IMREAD_UNCHANGED)
|
||||
normal_path_R = os.path.join(
|
||||
os.path.dirname(path), "normal", os.path.basename(path) + "_R.png"
|
||||
)
|
||||
normal_image_R = cv2.imread(normal_path_R, cv2.IMREAD_UNCHANGED)
|
||||
normalized_normal_image_L = normal_image_L / 255.0 * 2.0 - 1.0
|
||||
normalized_normal_image_R = normal_image_R / 255.0 * 2.0 - 1.0
|
||||
return normalized_normal_image_L, normalized_normal_image_R
|
||||
else:
|
||||
if binocular and left_only:
|
||||
normal_path = os.path.join(
|
||||
os.path.dirname(path), "normal", os.path.basename(path) + "_L.png"
|
||||
)
|
||||
else:
|
||||
normal_path = os.path.join(
|
||||
os.path.dirname(path), "normal", os.path.basename(path) + ".png"
|
||||
)
|
||||
normal_image = cv2.imread(normal_path, cv2.IMREAD_UNCHANGED)
|
||||
normalized_normal_image = normal_image / 255.0 * 2.0 - 1.0
|
||||
return normalized_normal_image
|
||||
|
||||
def show_rgb(event, x, y, flags, param):
|
||||
if event == cv2.EVENT_MOUSEMOVE:
|
||||
pixel_value = param[y, x]
|
||||
print(f"RGB at ({x},{y}): {pixel_value}")
|
||||
|
||||
if __name__ == "__main__":
|
||||
path = "/Users/hofee/temp/1"
|
||||
normal_image = load_normal(path, binocular=True, left_only=True)
|
||||
display_image = ((normal_image + 1.0) / 2.0 * 255).astype(np.uint8)
|
||||
|
||||
cv2.namedWindow("Normal Image")
|
||||
cv2.setMouseCallback("Normal Image", show_rgb, param=display_image)
|
||||
|
||||
while True:
|
||||
cv2.imshow("Normal Image", display_image)
|
||||
if cv2.waitKey(1) & 0xFF == ord('q'):
|
||||
break
|
||||
|
||||
cv2.destroyAllWindows()
|
244
runners/cad_close_loop_strategy.py
Normal file
244
runners/cad_close_loop_strategy.py
Normal file
@@ -0,0 +1,244 @@
|
||||
import os
|
||||
import time
|
||||
import trimesh
|
||||
import tempfile
|
||||
import subprocess
|
||||
import numpy as np
|
||||
from PytorchBoot.runners.runner import Runner
|
||||
from PytorchBoot.config import ConfigManager
|
||||
import PytorchBoot.stereotype as stereotype
|
||||
from PytorchBoot.utils.log_util import Log
|
||||
from PytorchBoot.status import status_manager
|
||||
|
||||
from utils.control_util import ControlUtil
|
||||
from utils.communicate_util import CommunicateUtil
|
||||
from utils.pts_util import PtsUtil
|
||||
from utils.reconstruction_util import ReconstructionUtil
|
||||
from utils.preprocess_util import save_scene_data, save_scene_data_multithread
|
||||
from utils.data_load import DataLoadUtil
|
||||
from utils.view_util import ViewUtil
|
||||
|
||||
|
||||
@stereotype.runner("CAD_close_loop_strategy_runner")
|
||||
class CADCloseLoopStrategyRunner(Runner):
|
||||
|
||||
def __init__(self, config_path: str):
|
||||
super().__init__(config_path)
|
||||
self.load_experiment("cad_strategy")
|
||||
self.status_info = {
|
||||
"status_manager": status_manager,
|
||||
"app_name": "cad",
|
||||
"runner_name": "CAD_close_loop_strategy_runner",
|
||||
}
|
||||
self.generate_config = ConfigManager.get("runner", "generate")
|
||||
self.reconstruct_config = ConfigManager.get("runner", "reconstruct")
|
||||
self.blender_bin_path = self.generate_config["blender_bin_path"]
|
||||
self.generator_script_path = self.generate_config["generator_script_path"]
|
||||
self.model_dir = self.generate_config["model_dir"]
|
||||
self.voxel_size = self.generate_config["voxel_size"]
|
||||
self.max_view = self.generate_config["max_view"]
|
||||
self.min_view = self.generate_config["min_view"]
|
||||
self.max_diag = self.generate_config["max_diag"]
|
||||
self.min_diag = self.generate_config["min_diag"]
|
||||
self.min_cam_table_included_degree = self.generate_config[
|
||||
"min_cam_table_included_degree"
|
||||
]
|
||||
self.max_shot_view_num = self.generate_config["max_shot_view_num"]
|
||||
self.min_shot_new_pts_num = self.generate_config["min_shot_new_pts_num"]
|
||||
self.min_coverage_increase = self.generate_config["min_coverage_increase"]
|
||||
|
||||
self.random_view_ratio = self.generate_config["random_view_ratio"]
|
||||
|
||||
self.soft_overlap_threshold = self.reconstruct_config["soft_overlap_threshold"]
|
||||
self.hard_overlap_threshold = self.reconstruct_config["hard_overlap_threshold"]
|
||||
self.scan_points_threshold = self.reconstruct_config["scan_points_threshold"]
|
||||
|
||||
def create_experiment(self, backup_name=None):
|
||||
super().create_experiment(backup_name)
|
||||
|
||||
def load_experiment(self, backup_name=None):
|
||||
super().load_experiment(backup_name)
|
||||
|
||||
def split_scan_pts_and_obj_pts(self, world_pts, z_threshold=0):
|
||||
scan_pts = world_pts[world_pts[:, 2] < z_threshold]
|
||||
obj_pts = world_pts[world_pts[:, 2] >= z_threshold]
|
||||
return scan_pts, obj_pts
|
||||
|
||||
def run_one_model(self, model_name):
|
||||
temp_dir = "/home/yan20/nbv_rec/project/franka_control/temp_output"
|
||||
ControlUtil.connect_robot()
|
||||
""" init robot """
|
||||
Log.info("[Part 1/5] start init and register")
|
||||
ControlUtil.init()
|
||||
|
||||
""" load CAD model """
|
||||
model_path = os.path.join(self.model_dir, model_name, "mesh.ply")
|
||||
temp_name = "cad_model_world"
|
||||
cad_model = trimesh.load(model_path)
|
||||
""" take first view """
|
||||
Log.info("[Part 1/5] take first view data")
|
||||
view_data = CommunicateUtil.get_view_data(init=True)
|
||||
first_cam_pts = ViewUtil.get_pts(view_data)
|
||||
first_cam_to_real_world = ControlUtil.get_pose()
|
||||
first_real_world_pts = PtsUtil.transform_point_cloud(
|
||||
first_cam_pts, first_cam_to_real_world
|
||||
)
|
||||
_, first_splitted_real_world_pts = self.split_scan_pts_and_obj_pts(
|
||||
first_real_world_pts
|
||||
)
|
||||
np.savetxt(f"first_real_pts_{model_name}.txt", first_splitted_real_world_pts)
|
||||
""" register """
|
||||
Log.info("[Part 1/4] do registeration")
|
||||
real_world_to_cad = PtsUtil.register(first_splitted_real_world_pts, cad_model)
|
||||
cad_to_real_world = np.linalg.inv(real_world_to_cad)
|
||||
Log.success("[Part 1/4] finish init and register")
|
||||
real_world_to_blender_world = np.eye(4)
|
||||
real_world_to_blender_world[:3, 3] = np.asarray([0, 0, 0.9215])
|
||||
cad_model_real_world: trimesh.Trimesh = cad_model.apply_transform(
|
||||
cad_to_real_world
|
||||
)
|
||||
cad_model_real_world.export(
|
||||
os.path.join(temp_dir, f"real_world_{temp_name}.obj")
|
||||
)
|
||||
cad_model_blender_world: trimesh.Trimesh = cad_model.apply_transform(
|
||||
real_world_to_blender_world
|
||||
)
|
||||
|
||||
with tempfile.TemporaryDirectory() as temp_dir:
|
||||
temp_dir = "/home/yan20/nbv_rec/project/franka_control/temp_output"
|
||||
cad_model_blender_world.export(os.path.join(temp_dir, f"{temp_name}.obj"))
|
||||
""" sample view """
|
||||
Log.info("[Part 2/4] start running renderer")
|
||||
subprocess.run(
|
||||
[
|
||||
self.blender_bin_path,
|
||||
"-b",
|
||||
"-P",
|
||||
self.generator_script_path,
|
||||
"--",
|
||||
temp_dir,
|
||||
],
|
||||
capture_output=True,
|
||||
text=True,
|
||||
)
|
||||
Log.success("[Part 2/4] finish running renderer")
|
||||
|
||||
""" preprocess """
|
||||
Log.info("[Part 3/4] start preprocessing data")
|
||||
save_scene_data(temp_dir, temp_name)
|
||||
Log.success("[Part 3/4] finish preprocessing data")
|
||||
|
||||
pts_dir = os.path.join(temp_dir, temp_name, "pts")
|
||||
sample_view_pts_list = []
|
||||
scan_points_idx_list = []
|
||||
frame_num = len(os.listdir(pts_dir))
|
||||
for frame_idx in range(frame_num):
|
||||
pts_path = os.path.join(temp_dir, temp_name, "pts", f"{frame_idx}.txt")
|
||||
idx_path = os.path.join(
|
||||
temp_dir, temp_name, "scan_points_indices", f"{frame_idx}.npy"
|
||||
)
|
||||
point_cloud = np.loadtxt(pts_path)
|
||||
if point_cloud.shape[0] != 0:
|
||||
sampled_point_cloud = PtsUtil.voxel_downsample_point_cloud(
|
||||
point_cloud, self.voxel_size
|
||||
)
|
||||
indices = np.load(idx_path)
|
||||
try:
|
||||
len(indices)
|
||||
except:
|
||||
indices = np.array([indices])
|
||||
sample_view_pts_list.append(sampled_point_cloud)
|
||||
scan_points_idx_list.append(indices)
|
||||
|
||||
""" close-loop strategy """
|
||||
scanned_pts = PtsUtil.voxel_downsample_point_cloud(
|
||||
first_splitted_real_world_pts, self.voxel_size
|
||||
)
|
||||
shot_pts_list = [first_splitted_real_world_pts]
|
||||
history_indices = []
|
||||
last_coverage = 0
|
||||
Log.info("[Part 4/4] start close-loop control")
|
||||
cnt = 0
|
||||
while True:
|
||||
#import ipdb; ipdb.set_trace()
|
||||
next_best_view, next_best_coverage, next_best_covered_num = (
|
||||
ReconstructionUtil.compute_next_best_view_with_overlap(
|
||||
scanned_pts,
|
||||
sample_view_pts_list,
|
||||
history_indices,
|
||||
scan_points_idx_list,
|
||||
threshold=self.voxel_size,
|
||||
overlap_area_threshold=25,
|
||||
scan_points_threshold=self.scan_points_threshold,
|
||||
)
|
||||
)
|
||||
nbv_path = DataLoadUtil.get_path(temp_dir, temp_name, next_best_view)
|
||||
nbv_cam_info = DataLoadUtil.load_cam_info(nbv_path, binocular=True)
|
||||
nbv_cam_to_world = nbv_cam_info["cam_to_world_O"]
|
||||
ControlUtil.move_to(nbv_cam_to_world)
|
||||
''' get world pts '''
|
||||
time.sleep(0.5)
|
||||
view_data = CommunicateUtil.get_view_data()
|
||||
if view_data is None:
|
||||
Log.error("No view data received")
|
||||
continue
|
||||
cam_shot_pts = ViewUtil.get_pts(view_data)
|
||||
world_shot_pts = PtsUtil.transform_point_cloud(
|
||||
cam_shot_pts, first_cam_to_real_world
|
||||
)
|
||||
_, world_splitted_shot_pts = self.split_scan_pts_and_obj_pts(
|
||||
world_shot_pts
|
||||
)
|
||||
shot_pts_list.append(world_splitted_shot_pts)
|
||||
|
||||
debug_dir = os.path.join(temp_dir, "debug")
|
||||
if not os.path.exists(debug_dir):
|
||||
os.makedirs(debug_dir)
|
||||
np.savetxt(os.path.join(debug_dir, f"shot_pts_{cnt}.txt"), world_splitted_shot_pts)
|
||||
np.savetxt(os.path.join(debug_dir, f"render_pts_{cnt}.txt"), sample_view_pts_list[next_best_view])
|
||||
#real_world_to_cad = PtsUtil.register(first_splitted_real_world_pts, cad_model)
|
||||
#import ipdb; ipdb.set_trace()
|
||||
last_scanned_pts_num = scanned_pts.shape[0]
|
||||
new_scanned_pts = PtsUtil.voxel_downsample_point_cloud(
|
||||
np.vstack([scanned_pts, world_splitted_shot_pts]), self.voxel_size
|
||||
)
|
||||
new_scanned_pts_num = new_scanned_pts.shape[0]
|
||||
history_indices.append(scan_points_idx_list[next_best_view])
|
||||
scanned_pts = new_scanned_pts
|
||||
Log.info(
|
||||
f"Next Best cover pts: {next_best_covered_num}, Best coverage: {next_best_coverage}"
|
||||
)
|
||||
|
||||
coverage_rate_increase = next_best_coverage - last_coverage
|
||||
if coverage_rate_increase < self.min_coverage_increase:
|
||||
Log.info(f"Coverage rate = {coverage_rate_increase} < {self.min_coverage_increase}, stop scanning")
|
||||
# break
|
||||
last_coverage = next_best_coverage
|
||||
|
||||
new_added_pts_num = new_scanned_pts_num - last_scanned_pts_num
|
||||
if new_added_pts_num < self.min_shot_new_pts_num:
|
||||
Log.info(f"New added pts num = {new_added_pts_num} < {self.min_shot_new_pts_num}")
|
||||
#ipdb.set_trace()
|
||||
if len(shot_pts_list) >= self.max_shot_view_num:
|
||||
Log.info(f"Scanned view num = {len(shot_pts_list)} >= {self.max_shot_view_num}, stop scanning")
|
||||
#break
|
||||
cnt += 1
|
||||
|
||||
Log.success("[Part 4/4] finish close-loop control")
|
||||
|
||||
|
||||
def run(self):
|
||||
total = len(os.listdir(self.model_dir))
|
||||
model_start_idx = self.generate_config["model_start_idx"]
|
||||
count_object = model_start_idx
|
||||
for model_name in os.listdir(self.model_dir[model_start_idx:]):
|
||||
Log.info(f"[{count_object}/{total}]Processing {model_name}")
|
||||
self.run_one_model(model_name)
|
||||
Log.success(f"[{count_object}/{total}]Finished processing {model_name}")
|
||||
|
||||
|
||||
# ---------------------------- test ---------------------------- #
|
||||
if __name__ == "__main__":
|
||||
|
||||
model_path = r"C:\Users\hofee\Downloads\mesh.obj"
|
||||
model = trimesh.load(model_path)
|
224
runners/cad_open_loop_strategy.py
Normal file
224
runners/cad_open_loop_strategy.py
Normal file
@@ -0,0 +1,224 @@
|
||||
import os
|
||||
import time
|
||||
import trimesh
|
||||
import tempfile
|
||||
import subprocess
|
||||
import numpy as np
|
||||
from PytorchBoot.runners.runner import Runner
|
||||
from PytorchBoot.config import ConfigManager
|
||||
import PytorchBoot.stereotype as stereotype
|
||||
from PytorchBoot.utils.log_util import Log
|
||||
from PytorchBoot.status import status_manager
|
||||
|
||||
from utils.control_util import ControlUtil
|
||||
from utils.communicate_util import CommunicateUtil
|
||||
from utils.pts_util import PtsUtil
|
||||
from utils.reconstruction_util import ReconstructionUtil
|
||||
from utils.preprocess_util import save_scene_data, save_scene_data_multithread
|
||||
from utils.data_load import DataLoadUtil
|
||||
from utils.view_util import ViewUtil
|
||||
|
||||
|
||||
@stereotype.runner("CAD_open_loop_strategy_runner")
|
||||
class CADOpenLoopStrategyRunner(Runner):
|
||||
|
||||
def __init__(self, config_path: str):
|
||||
super().__init__(config_path)
|
||||
self.load_experiment("cad_open_loop_strategy")
|
||||
self.status_info = {
|
||||
"status_manager": status_manager,
|
||||
"app_name": "cad",
|
||||
"runner_name": "CAD_open_loop_strategy_runner"
|
||||
}
|
||||
self.generate_config = ConfigManager.get("runner", "generate")
|
||||
self.reconstruct_config = ConfigManager.get("runner", "reconstruct")
|
||||
self.blender_bin_path = self.generate_config["blender_bin_path"]
|
||||
self.generator_script_path = self.generate_config["generator_script_path"]
|
||||
self.model_dir = self.generate_config["model_dir"]
|
||||
self.voxel_size = self.generate_config["voxel_size"]
|
||||
self.max_view = self.generate_config["max_view"]
|
||||
self.min_view = self.generate_config["min_view"]
|
||||
self.max_diag = self.generate_config["max_diag"]
|
||||
self.min_diag = self.generate_config["min_diag"]
|
||||
self.min_cam_table_included_degree = self.generate_config["min_cam_table_included_degree"]
|
||||
self.random_view_ratio = self.generate_config["random_view_ratio"]
|
||||
|
||||
self.soft_overlap_threshold = self.reconstruct_config["soft_overlap_threshold"]
|
||||
self.hard_overlap_threshold = self.reconstruct_config["hard_overlap_threshold"]
|
||||
self.scan_points_threshold = self.reconstruct_config["scan_points_threshold"]
|
||||
|
||||
def create_experiment(self, backup_name=None):
|
||||
super().create_experiment(backup_name)
|
||||
|
||||
def load_experiment(self, backup_name=None):
|
||||
super().load_experiment(backup_name)
|
||||
|
||||
def split_scan_pts_and_obj_pts(self, world_pts, z_threshold = 0):
|
||||
scan_pts = world_pts[world_pts[:,2] < z_threshold]
|
||||
obj_pts = world_pts[world_pts[:,2] >= z_threshold]
|
||||
return scan_pts, obj_pts
|
||||
|
||||
def run_one_model(self, model_name):
|
||||
temp_dir = "/home/yan20/nbv_rec/project/franka_control/temp_output"
|
||||
result = dict()
|
||||
|
||||
shot_pts_list = []
|
||||
ControlUtil.connect_robot()
|
||||
''' init robot '''
|
||||
Log.info("[Part 1/5] start init and register")
|
||||
ControlUtil.init()
|
||||
|
||||
''' load CAD model '''
|
||||
model_path = os.path.join(self.model_dir, model_name,"mesh.ply")
|
||||
temp_name = "cad_model_world"
|
||||
cad_model = trimesh.load(model_path)
|
||||
''' take first view '''
|
||||
Log.info("[Part 1/5] take first view data")
|
||||
view_data = CommunicateUtil.get_view_data(init=True)
|
||||
first_cam_pts = ViewUtil.get_pts(view_data)
|
||||
first_cam_to_real_world = ControlUtil.get_pose()
|
||||
first_real_world_pts = PtsUtil.transform_point_cloud(first_cam_pts, first_cam_to_real_world)
|
||||
_, first_splitted_real_world_pts = self.split_scan_pts_and_obj_pts(first_real_world_pts)
|
||||
np.savetxt(f"first_real_pts_{model_name}.txt", first_splitted_real_world_pts)
|
||||
''' register '''
|
||||
Log.info("[Part 1/5] do registeration")
|
||||
real_world_to_cad = PtsUtil.register(first_splitted_real_world_pts, cad_model)
|
||||
cad_to_real_world = np.linalg.inv(real_world_to_cad)
|
||||
Log.success("[Part 1/5] finish init and register")
|
||||
real_world_to_blender_world = np.eye(4)
|
||||
real_world_to_blender_world[:3, 3] = np.asarray([0, 0, 0.9215])
|
||||
cad_model_real_world:trimesh.Trimesh = cad_model.apply_transform(cad_to_real_world)
|
||||
cad_model_real_world.export(os.path.join(temp_dir, f"real_world_{temp_name}.obj"))
|
||||
cad_model_blender_world:trimesh.Trimesh = cad_model.apply_transform(real_world_to_blender_world)
|
||||
|
||||
with tempfile.TemporaryDirectory() as temp_dir:
|
||||
temp_dir = "/home/yan20/nbv_rec/project/franka_control/temp_output"
|
||||
cad_model_blender_world.export(os.path.join(temp_dir, f"{temp_name}.obj"))
|
||||
scene_dir = os.path.join(temp_dir, temp_name)
|
||||
''' sample view '''
|
||||
Log.info("[Part 2/5] start running renderer")
|
||||
subprocess.run([
|
||||
self.blender_bin_path, '-b', '-P', self.generator_script_path, '--', temp_dir
|
||||
], capture_output=True, text=True)
|
||||
Log.success("[Part 2/5] finish running renderer")
|
||||
|
||||
|
||||
world_model_points = np.loadtxt(os.path.join(scene_dir, "points_and_normals.txt"))[:,:3]
|
||||
''' preprocess '''
|
||||
Log.info("[Part 3/5] start preprocessing data")
|
||||
save_scene_data(temp_dir, temp_name)
|
||||
Log.success("[Part 3/5] finish preprocessing data")
|
||||
|
||||
pts_dir = os.path.join(temp_dir,temp_name,"pts")
|
||||
sample_view_pts_list = []
|
||||
scan_points_idx_list = []
|
||||
frame_num = len(os.listdir(pts_dir))
|
||||
|
||||
for frame_idx in range(frame_num):
|
||||
pts_path = os.path.join(temp_dir,temp_name, "pts", f"{frame_idx}.txt")
|
||||
idx_path = os.path.join(temp_dir,temp_name, "scan_points_indices", f"{frame_idx}.npy")
|
||||
point_cloud = np.loadtxt(pts_path)
|
||||
if point_cloud.shape[0] != 0:
|
||||
sampled_point_cloud = PtsUtil.voxel_downsample_point_cloud(point_cloud, self.voxel_size)
|
||||
indices = np.load(idx_path)
|
||||
try:
|
||||
len(indices)
|
||||
except:
|
||||
indices = np.array([indices])
|
||||
sample_view_pts_list.append(sampled_point_cloud)
|
||||
scan_points_idx_list.append(indices)
|
||||
|
||||
''' generate strategy '''
|
||||
|
||||
Log.info("[Part 4/5] start generating strategy")
|
||||
limited_useful_view, _, _ = ReconstructionUtil.compute_next_best_view_sequence_with_overlap(
|
||||
world_model_points, sample_view_pts_list,
|
||||
scan_points_indices_list = scan_points_idx_list,
|
||||
init_view=0,
|
||||
threshold=self.voxel_size,
|
||||
soft_overlap_threshold = self.soft_overlap_threshold,
|
||||
hard_overlap_threshold = self.hard_overlap_threshold,
|
||||
scan_points_threshold = self.scan_points_threshold,
|
||||
status_info=self.status_info
|
||||
)
|
||||
Log.success("[Part 4/5] finish generating strategy")
|
||||
|
||||
''' extract cam_to_world sequence '''
|
||||
cam_to_world_seq = []
|
||||
coveraget_rate_seq = []
|
||||
render_pts = []
|
||||
idx_seq = []
|
||||
for idx, coverage_rate in limited_useful_view:
|
||||
path = DataLoadUtil.get_path(temp_dir, temp_name, idx)
|
||||
cam_info = DataLoadUtil.load_cam_info(path, binocular=True)
|
||||
cam_to_world_seq.append(cam_info["cam_to_world_O"])
|
||||
coveraget_rate_seq.append(coverage_rate)
|
||||
idx_seq.append(idx)
|
||||
render_pts.append(sample_view_pts_list[idx])
|
||||
|
||||
Log.info("[Part 5/5] start running robot")
|
||||
''' take best seq view '''
|
||||
#import ipdb; ipdb.set_trace()
|
||||
target_scanned_pts = np.concatenate(sample_view_pts_list)
|
||||
voxel_downsampled_target_scanned_pts = PtsUtil.voxel_downsample_point_cloud(target_scanned_pts, self.voxel_size)
|
||||
result = dict()
|
||||
gt_scanned_pts = np.concatenate(render_pts, axis=0)
|
||||
voxel_down_sampled_gt_scanned_pts = PtsUtil.voxel_downsample_point_cloud(gt_scanned_pts, self.voxel_size)
|
||||
result["gt_final_coverage_rate_cad"] = ReconstructionUtil.compute_coverage_rate(voxel_downsampled_target_scanned_pts, voxel_down_sampled_gt_scanned_pts, self.voxel_size)
|
||||
step = 1
|
||||
result["real_coverage_rate_seq"] = []
|
||||
for cam_to_world in cam_to_world_seq:
|
||||
try:
|
||||
ControlUtil.move_to(cam_to_world)
|
||||
''' get world pts '''
|
||||
time.sleep(0.5)
|
||||
view_data = CommunicateUtil.get_view_data()
|
||||
if view_data is None:
|
||||
Log.error("Failed to get view data")
|
||||
continue
|
||||
cam_pts = ViewUtil.get_pts(view_data)
|
||||
shot_pts_list.append(cam_pts)
|
||||
scanned_pts = np.concatenate(shot_pts_list, axis=0)
|
||||
voxel_down_sampled_scanned_pts = PtsUtil.voxel_downsample_point_cloud(scanned_pts, self.voxel_size)
|
||||
voxel_down_sampled_scanned_pts_world = PtsUtil.transform_point_cloud(voxel_down_sampled_scanned_pts, first_cam_to_real_world)
|
||||
curr_CR = ReconstructionUtil.compute_coverage_rate(voxel_downsampled_target_scanned_pts, voxel_down_sampled_scanned_pts_world, self.voxel_size)
|
||||
Log.success(f"(step {step}/{len(cam_to_world_seq)}) current coverage: {curr_CR} | gt coverage: {result['gt_final_coverage_rate_cad']}")
|
||||
result["real_final_coverage_rate"] = curr_CR
|
||||
result["real_coverage_rate_seq"].append(curr_CR)
|
||||
step += 1
|
||||
except Exception as e:
|
||||
Log.error(f"Failed to move to {cam_to_world}")
|
||||
Log.error(e)
|
||||
|
||||
#import ipdb;ipdb.set_trace()
|
||||
|
||||
for idx in range(len(shot_pts_list)):
|
||||
if not os.path.exists(os.path.join(temp_dir, temp_name, "shot_pts")):
|
||||
os.makedirs(os.path.join(temp_dir, temp_name, "shot_pts"))
|
||||
if not os.path.exists(os.path.join(temp_dir, temp_name, "render_pts")):
|
||||
os.makedirs(os.path.join(temp_dir, temp_name, "render_pts"))
|
||||
shot_pts = PtsUtil.transform_point_cloud(shot_pts_list[idx], first_cam_to_real_world)
|
||||
np.savetxt(os.path.join(temp_dir, temp_name, "shot_pts", f"{idx}.txt"), shot_pts)
|
||||
np.savetxt(os.path.join(temp_dir, temp_name, "render_pts", f"{idx}.txt"), render_pts[idx])
|
||||
|
||||
|
||||
Log.success("[Part 5/5] finish running robot")
|
||||
|
||||
Log.debug(result)
|
||||
|
||||
def run(self):
|
||||
total = len(os.listdir(self.model_dir))
|
||||
model_start_idx = self.generate_config["model_start_idx"]
|
||||
count_object = model_start_idx
|
||||
for model_name in os.listdir(self.model_dir[model_start_idx:]):
|
||||
Log.info(f"[{count_object}/{total}]Processing {model_name}")
|
||||
self.run_one_model(model_name)
|
||||
Log.success(f"[{count_object}/{total}]Finished processing {model_name}")
|
||||
|
||||
|
||||
# ---------------------------- test ---------------------------- #
|
||||
if __name__ == "__main__":
|
||||
|
||||
model_path = r"C:\Users\hofee\Downloads\mesh.obj"
|
||||
model = trimesh.load(model_path)
|
||||
|
0
runners/inference.py
Normal file
0
runners/inference.py
Normal file
35
utils/communicate_util.py
Normal file
35
utils/communicate_util.py
Normal file
@@ -0,0 +1,35 @@
|
||||
import requests
|
||||
import numpy as np
|
||||
|
||||
class CommunicateUtil:
|
||||
VIEW_HOST = "192.168.1.2:7999" #"10.7.250.52:7999" ##
|
||||
INFERENCE_HOST = "127.0.0.1"
|
||||
INFERENCE_PORT = 5000
|
||||
|
||||
def get_view_data(init = False) -> dict:
|
||||
params = {}
|
||||
params["create_scanner"] = init
|
||||
response = requests.get(f"http://{CommunicateUtil.VIEW_HOST}/api/data", json=params)
|
||||
data = response.json()
|
||||
|
||||
if not data["success"]:
|
||||
print(f"Failed to get view data")
|
||||
return None
|
||||
|
||||
image_id = data["image_id"]
|
||||
depth_image = np.array(data["depth_image"], dtype=np.uint16)
|
||||
depth_intrinsics = data["depth_intrinsics"]
|
||||
depth_extrinsics = np.array(data["depth_extrinsics"])
|
||||
view_data = {
|
||||
"image_id": image_id,
|
||||
"depth_image": depth_image,
|
||||
"depth_intrinsics": depth_intrinsics,
|
||||
"depth_extrinsics": depth_extrinsics
|
||||
}
|
||||
return view_data
|
||||
|
||||
def get_inference_data(view_data:dict) -> dict:
|
||||
data = {}
|
||||
return data
|
||||
|
||||
|
@@ -1,39 +1,227 @@
|
||||
import numpy as np
|
||||
from frankapy import FrankaArm
|
||||
from autolab_core import RigidTransform
|
||||
import serial
|
||||
import time
|
||||
|
||||
class ControlUtil:
|
||||
|
||||
__fa = FrankaArm(robot_num=2)
|
||||
__fa:FrankaArm = None
|
||||
__ser: serial.Serial = None
|
||||
curr_rotation = 0
|
||||
|
||||
DISPLAYTABLE_TO_BASE:np.ndarray = np.asarray([
|
||||
[1, 0, 0, 0],
|
||||
[0, 1, 0, 0],
|
||||
[0, 0, 1, 0],
|
||||
BASE_TO_WORLD:np.ndarray = np.asarray([
|
||||
[1, 0, 0, -0.61091665],
|
||||
[0, 1, 0, -0.00309726],
|
||||
[0, 0, 1, -0.1136743],
|
||||
[0, 0, 0, 1]
|
||||
])
|
||||
|
||||
GRIPPER_TO_CAMERA:np.ndarray = np.asarray([
|
||||
CAMERA_TO_GRIPPER:np.ndarray = np.asarray([
|
||||
[0, -1, 0, 0.01],
|
||||
[1, 0, 0, 0],
|
||||
[0, 1, 0, 0],
|
||||
[0, 0, 1, 0],
|
||||
[0, 0, 1, 0.08],
|
||||
[0, 0, 0, 1]
|
||||
])
|
||||
INIT_GRIPPER_POSE:np.ndarray = np.asarray([
|
||||
[ 0.46532393, 0.62171798, 0.63002284, 0.21230963],
|
||||
[ 0.43205618, -0.78075723, 0.45136491, -0.25127173],
|
||||
[ 0.77251656, 0.06217437, -0.63193429, 0.499957 ],
|
||||
[ 0. , 0. , 0. , 1. ],
|
||||
])
|
||||
|
||||
|
||||
@staticmethod
|
||||
def get_franka_arm() -> FrankaArm:
|
||||
return ControlUtil.__fa
|
||||
|
||||
def connect_robot():
|
||||
if ControlUtil.__fa is None:
|
||||
ControlUtil.__fa = FrankaArm(robot_num=2)
|
||||
if ControlUtil.__ser is None:
|
||||
ControlUtil.__ser = serial.Serial(port="/dev/ttyUSB0", baudrate=115200)
|
||||
|
||||
@staticmethod
|
||||
def franka_reset() -> None:
|
||||
ControlUtil.__fa.reset_joints()
|
||||
|
||||
@staticmethod
|
||||
def init() -> None:
|
||||
ControlUtil.franka_reset()
|
||||
ControlUtil.set_gripper_pose(ControlUtil.INIT_GRIPPER_POSE)
|
||||
|
||||
@staticmethod
|
||||
def get_pose() -> np.ndarray:
|
||||
gripper_to_base = ControlUtil.get_curr_gripper_to_base_pose()
|
||||
cam_to_world = ControlUtil.BASE_TO_WORLD @ gripper_to_base @ ControlUtil.CAMERA_TO_GRIPPER
|
||||
return cam_to_world
|
||||
|
||||
@staticmethod
|
||||
def set_pose(cam_to_world: np.ndarray) -> None:
|
||||
gripper_to_base = ControlUtil.solve_gripper_to_base(cam_to_world)
|
||||
ControlUtil.set_gripper_pose(gripper_to_base)
|
||||
|
||||
@staticmethod
|
||||
def rotate_display_table(degree):
|
||||
turn_directions = {
|
||||
"left": 1,
|
||||
"right": 0
|
||||
}
|
||||
delta_degree = degree - ControlUtil.curr_rotation
|
||||
ControlUtil.curr_rotation += delta_degree
|
||||
print(f"Table rotated {ControlUtil.cnt_rotation} degree")
|
||||
if degree >= 0:
|
||||
turn_angle = delta_degree
|
||||
turn_direction = turn_directions["right"]
|
||||
else:
|
||||
turn_angle = -delta_degree
|
||||
turn_direction = turn_directions["left"]
|
||||
write_len = ControlUtil.__ser.write(f"CT+TRUNSINGLE({turn_direction},{turn_angle});".encode('utf-8'))
|
||||
|
||||
|
||||
@staticmethod
|
||||
def get_curr_gripper_to_base_pose() -> np.ndarray:
|
||||
return ControlUtil.__fa.get_pose().matrix
|
||||
|
||||
@staticmethod
|
||||
def reset() -> None:
|
||||
ControlUtil.__fa.reset_joints()
|
||||
def set_gripper_pose(gripper_to_base: np.ndarray) -> None:
|
||||
gripper_to_base = RigidTransform(rotation=gripper_to_base[:3, :3], translation=gripper_to_base[:3, 3], from_frame="franka_tool", to_frame="world")
|
||||
ControlUtil.__fa.goto_pose(gripper_to_base, duration=5, use_impedance=False, ignore_errors=False)
|
||||
|
||||
@staticmethod
|
||||
def solve_gripper_to_base(cam_to_world: np.ndarray) -> np.ndarray:
|
||||
return np.linalg.inv(ControlUtil.BASE_TO_WORLD) @ cam_to_world @ np.linalg.inv(ControlUtil.CAMERA_TO_GRIPPER)
|
||||
|
||||
@staticmethod
|
||||
def sovle_cam_to_world(gripper_to_base: np.ndarray) -> np.ndarray:
|
||||
return ControlUtil.BASE_TO_WORLD @ gripper_to_base @ ControlUtil.CAMERA_TO_GRIPPER
|
||||
|
||||
@staticmethod
|
||||
def check_limit(new_cam_to_world):
|
||||
if new_cam_to_world[0,3] > 0 or new_cam_to_world[1,3] > 0:
|
||||
return False
|
||||
x = abs(new_cam_to_world[0,3])
|
||||
y = abs(new_cam_to_world[1,3])
|
||||
|
||||
tan_y_x = y/x
|
||||
if tan_y_x < np.sqrt(3)/3 or tan_y_x > np.sqrt(3):
|
||||
return False
|
||||
|
||||
return True
|
||||
|
||||
@staticmethod
|
||||
def solve_display_table_rot_and_cam_to_world(cam_to_world: np.ndarray) -> tuple:
|
||||
if ControlUtil.check_limit(cam_to_world):
|
||||
return 0, cam_to_world
|
||||
else:
|
||||
min_display_table_rot = 180
|
||||
min_new_cam_to_world = None
|
||||
for display_table_rot in np.linspace(0.1,360, 1800):
|
||||
display_table_rot_z_pose = ControlUtil.get_z_axis_rot_mat(display_table_rot)
|
||||
new_cam_to_world = np.linalg.inv(display_table_rot_z_pose) @ cam_to_world
|
||||
if ControlUtil.check_limit(new_cam_to_world):
|
||||
if display_table_rot < min_display_table_rot:
|
||||
min_display_table_rot, min_new_cam_to_world = display_table_rot, new_cam_to_world
|
||||
if abs(display_table_rot - 360) < min_display_table_rot:
|
||||
min_display_table_rot, min_new_cam_to_world = display_table_rot - 360, new_cam_to_world
|
||||
|
||||
if min_new_cam_to_world is None:
|
||||
raise ValueError("No valid display table rotation found")
|
||||
|
||||
return min_display_table_rot, min_new_cam_to_world
|
||||
|
||||
@staticmethod
|
||||
def get_z_axis_rot_mat(degree):
|
||||
radian = np.radians(degree)
|
||||
return np.array([
|
||||
[np.cos(radian), -np.sin(radian), 0, 0],
|
||||
[np.sin(radian), np.cos(radian), 0, 0],
|
||||
[0, 0, 1, 0],
|
||||
[0, 0, 0, 1]
|
||||
])
|
||||
|
||||
@staticmethod
|
||||
def get_gripper_to_base_axis_angle(gripper_to_base: np.ndarray) -> bool:
|
||||
rot_mat = gripper_to_base[:3,:3]
|
||||
gripper_z_axis = rot_mat[:,2]
|
||||
base_x_axis = np.array([1,0,0])
|
||||
angle = np.arccos(np.dot(gripper_z_axis, base_x_axis))
|
||||
return angle
|
||||
|
||||
@staticmethod
|
||||
def move_to(pose: np.ndarray):
|
||||
rot_degree, cam_to_world = ControlUtil.solve_display_table_rot_and_cam_to_world(pose)
|
||||
exec_time = abs(rot_degree)/9
|
||||
start_time = time.time()
|
||||
ControlUtil.rotate_display_table(rot_degree)
|
||||
ControlUtil.set_pose(cam_to_world)
|
||||
end_time = time.time()
|
||||
print(f"Move to pose with rotation {rot_degree} degree, exec time: {end_time - start_time}|exec time: {exec_time}")
|
||||
if end_time - start_time < exec_time:
|
||||
time.sleep(exec_time - (end_time - start_time))
|
||||
|
||||
# ----------- Debug Test -------------
|
||||
|
||||
if __name__ == "__main__":
|
||||
print(ControlUtil.get_pose())
|
||||
ControlUtil.reset()
|
||||
print(ControlUtil.get_pose())
|
||||
ControlUtil.connect_robot()
|
||||
# ControlUtil.franka_reset()
|
||||
def main_test():
|
||||
print(ControlUtil.get_curr_gripper_to_base_pose())
|
||||
ControlUtil.init()
|
||||
|
||||
def rotate_back(rotation):
|
||||
ControlUtil.rotate_display_table(-rotation)
|
||||
|
||||
#main_test()
|
||||
import sys; sys.path.append("/home/yan20/nbv_rec/project/franka_control")
|
||||
from utils.communicate_util import CommunicateUtil
|
||||
import ipdb
|
||||
ControlUtil.init()
|
||||
view_data_0 = CommunicateUtil.get_view_data(init=True)
|
||||
depth_extrinsics_0 = view_data_0["depth_extrinsics"]
|
||||
cam_to_world_0 = ControlUtil.get_pose()
|
||||
print("cam_extrinsics_0")
|
||||
print(depth_extrinsics_0)
|
||||
print("cam_to_world_0")
|
||||
print(cam_to_world_0)
|
||||
|
||||
ipdb.set_trace()
|
||||
TEST_POSE:np.ndarray = np.asarray([
|
||||
[ 0.46532393, 0.62171798, 0.63002284, 0.30230963],
|
||||
[ 0.43205618, -0.78075723, 0.45136491, -0.29127173],
|
||||
[ 0.77251656, 0.06217437, -0.63193429, 0.559957 ],
|
||||
[ 0. , 0. , 0. , 1. ],
|
||||
])
|
||||
TEST_POSE_CAM_TO_WORLD = ControlUtil.BASE_TO_WORLD @ TEST_POSE @ ControlUtil.CAMERA_TO_GRIPPER
|
||||
ControlUtil.move_to(TEST_POSE_CAM_TO_WORLD)
|
||||
view_data_1 = CommunicateUtil.get_view_data()
|
||||
depth_extrinsics_1 = view_data_1["depth_extrinsics"]
|
||||
depth_extrinsics_1[:3,3] = depth_extrinsics_1[:3,3] / 1000
|
||||
cam_to_world_1 = ControlUtil.get_pose()
|
||||
print("cam_extrinsics_1")
|
||||
print(depth_extrinsics_1)
|
||||
print("cam_to_world_1")
|
||||
print(TEST_POSE_CAM_TO_WORLD)
|
||||
actual_cam_to_world_1 = cam_to_world_0 @ depth_extrinsics_1
|
||||
print("actual_cam_to_world_1")
|
||||
print(actual_cam_to_world_1)
|
||||
ipdb.set_trace()
|
||||
TEST_POSE_2:np.ndarray = np.asarray(
|
||||
[[ 0.74398544, -0.61922696, 0.251049, 0.47000935],
|
||||
[-0.47287207, -0.75338888, -0.45692666, 0.20843903],
|
||||
[ 0.47207883 , 0.22123272, -0.85334192, 0.57863381],
|
||||
[ 0. , 0. , 0. , 1. , ]]
|
||||
)
|
||||
TEST_POSE_CAM_TO_WORLD_2 = ControlUtil.BASE_TO_WORLD @ TEST_POSE_2 @ ControlUtil.CAMERA_TO_GRIPPER
|
||||
|
||||
#ControlUtil.move_to(TEST_POSE_CAM_TO_WORLD_2)
|
||||
ControlUtil.set_pose(TEST_POSE_CAM_TO_WORLD_2)
|
||||
view_data_2 = CommunicateUtil.get_view_data()
|
||||
depth_extrinsics_2 = view_data_2["depth_extrinsics"]
|
||||
depth_extrinsics_2[:3,3] = depth_extrinsics_2[:3,3] / 1000
|
||||
cam_to_world_2 = ControlUtil.get_pose()
|
||||
print("cam_extrinsics_2")
|
||||
print(depth_extrinsics_2)
|
||||
print("cam_to_world_2")
|
||||
print(TEST_POSE_CAM_TO_WORLD_2)
|
||||
actual_cam_to_world_2 = cam_to_world_0 @ depth_extrinsics_2
|
||||
print("actual_cam_to_world_2")
|
||||
print(actual_cam_to_world_2)
|
||||
ipdb.set_trace()
|
410
utils/data_load.py
Normal file
410
utils/data_load.py
Normal file
@@ -0,0 +1,410 @@
|
||||
import os
|
||||
import numpy as np
|
||||
import json
|
||||
import cv2
|
||||
import trimesh
|
||||
import torch
|
||||
from utils.pts_util import PtsUtil
|
||||
|
||||
|
||||
class DataLoadUtil:
|
||||
TABLE_POSITION = np.asarray([0, 0, 0.8215])
|
||||
|
||||
@staticmethod
|
||||
def get_display_table_info(root, scene_name):
|
||||
scene_info = DataLoadUtil.load_scene_info(root, scene_name)
|
||||
display_table_info = scene_info["display_table"]
|
||||
return display_table_info
|
||||
|
||||
@staticmethod
|
||||
def get_display_table_top(root, scene_name):
|
||||
display_table_height = DataLoadUtil.get_display_table_info(root, scene_name)[
|
||||
"height"
|
||||
]
|
||||
display_table_top = DataLoadUtil.TABLE_POSITION + np.asarray(
|
||||
[0, 0, display_table_height]
|
||||
)
|
||||
return display_table_top
|
||||
|
||||
@staticmethod
|
||||
def get_path(root, scene_name, frame_idx):
|
||||
path = os.path.join(root, scene_name, f"{frame_idx}")
|
||||
return path
|
||||
|
||||
@staticmethod
|
||||
def get_label_num(root, scene_name):
|
||||
label_dir = os.path.join(root, scene_name, "label")
|
||||
return len(os.listdir(label_dir))
|
||||
|
||||
@staticmethod
|
||||
def get_label_path(root, scene_name, seq_idx):
|
||||
label_dir = os.path.join(root, scene_name, "label")
|
||||
if not os.path.exists(label_dir):
|
||||
os.makedirs(label_dir)
|
||||
path = os.path.join(label_dir, f"{seq_idx}.json")
|
||||
return path
|
||||
|
||||
@staticmethod
|
||||
def get_label_path_old(root, scene_name):
|
||||
path = os.path.join(root, scene_name, "label.json")
|
||||
return path
|
||||
|
||||
@staticmethod
|
||||
def get_scene_seq_length(root, scene_name):
|
||||
camera_params_path = os.path.join(root, scene_name, "camera_params")
|
||||
return len(os.listdir(camera_params_path))
|
||||
|
||||
@staticmethod
|
||||
def load_mesh_at(model_dir, object_name, world_object_pose):
|
||||
model_path = os.path.join(model_dir, object_name, "mesh.obj")
|
||||
mesh = trimesh.load(model_path)
|
||||
mesh.apply_transform(world_object_pose)
|
||||
return mesh
|
||||
|
||||
@staticmethod
|
||||
def get_bbox_diag(model_dir, object_name):
|
||||
model_path = os.path.join(model_dir, object_name, "mesh.obj")
|
||||
mesh = trimesh.load(model_path)
|
||||
bbox = mesh.bounding_box.extents
|
||||
diagonal_length = np.linalg.norm(bbox)
|
||||
return diagonal_length
|
||||
|
||||
@staticmethod
|
||||
def save_mesh_at(model_dir, output_dir, object_name, scene_name, world_object_pose):
|
||||
mesh = DataLoadUtil.load_mesh_at(model_dir, object_name, world_object_pose)
|
||||
model_path = os.path.join(output_dir, scene_name, "world_mesh.obj")
|
||||
mesh.export(model_path)
|
||||
|
||||
@staticmethod
|
||||
def save_target_mesh_at_world_space(
|
||||
root, model_dir, scene_name, display_table_as_world_space_origin=True
|
||||
):
|
||||
scene_info = DataLoadUtil.load_scene_info(root, scene_name)
|
||||
target_name = scene_info["target_name"]
|
||||
transformation = scene_info[target_name]
|
||||
if display_table_as_world_space_origin:
|
||||
location = transformation["location"] - DataLoadUtil.get_display_table_top(
|
||||
root, scene_name
|
||||
)
|
||||
else:
|
||||
location = transformation["location"]
|
||||
rotation_euler = transformation["rotation_euler"]
|
||||
pose_mat = trimesh.transformations.euler_matrix(*rotation_euler)
|
||||
pose_mat[:3, 3] = location
|
||||
|
||||
mesh = DataLoadUtil.load_mesh_at(model_dir, target_name, pose_mat)
|
||||
mesh_dir = os.path.join(root, scene_name, "mesh")
|
||||
if not os.path.exists(mesh_dir):
|
||||
os.makedirs(mesh_dir)
|
||||
model_path = os.path.join(mesh_dir, "world_target_mesh.obj")
|
||||
mesh.export(model_path)
|
||||
|
||||
@staticmethod
|
||||
def load_scene_info(root, scene_name):
|
||||
scene_info_path = os.path.join(root, scene_name, "scene_info.json")
|
||||
with open(scene_info_path, "r") as f:
|
||||
scene_info = json.load(f)
|
||||
return scene_info
|
||||
|
||||
@staticmethod
|
||||
def load_target_pts_num_dict(root, scene_name):
|
||||
target_pts_num_path = os.path.join(root, scene_name, "target_pts_num.json")
|
||||
with open(target_pts_num_path, "r") as f:
|
||||
target_pts_num_dict = json.load(f)
|
||||
return target_pts_num_dict
|
||||
|
||||
@staticmethod
|
||||
def load_target_object_pose(root, scene_name):
|
||||
scene_info = DataLoadUtil.load_scene_info(root, scene_name)
|
||||
target_name = scene_info["target_name"]
|
||||
transformation = scene_info[target_name]
|
||||
location = transformation["location"]
|
||||
rotation_euler = transformation["rotation_euler"]
|
||||
pose_mat = trimesh.transformations.euler_matrix(*rotation_euler)
|
||||
pose_mat[:3, 3] = location
|
||||
return pose_mat
|
||||
|
||||
@staticmethod
|
||||
def load_depth(path, min_depth=0.01, max_depth=5.0, binocular=False):
|
||||
|
||||
def load_depth_from_real_path(real_path, min_depth, max_depth):
|
||||
depth = cv2.imread(real_path, cv2.IMREAD_UNCHANGED)
|
||||
depth = depth.astype(np.float32) / 65535.0
|
||||
min_depth = min_depth
|
||||
max_depth = max_depth
|
||||
depth_meters = min_depth + (max_depth - min_depth) * depth
|
||||
return depth_meters
|
||||
|
||||
if binocular:
|
||||
depth_path_L = os.path.join(
|
||||
os.path.dirname(path), "depth", os.path.basename(path) + "_L.png"
|
||||
)
|
||||
depth_path_R = os.path.join(
|
||||
os.path.dirname(path), "depth", os.path.basename(path) + "_R.png"
|
||||
)
|
||||
depth_meters_L = load_depth_from_real_path(
|
||||
depth_path_L, min_depth, max_depth
|
||||
)
|
||||
depth_meters_R = load_depth_from_real_path(
|
||||
depth_path_R, min_depth, max_depth
|
||||
)
|
||||
return depth_meters_L, depth_meters_R
|
||||
else:
|
||||
depth_path = os.path.join(
|
||||
os.path.dirname(path), "depth", os.path.basename(path) + ".png"
|
||||
)
|
||||
depth_meters = load_depth_from_real_path(depth_path, min_depth, max_depth)
|
||||
return depth_meters
|
||||
|
||||
@staticmethod
|
||||
def load_seg(path, binocular=False, left_only=False):
|
||||
if binocular and not left_only:
|
||||
|
||||
def clean_mask(mask_image):
|
||||
green = [0, 255, 0, 255]
|
||||
red = [255, 0, 0, 255]
|
||||
threshold = 2
|
||||
mask_image = np.where(
|
||||
np.abs(mask_image - green) <= threshold, green, mask_image
|
||||
)
|
||||
mask_image = np.where(
|
||||
np.abs(mask_image - red) <= threshold, red, mask_image
|
||||
)
|
||||
return mask_image
|
||||
|
||||
mask_path_L = os.path.join(
|
||||
os.path.dirname(path), "mask", os.path.basename(path) + "_L.png"
|
||||
)
|
||||
mask_image_L = clean_mask(cv2.imread(mask_path_L, cv2.IMREAD_UNCHANGED))
|
||||
mask_path_R = os.path.join(
|
||||
os.path.dirname(path), "mask", os.path.basename(path) + "_R.png"
|
||||
)
|
||||
mask_image_R = clean_mask(cv2.imread(mask_path_R, cv2.IMREAD_UNCHANGED))
|
||||
return mask_image_L, mask_image_R
|
||||
else:
|
||||
if binocular and left_only:
|
||||
mask_path = os.path.join(
|
||||
os.path.dirname(path), "mask", os.path.basename(path) + "_L.png"
|
||||
)
|
||||
else:
|
||||
mask_path = os.path.join(
|
||||
os.path.dirname(path), "mask", os.path.basename(path) + ".png"
|
||||
)
|
||||
mask_image = cv2.imread(mask_path, cv2.IMREAD_UNCHANGED)
|
||||
return mask_image
|
||||
|
||||
@staticmethod
|
||||
def load_normal(path, binocular=False, left_only=False):
|
||||
if binocular and not left_only:
|
||||
normal_path_L = os.path.join(
|
||||
os.path.dirname(path), "normal", os.path.basename(path) + "_L.png"
|
||||
)
|
||||
normal_image_L = cv2.imread(normal_path_L, cv2.IMREAD_COLOR)
|
||||
normal_path_R = os.path.join(
|
||||
os.path.dirname(path), "normal", os.path.basename(path) + "_R.png"
|
||||
)
|
||||
normal_image_R = cv2.imread(normal_path_R, cv2.IMREAD_COLOR)
|
||||
normalized_normal_image_L = normal_image_L / 255.0 * 2.0 - 1.0
|
||||
normalized_normal_image_R = normal_image_R / 255.0 * 2.0 - 1.0
|
||||
return normalized_normal_image_L, normalized_normal_image_R
|
||||
else:
|
||||
if binocular and left_only:
|
||||
normal_path = os.path.join(
|
||||
os.path.dirname(path), "normal", os.path.basename(path) + "_L.png"
|
||||
)
|
||||
else:
|
||||
normal_path = os.path.join(
|
||||
os.path.dirname(path), "normal", os.path.basename(path) + ".png"
|
||||
)
|
||||
normal_image = cv2.imread(normal_path, cv2.IMREAD_COLOR)
|
||||
normalized_normal_image = normal_image / 255.0 * 2.0 - 1.0
|
||||
return normalized_normal_image
|
||||
|
||||
@staticmethod
|
||||
def load_label(path):
|
||||
with open(path, "r") as f:
|
||||
label_data = json.load(f)
|
||||
return label_data
|
||||
|
||||
@staticmethod
|
||||
def load_rgb(path):
|
||||
rgb_path = os.path.join(
|
||||
os.path.dirname(path), "rgb", os.path.basename(path) + ".png"
|
||||
)
|
||||
rgb_image = cv2.imread(rgb_path, cv2.IMREAD_COLOR)
|
||||
return rgb_image
|
||||
|
||||
@staticmethod
|
||||
def load_from_preprocessed_pts(path):
|
||||
npy_path = os.path.join(
|
||||
os.path.dirname(path), "pts", os.path.basename(path) + ".npy"
|
||||
)
|
||||
pts = np.load(npy_path)
|
||||
return pts
|
||||
|
||||
@staticmethod
|
||||
def cam_pose_transformation(cam_pose_before):
|
||||
offset = np.asarray([[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, 1]])
|
||||
cam_pose_after = cam_pose_before @ offset
|
||||
return cam_pose_after
|
||||
|
||||
@staticmethod
|
||||
def load_cam_info(path, binocular=False, display_table_as_world_space_origin=True):
|
||||
scene_dir = os.path.dirname(path)
|
||||
root_dir = os.path.dirname(scene_dir)
|
||||
scene_name = os.path.basename(scene_dir)
|
||||
camera_params_path = os.path.join(
|
||||
os.path.dirname(path), "camera_params", os.path.basename(path) + ".json"
|
||||
)
|
||||
with open(camera_params_path, "r") as f:
|
||||
label_data = json.load(f)
|
||||
cam_to_world = np.asarray(label_data["extrinsic"])
|
||||
cam_to_world = DataLoadUtil.cam_pose_transformation(cam_to_world)
|
||||
world_to_display_table = np.eye(4)
|
||||
world_to_display_table[:3, 3] = -DataLoadUtil.get_display_table_top(
|
||||
root_dir, scene_name
|
||||
)
|
||||
if display_table_as_world_space_origin:
|
||||
cam_to_world = np.dot(world_to_display_table, cam_to_world)
|
||||
cam_intrinsic = np.asarray(label_data["intrinsic"])
|
||||
cam_info = {
|
||||
"cam_to_world": cam_to_world,
|
||||
"cam_intrinsic": cam_intrinsic,
|
||||
"far_plane": label_data["far_plane"],
|
||||
"near_plane": label_data["near_plane"],
|
||||
}
|
||||
if binocular:
|
||||
cam_to_world_R = np.asarray(label_data["extrinsic_R"])
|
||||
cam_to_world_R = DataLoadUtil.cam_pose_transformation(cam_to_world_R)
|
||||
cam_to_world_O = np.asarray(label_data["extrinsic_cam_object"])
|
||||
cam_to_world_O = DataLoadUtil.cam_pose_transformation(cam_to_world_O)
|
||||
if display_table_as_world_space_origin:
|
||||
cam_to_world_O = np.dot(world_to_display_table, cam_to_world_O)
|
||||
cam_to_world_R = np.dot(world_to_display_table, cam_to_world_R)
|
||||
cam_info["cam_to_world_O"] = cam_to_world_O
|
||||
cam_info["cam_to_world_R"] = cam_to_world_R
|
||||
return cam_info
|
||||
|
||||
@staticmethod
|
||||
def get_real_cam_O_from_cam_L(
|
||||
cam_L, cam_O_to_cam_L, scene_path, display_table_as_world_space_origin=True
|
||||
):
|
||||
root_dir = os.path.dirname(scene_path)
|
||||
scene_name = os.path.basename(scene_path)
|
||||
if isinstance(cam_L, torch.Tensor):
|
||||
cam_L = cam_L.cpu().numpy()
|
||||
nO_to_display_table_pose = cam_L @ cam_O_to_cam_L
|
||||
if display_table_as_world_space_origin:
|
||||
display_table_to_world = np.eye(4)
|
||||
display_table_to_world[:3, 3] = DataLoadUtil.get_display_table_top(
|
||||
root_dir, scene_name
|
||||
)
|
||||
nO_to_world_pose = np.dot(display_table_to_world, nO_to_display_table_pose)
|
||||
nO_to_world_pose = DataLoadUtil.cam_pose_transformation(nO_to_world_pose)
|
||||
return nO_to_world_pose
|
||||
|
||||
@staticmethod
|
||||
def get_target_point_cloud(
|
||||
depth, cam_intrinsic, cam_extrinsic, mask, target_mask_label=(0, 255, 0, 255), require_full_points=False
|
||||
):
|
||||
h, w = depth.shape
|
||||
i, j = np.meshgrid(np.arange(w), np.arange(h), indexing="xy")
|
||||
|
||||
z = depth
|
||||
x = (i - cam_intrinsic[0, 2]) * z / cam_intrinsic[0, 0]
|
||||
y = (j - cam_intrinsic[1, 2]) * z / cam_intrinsic[1, 1]
|
||||
|
||||
points_camera = np.stack((x, y, z), axis=-1).reshape(-1, 3)
|
||||
mask = mask.reshape(-1, 4)
|
||||
|
||||
target_mask = (mask == target_mask_label).all(axis=-1)
|
||||
|
||||
target_points_camera = points_camera[target_mask]
|
||||
target_points_camera_aug = np.concatenate(
|
||||
[target_points_camera, np.ones((target_points_camera.shape[0], 1))], axis=-1
|
||||
)
|
||||
|
||||
target_points_world = np.dot(cam_extrinsic, target_points_camera_aug.T).T[:, :3]
|
||||
data = {
|
||||
"points_world": target_points_world,
|
||||
"points_camera": target_points_camera,
|
||||
}
|
||||
return data
|
||||
|
||||
@staticmethod
|
||||
def get_point_cloud(depth, cam_intrinsic, cam_extrinsic):
|
||||
h, w = depth.shape
|
||||
i, j = np.meshgrid(np.arange(w), np.arange(h), indexing="xy")
|
||||
|
||||
z = depth
|
||||
x = (i - cam_intrinsic[0, 2]) * z / cam_intrinsic[0, 0]
|
||||
y = (j - cam_intrinsic[1, 2]) * z / cam_intrinsic[1, 1]
|
||||
|
||||
points_camera = np.stack((x, y, z), axis=-1).reshape(-1, 3)
|
||||
points_camera_aug = np.concatenate(
|
||||
[points_camera, np.ones((points_camera.shape[0], 1))], axis=-1
|
||||
)
|
||||
|
||||
points_world = np.dot(cam_extrinsic, points_camera_aug.T).T[:, :3]
|
||||
return {"points_world": points_world, "points_camera": points_camera}
|
||||
|
||||
@staticmethod
|
||||
def get_target_point_cloud_world_from_path(
|
||||
path,
|
||||
binocular=False,
|
||||
random_downsample_N=65536,
|
||||
voxel_size=0.005,
|
||||
target_mask_label=(0, 255, 0, 255),
|
||||
display_table_mask_label=(0, 0, 255, 255),
|
||||
get_display_table_pts=False,
|
||||
require_normal=False,
|
||||
):
|
||||
cam_info = DataLoadUtil.load_cam_info(path, binocular=binocular)
|
||||
if binocular:
|
||||
depth_L, depth_R = DataLoadUtil.load_depth(
|
||||
path, cam_info["near_plane"], cam_info["far_plane"], binocular=True
|
||||
)
|
||||
mask_L, mask_R = DataLoadUtil.load_seg(path, binocular=True)
|
||||
point_cloud_L = DataLoadUtil.get_target_point_cloud(
|
||||
depth_L,
|
||||
cam_info["cam_intrinsic"],
|
||||
cam_info["cam_to_world"],
|
||||
mask_L,
|
||||
target_mask_label,
|
||||
)["points_world"]
|
||||
point_cloud_R = DataLoadUtil.get_target_point_cloud(
|
||||
depth_R,
|
||||
cam_info["cam_intrinsic"],
|
||||
cam_info["cam_to_world_R"],
|
||||
mask_R,
|
||||
target_mask_label,
|
||||
)["points_world"]
|
||||
point_cloud_L = PtsUtil.random_downsample_point_cloud(
|
||||
point_cloud_L, random_downsample_N
|
||||
)
|
||||
point_cloud_R = PtsUtil.random_downsample_point_cloud(
|
||||
point_cloud_R, random_downsample_N
|
||||
)
|
||||
overlap_points = PtsUtil.get_overlapping_points(
|
||||
point_cloud_L, point_cloud_R, voxel_size
|
||||
)
|
||||
return overlap_points
|
||||
else:
|
||||
depth = DataLoadUtil.load_depth(
|
||||
path, cam_info["near_plane"], cam_info["far_plane"]
|
||||
)
|
||||
mask = DataLoadUtil.load_seg(path)
|
||||
point_cloud = DataLoadUtil.get_target_point_cloud(
|
||||
depth, cam_info["cam_intrinsic"], cam_info["cam_to_world"], mask
|
||||
)["points_world"]
|
||||
return point_cloud
|
||||
|
||||
@staticmethod
|
||||
def load_points_normals(root, scene_name, display_table_as_world_space_origin=True):
|
||||
points_path = os.path.join(root, scene_name, "points_and_normals.txt")
|
||||
points_normals = np.loadtxt(points_path)
|
||||
if display_table_as_world_space_origin:
|
||||
points_normals[:, :3] = points_normals[
|
||||
:, :3
|
||||
] - DataLoadUtil.get_display_table_top(root, scene_name)
|
||||
return points_normals
|
151
utils/pose_util.py
Normal file
151
utils/pose_util.py
Normal file
@@ -0,0 +1,151 @@
|
||||
import numpy as np
|
||||
|
||||
class PoseUtil:
|
||||
ROTATION = 1
|
||||
TRANSLATION = 2
|
||||
SCALE = 3
|
||||
|
||||
@staticmethod
|
||||
def get_uniform_translation(trans_m_min, trans_m_max, trans_unit, debug=False):
|
||||
if isinstance(trans_m_min, list):
|
||||
x_min, y_min, z_min = trans_m_min
|
||||
x_max, y_max, z_max = trans_m_max
|
||||
else:
|
||||
x_min, y_min, z_min = trans_m_min, trans_m_min, trans_m_min
|
||||
x_max, y_max, z_max = trans_m_max, trans_m_max, trans_m_max
|
||||
|
||||
x = np.random.uniform(x_min, x_max)
|
||||
y = np.random.uniform(y_min, y_max)
|
||||
z = np.random.uniform(z_min, z_max)
|
||||
translation = np.array([x, y, z])
|
||||
if trans_unit == "cm":
|
||||
translation = translation / 100
|
||||
if debug:
|
||||
print("uniform translation:", translation)
|
||||
return translation
|
||||
|
||||
@staticmethod
|
||||
def get_uniform_rotation(rot_degree_min=0, rot_degree_max=180, debug=False):
|
||||
axis = np.random.randn(3)
|
||||
axis /= np.linalg.norm(axis)
|
||||
theta = np.random.uniform(
|
||||
rot_degree_min / 180 * np.pi, rot_degree_max / 180 * np.pi
|
||||
)
|
||||
|
||||
K = np.array(
|
||||
[[0, -axis[2], axis[1]], [axis[2], 0, -axis[0]], [-axis[1], axis[0], 0]]
|
||||
)
|
||||
R = np.eye(3) + np.sin(theta) * K + (1 - np.cos(theta)) * (K @ K)
|
||||
if debug:
|
||||
print("uniform rotation:", theta * 180 / np.pi)
|
||||
return R
|
||||
|
||||
@staticmethod
|
||||
def get_uniform_pose(
|
||||
trans_min, trans_max, rot_min=0, rot_max=180, trans_unit="cm", debug=False
|
||||
):
|
||||
translation = PoseUtil.get_uniform_translation(
|
||||
trans_min, trans_max, trans_unit, debug
|
||||
)
|
||||
rotation = PoseUtil.get_uniform_rotation(rot_min, rot_max, debug)
|
||||
pose = np.eye(4)
|
||||
pose[:3, :3] = rotation
|
||||
pose[:3, 3] = translation
|
||||
return pose
|
||||
|
||||
@staticmethod
|
||||
def get_n_uniform_pose(
|
||||
trans_min,
|
||||
trans_max,
|
||||
rot_min=0,
|
||||
rot_max=180,
|
||||
n=1,
|
||||
trans_unit="cm",
|
||||
fix=None,
|
||||
contain_canonical=True,
|
||||
debug=False,
|
||||
):
|
||||
if fix == PoseUtil.ROTATION:
|
||||
translations = np.zeros((n, 3))
|
||||
for i in range(n):
|
||||
translations[i] = PoseUtil.get_uniform_translation(
|
||||
trans_min, trans_max, trans_unit, debug
|
||||
)
|
||||
if contain_canonical:
|
||||
translations[0] = np.zeros(3)
|
||||
rotations = PoseUtil.get_uniform_rotation(rot_min, rot_max, debug)
|
||||
elif fix == PoseUtil.TRANSLATION:
|
||||
rotations = np.zeros((n, 3, 3))
|
||||
for i in range(n):
|
||||
rotations[i] = PoseUtil.get_uniform_rotation(rot_min, rot_max, debug)
|
||||
if contain_canonical:
|
||||
rotations[0] = np.eye(3)
|
||||
translations = PoseUtil.get_uniform_translation(
|
||||
trans_min, trans_max, trans_unit, debug
|
||||
)
|
||||
else:
|
||||
translations = np.zeros((n, 3))
|
||||
rotations = np.zeros((n, 3, 3))
|
||||
for i in range(n):
|
||||
translations[i] = PoseUtil.get_uniform_translation(
|
||||
trans_min, trans_max, trans_unit, debug
|
||||
)
|
||||
for i in range(n):
|
||||
rotations[i] = PoseUtil.get_uniform_rotation(rot_min, rot_max, debug)
|
||||
if contain_canonical:
|
||||
translations[0] = np.zeros(3)
|
||||
rotations[0] = np.eye(3)
|
||||
|
||||
pose = np.eye(4, 4, k=0)[np.newaxis, :].repeat(n, axis=0)
|
||||
pose[:, :3, :3] = rotations
|
||||
pose[:, :3, 3] = translations
|
||||
|
||||
return pose
|
||||
|
||||
@staticmethod
|
||||
def get_n_uniform_pose_batch(
|
||||
trans_min,
|
||||
trans_max,
|
||||
rot_min=0,
|
||||
rot_max=180,
|
||||
n=1,
|
||||
batch_size=1,
|
||||
trans_unit="cm",
|
||||
fix=None,
|
||||
contain_canonical=False,
|
||||
debug=False,
|
||||
):
|
||||
|
||||
batch_poses = []
|
||||
for i in range(batch_size):
|
||||
pose = PoseUtil.get_n_uniform_pose(
|
||||
trans_min,
|
||||
trans_max,
|
||||
rot_min,
|
||||
rot_max,
|
||||
n,
|
||||
trans_unit,
|
||||
fix,
|
||||
contain_canonical,
|
||||
debug,
|
||||
)
|
||||
batch_poses.append(pose)
|
||||
pose_batch = np.stack(batch_poses, axis=0)
|
||||
return pose_batch
|
||||
|
||||
@staticmethod
|
||||
def get_uniform_scale(scale_min, scale_max, debug=False):
|
||||
if isinstance(scale_min, list):
|
||||
x_min, y_min, z_min = scale_min
|
||||
x_max, y_max, z_max = scale_max
|
||||
else:
|
||||
x_min, y_min, z_min = scale_min, scale_min, scale_min
|
||||
x_max, y_max, z_max = scale_max, scale_max, scale_max
|
||||
|
||||
x = np.random.uniform(x_min, x_max)
|
||||
y = np.random.uniform(y_min, y_max)
|
||||
z = np.random.uniform(z_min, z_max)
|
||||
scale = np.array([x, y, z])
|
||||
if debug:
|
||||
print("uniform scale:", scale)
|
||||
return scale
|
222
utils/preprocess_util.py
Normal file
222
utils/preprocess_util.py
Normal file
@@ -0,0 +1,222 @@
|
||||
import os
|
||||
import numpy as np
|
||||
import time
|
||||
import sys
|
||||
np.random.seed(0)
|
||||
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
|
||||
from concurrent.futures import ThreadPoolExecutor, as_completed
|
||||
from utils.reconstruction_util import ReconstructionUtil
|
||||
from utils.data_load import DataLoadUtil
|
||||
from utils.pts_util import PtsUtil
|
||||
from PytorchBoot.utils.log_util import Log
|
||||
|
||||
def save_np_pts(path, pts: np.ndarray, file_type="txt"):
|
||||
if file_type == "txt":
|
||||
np.savetxt(path, pts)
|
||||
else:
|
||||
np.save(path, pts)
|
||||
|
||||
def save_target_points(root, scene, frame_idx, target_points: np.ndarray, file_type="txt"):
|
||||
pts_path = os.path.join(root,scene, "pts", f"{frame_idx}.{file_type}")
|
||||
if not os.path.exists(os.path.join(root,scene, "pts")):
|
||||
os.makedirs(os.path.join(root,scene, "pts"))
|
||||
save_np_pts(pts_path, target_points, file_type)
|
||||
|
||||
def save_scan_points_indices(root, scene, frame_idx, scan_points_indices: np.ndarray, file_type="txt"):
|
||||
file_type="npy"
|
||||
indices_path = os.path.join(root,scene, "scan_points_indices", f"{frame_idx}.{file_type}")
|
||||
if not os.path.exists(os.path.join(root,scene, "scan_points_indices")):
|
||||
os.makedirs(os.path.join(root,scene, "scan_points_indices"))
|
||||
save_np_pts(indices_path, scan_points_indices, file_type)
|
||||
|
||||
def save_scan_points(root, scene, scan_points: np.ndarray):
|
||||
scan_points_path = os.path.join(root,scene, "scan_points.txt")
|
||||
save_np_pts(scan_points_path, scan_points)
|
||||
|
||||
def get_world_points(depth, mask, cam_intrinsic, cam_extrinsic, random_downsample_N):
|
||||
z = depth[mask]
|
||||
i, j = np.nonzero(mask)
|
||||
x = (j - cam_intrinsic[0, 2]) * z / cam_intrinsic[0, 0]
|
||||
y = (i - cam_intrinsic[1, 2]) * z / cam_intrinsic[1, 1]
|
||||
|
||||
points_camera = np.stack((x, y, z), axis=-1).reshape(-1, 3)
|
||||
sampled_target_points = PtsUtil.random_downsample_point_cloud(
|
||||
points_camera, random_downsample_N
|
||||
)
|
||||
points_camera_aug = np.concatenate((sampled_target_points, np.ones((sampled_target_points.shape[0], 1))), axis=-1)
|
||||
points_camera_world = np.dot(cam_extrinsic, points_camera_aug.T).T[:, :3]
|
||||
|
||||
return points_camera_world
|
||||
|
||||
def get_scan_points_indices(scan_points, mask, display_table_mask_label, cam_intrinsic, cam_extrinsic):
|
||||
scan_points_homogeneous = np.hstack((scan_points, np.ones((scan_points.shape[0], 1))))
|
||||
points_camera = np.dot(np.linalg.inv(cam_extrinsic), scan_points_homogeneous.T).T[:, :3]
|
||||
points_image_homogeneous = np.dot(cam_intrinsic, points_camera.T).T
|
||||
points_image_homogeneous /= points_image_homogeneous[:, 2:]
|
||||
pixel_x = points_image_homogeneous[:, 0].astype(int)
|
||||
pixel_y = points_image_homogeneous[:, 1].astype(int)
|
||||
h, w = mask.shape[:2]
|
||||
valid_indices = (pixel_x >= 0) & (pixel_x < w) & (pixel_y >= 0) & (pixel_y < h)
|
||||
mask_colors = mask[pixel_y[valid_indices], pixel_x[valid_indices]]
|
||||
selected_points_indices = np.where((mask_colors == display_table_mask_label).all(axis=-1))[0]
|
||||
selected_points_indices = np.where(valid_indices)[0][selected_points_indices]
|
||||
return selected_points_indices
|
||||
|
||||
def save_scene_data(root, scene, file_type="txt"):
|
||||
|
||||
''' configuration '''
|
||||
target_mask_label = (0, 255, 0, 255)
|
||||
display_table_mask_label=(0, 0, 255, 255)
|
||||
random_downsample_N = 32768
|
||||
voxel_size=0.002
|
||||
filter_degree = 75
|
||||
min_z = 0.25
|
||||
max_z = 0.5
|
||||
|
||||
''' scan points '''
|
||||
display_table_info = DataLoadUtil.get_display_table_info(root, scene)
|
||||
radius = display_table_info["radius"]
|
||||
|
||||
scan_points = np.asarray(ReconstructionUtil.generate_scan_points(display_table_top=0,display_table_radius=radius))
|
||||
|
||||
''' read frame data(depth|mask|normal) '''
|
||||
frame_num = DataLoadUtil.get_scene_seq_length(root, scene)
|
||||
for frame_id in range(frame_num):
|
||||
Log.info(f"frame({frame_id}/{frame_num})]Processing {scene} frame {frame_id}")
|
||||
path = DataLoadUtil.get_path(root, scene, frame_id)
|
||||
cam_info = DataLoadUtil.load_cam_info(path, binocular=True)
|
||||
depth_L, depth_R = DataLoadUtil.load_depth(
|
||||
path, cam_info["near_plane"],
|
||||
cam_info["far_plane"],
|
||||
binocular=True
|
||||
)
|
||||
mask_L, mask_R = DataLoadUtil.load_seg(path, binocular=True)
|
||||
|
||||
''' target points '''
|
||||
mask_img_L = mask_L
|
||||
mask_img_R = mask_R
|
||||
|
||||
target_mask_img_L = (mask_L == target_mask_label).all(axis=-1)
|
||||
target_mask_img_R = (mask_R == target_mask_label).all(axis=-1)
|
||||
|
||||
|
||||
sampled_target_points_L = get_world_points(depth_L, target_mask_img_L, cam_info["cam_intrinsic"], cam_info["cam_to_world"], random_downsample_N)
|
||||
sampled_target_points_R = get_world_points(depth_R, target_mask_img_R, cam_info["cam_intrinsic"], cam_info["cam_to_world_R"], random_downsample_N)
|
||||
|
||||
|
||||
has_points = sampled_target_points_L.shape[0] > 0 and sampled_target_points_R.shape[0] > 0
|
||||
if has_points:
|
||||
target_points = PtsUtil.get_overlapping_points(
|
||||
sampled_target_points_L, sampled_target_points_R, voxel_size
|
||||
)
|
||||
|
||||
if has_points:
|
||||
has_points = target_points.shape[0] > 0
|
||||
|
||||
if has_points:
|
||||
points_normals = DataLoadUtil.load_points_normals(root, scene, display_table_as_world_space_origin=True)
|
||||
target_points = PtsUtil.filter_points(
|
||||
target_points, points_normals, cam_info["cam_to_world"],voxel_size=0.002, theta = filter_degree, z_range=(min_z, max_z)
|
||||
)
|
||||
|
||||
|
||||
''' scan points indices '''
|
||||
scan_points_indices_L = get_scan_points_indices(scan_points, mask_img_L, display_table_mask_label, cam_info["cam_intrinsic"], cam_info["cam_to_world"])
|
||||
scan_points_indices_R = get_scan_points_indices(scan_points, mask_img_R, display_table_mask_label, cam_info["cam_intrinsic"], cam_info["cam_to_world_R"])
|
||||
scan_points_indices = np.intersect1d(scan_points_indices_L, scan_points_indices_R)
|
||||
|
||||
if not has_points:
|
||||
target_points = np.zeros((0, 3))
|
||||
|
||||
save_target_points(root, scene, frame_id, target_points, file_type=file_type)
|
||||
save_scan_points_indices(root, scene, frame_id, scan_points_indices, file_type=file_type)
|
||||
|
||||
save_scan_points(root, scene, scan_points) # The "done" flag of scene preprocess
|
||||
|
||||
def process_frame(frame_id, root, scene, scan_points, file_type, target_mask_label, display_table_mask_label, random_downsample_N, voxel_size, filter_degree, min_z, max_z):
|
||||
Log.info(f"[frame({frame_id})]Processing {scene} frame {frame_id}")
|
||||
path = DataLoadUtil.get_path(root, scene, frame_id)
|
||||
cam_info = DataLoadUtil.load_cam_info(path, binocular=True)
|
||||
depth_L, depth_R = DataLoadUtil.load_depth(
|
||||
path, cam_info["near_plane"],
|
||||
cam_info["far_plane"],
|
||||
binocular=True
|
||||
)
|
||||
mask_L, mask_R = DataLoadUtil.load_seg(path, binocular=True)
|
||||
|
||||
target_mask_img_L = (mask_L == target_mask_label).all(axis=-1)
|
||||
target_mask_img_R = (mask_R == target_mask_label).all(axis=-1)
|
||||
|
||||
sampled_target_points_L = get_world_points(depth_L, target_mask_img_L, cam_info["cam_intrinsic"], cam_info["cam_to_world"], random_downsample_N)
|
||||
sampled_target_points_R = get_world_points(depth_R, target_mask_img_R, cam_info["cam_intrinsic"], cam_info["cam_to_world_R"], random_downsample_N)
|
||||
|
||||
has_points = sampled_target_points_L.shape[0] > 0 and sampled_target_points_R.shape[0] > 0
|
||||
target_points = np.zeros((0, 3))
|
||||
|
||||
if has_points:
|
||||
target_points = PtsUtil.get_overlapping_points(sampled_target_points_L, sampled_target_points_R, voxel_size)
|
||||
|
||||
if has_points and target_points.shape[0] > 0:
|
||||
points_normals = DataLoadUtil.load_points_normals(root, scene, display_table_as_world_space_origin=True)
|
||||
target_points = PtsUtil.filter_points(
|
||||
target_points, points_normals, cam_info["cam_to_world"], voxel_size=0.002, theta=filter_degree, z_range=(min_z, max_z)
|
||||
)
|
||||
|
||||
scan_points_indices_L = get_scan_points_indices(scan_points, mask_L, display_table_mask_label, cam_info["cam_intrinsic"], cam_info["cam_to_world"])
|
||||
scan_points_indices_R = get_scan_points_indices(scan_points, mask_R, display_table_mask_label, cam_info["cam_intrinsic"], cam_info["cam_to_world_R"])
|
||||
scan_points_indices = np.intersect1d(scan_points_indices_L, scan_points_indices_R)
|
||||
|
||||
save_target_points(root, scene, frame_id, target_points, file_type=file_type)
|
||||
save_scan_points_indices(root, scene, frame_id, scan_points_indices, file_type=file_type)
|
||||
|
||||
def save_scene_data_multithread(root, scene, file_type="txt"):
|
||||
target_mask_label = (0, 255, 0, 255)
|
||||
display_table_mask_label = (0, 0, 255, 255)
|
||||
random_downsample_N = 32768
|
||||
voxel_size = 0.002
|
||||
filter_degree = 75
|
||||
min_z = 0.2
|
||||
max_z = 0.5
|
||||
|
||||
display_table_info = DataLoadUtil.get_display_table_info(root, scene)
|
||||
radius = display_table_info["radius"]
|
||||
scan_points = np.asarray(ReconstructionUtil.generate_scan_points(display_table_top=0, display_table_radius=radius))
|
||||
frame_num = DataLoadUtil.get_scene_seq_length(root, scene)
|
||||
|
||||
with ThreadPoolExecutor() as executor:
|
||||
futures = {executor.submit(process_frame, frame_id, root, scene, scan_points, file_type, target_mask_label, display_table_mask_label, random_downsample_N, voxel_size, filter_degree, min_z, max_z): frame_id for frame_id in range(frame_num)}
|
||||
|
||||
for future in as_completed(futures):
|
||||
frame_id = futures[future]
|
||||
try:
|
||||
future.result()
|
||||
except Exception as e:
|
||||
Log.error(f"Error processing frame {frame_id}: {e}")
|
||||
|
||||
save_scan_points(root, scene, scan_points) # The "done" flag of scene preprocess
|
||||
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
#root = "/media/hofee/repository/new_data_with_normal"
|
||||
root = r"/media/hofee/data/tempdir/test_real_output"
|
||||
# list_path = r"/media/hofee/repository/full_list.txt"
|
||||
# scene_list = []
|
||||
|
||||
# with open(list_path, "r") as f:
|
||||
# for line in f:
|
||||
# scene_list.append(line.strip())
|
||||
scene_list = os.listdir(root)
|
||||
from_idx = 0 # 1000
|
||||
to_idx = 1 # 1500
|
||||
|
||||
|
||||
cnt = 0
|
||||
import time
|
||||
total = to_idx - from_idx
|
||||
for scene in scene_list[from_idx:to_idx]:
|
||||
start = time.time()
|
||||
save_scene_data(root, scene, cnt, total, file_type="npy")
|
||||
cnt+=1
|
||||
end = time.time()
|
||||
print(f"Time cost: {end-start}")
|
279
utils/pts_util.py
Normal file
279
utils/pts_util.py
Normal file
@@ -0,0 +1,279 @@
|
||||
import numpy as np
|
||||
import open3d as o3d
|
||||
import torch
|
||||
import trimesh
|
||||
from scipy.spatial import cKDTree
|
||||
from utils.pose_util import PoseUtil
|
||||
|
||||
|
||||
class PtsUtil:
|
||||
|
||||
@staticmethod
|
||||
def voxel_downsample_point_cloud(point_cloud, voxel_size=0.005):
|
||||
o3d_pc = o3d.geometry.PointCloud()
|
||||
o3d_pc.points = o3d.utility.Vector3dVector(point_cloud)
|
||||
downsampled_pc = o3d_pc.voxel_down_sample(voxel_size)
|
||||
return np.asarray(downsampled_pc.points)
|
||||
|
||||
@staticmethod
|
||||
def random_downsample_point_cloud(point_cloud, num_points, require_idx=False):
|
||||
if point_cloud.shape[0] == 0:
|
||||
if require_idx:
|
||||
return point_cloud, np.array([])
|
||||
return point_cloud
|
||||
idx = np.random.choice(len(point_cloud), num_points, replace=True)
|
||||
if require_idx:
|
||||
return point_cloud[idx], idx
|
||||
return point_cloud[idx]
|
||||
|
||||
@staticmethod
|
||||
def fps_downsample_point_cloud(point_cloud, num_points, require_idx=False):
|
||||
N = point_cloud.shape[0]
|
||||
mask = np.zeros(N, dtype=bool)
|
||||
|
||||
sampled_indices = np.zeros(num_points, dtype=int)
|
||||
sampled_indices[0] = np.random.randint(0, N)
|
||||
distances = np.linalg.norm(
|
||||
point_cloud - point_cloud[sampled_indices[0]], axis=1
|
||||
)
|
||||
for i in range(1, num_points):
|
||||
farthest_index = np.argmax(distances)
|
||||
sampled_indices[i] = farthest_index
|
||||
mask[farthest_index] = True
|
||||
|
||||
new_distances = np.linalg.norm(
|
||||
point_cloud - point_cloud[farthest_index], axis=1
|
||||
)
|
||||
distances = np.minimum(distances, new_distances)
|
||||
|
||||
sampled_points = point_cloud[sampled_indices]
|
||||
if require_idx:
|
||||
return sampled_points, sampled_indices
|
||||
return sampled_points
|
||||
|
||||
@staticmethod
|
||||
def random_downsample_point_cloud_tensor(point_cloud, num_points):
|
||||
idx = torch.randint(0, len(point_cloud), (num_points,))
|
||||
return point_cloud[idx]
|
||||
|
||||
@staticmethod
|
||||
def voxelize_points(points, voxel_size):
|
||||
voxel_indices = np.floor(points / voxel_size).astype(np.int32)
|
||||
unique_voxels = np.unique(voxel_indices, axis=0, return_inverse=True)
|
||||
return unique_voxels
|
||||
|
||||
@staticmethod
|
||||
def transform_point_cloud(points, pose_mat):
|
||||
points_h = np.concatenate([points, np.ones((points.shape[0], 1))], axis=1)
|
||||
points_h = np.dot(pose_mat, points_h.T).T
|
||||
return points_h[:, :3]
|
||||
|
||||
@staticmethod
|
||||
def get_overlapping_points(
|
||||
point_cloud_L, point_cloud_R, voxel_size=0.005, require_idx=False
|
||||
):
|
||||
voxels_L, indices_L = PtsUtil.voxelize_points(point_cloud_L, voxel_size)
|
||||
voxels_R, _ = PtsUtil.voxelize_points(point_cloud_R, voxel_size)
|
||||
|
||||
voxel_indices_L = voxels_L.view([("", voxels_L.dtype)] * 3)
|
||||
voxel_indices_R = voxels_R.view([("", voxels_R.dtype)] * 3)
|
||||
overlapping_voxels = np.intersect1d(voxel_indices_L, voxel_indices_R)
|
||||
mask_L = np.isin(
|
||||
indices_L, np.where(np.isin(voxel_indices_L, overlapping_voxels))[0]
|
||||
)
|
||||
overlapping_points = point_cloud_L[mask_L]
|
||||
if require_idx:
|
||||
return overlapping_points, mask_L
|
||||
return overlapping_points
|
||||
|
||||
@staticmethod
|
||||
def filter_points(
|
||||
points,
|
||||
points_normals,
|
||||
cam_pose,
|
||||
voxel_size=0.002,
|
||||
theta=45,
|
||||
z_range=(0.25, 0.5),
|
||||
):
|
||||
"""filter with z range"""
|
||||
points_cam = PtsUtil.transform_point_cloud(points, np.linalg.inv(cam_pose))
|
||||
idx = (points_cam[:, 2] > z_range[0]) & (points_cam[:, 2] < z_range[1])
|
||||
z_filtered_points = points[idx]
|
||||
|
||||
""" filter with normal """
|
||||
sampled_points = PtsUtil.voxel_downsample_point_cloud(
|
||||
z_filtered_points, voxel_size
|
||||
)
|
||||
kdtree = cKDTree(points_normals[:, :3])
|
||||
_, indices = kdtree.query(sampled_points)
|
||||
nearest_points = points_normals[indices]
|
||||
|
||||
normals = nearest_points[:, 3:]
|
||||
camera_axis = -cam_pose[:3, 2]
|
||||
normals_normalized = normals / np.linalg.norm(normals, axis=1, keepdims=True)
|
||||
cos_theta = np.dot(normals_normalized, camera_axis)
|
||||
theta_rad = np.deg2rad(theta)
|
||||
idx = cos_theta > np.cos(theta_rad)
|
||||
filtered_sampled_points = sampled_points[idx]
|
||||
return filtered_sampled_points[:, :3]
|
||||
|
||||
@staticmethod
|
||||
def multi_scale_icp(
|
||||
source, target, voxel_size_range, init_transformation=None, steps=20
|
||||
):
|
||||
pipreg = o3d.pipelines.registration
|
||||
|
||||
if init_transformation is not None:
|
||||
current_transformation = init_transformation
|
||||
else:
|
||||
current_transformation = np.identity(4)
|
||||
cnt = 0
|
||||
best_score = 1e10
|
||||
best_reg = None
|
||||
voxel_sizes = []
|
||||
for i in range(steps):
|
||||
voxel_sizes.append(
|
||||
voxel_size_range[0]
|
||||
+ i * (voxel_size_range[1] - voxel_size_range[0]) / steps
|
||||
)
|
||||
|
||||
for voxel_size in voxel_sizes:
|
||||
radius_normal = voxel_size * 2
|
||||
source_downsampled = source.voxel_down_sample(voxel_size)
|
||||
source_downsampled.estimate_normals(
|
||||
search_param=o3d.geometry.KDTreeSearchParamHybrid(
|
||||
radius=radius_normal, max_nn=30
|
||||
)
|
||||
)
|
||||
target_downsampled = target.voxel_down_sample(voxel_size)
|
||||
target_downsampled.estimate_normals(
|
||||
search_param=o3d.geometry.KDTreeSearchParamHybrid(
|
||||
radius=radius_normal, max_nn=30
|
||||
)
|
||||
)
|
||||
|
||||
reg_icp = pipreg.registration_icp(
|
||||
source_downsampled,
|
||||
target_downsampled,
|
||||
voxel_size * 2,
|
||||
current_transformation,
|
||||
pipreg.TransformationEstimationPointToPlane(),
|
||||
pipreg.ICPConvergenceCriteria(max_iteration=500),
|
||||
)
|
||||
cnt += 1
|
||||
if reg_icp.fitness == 0:
|
||||
score = 1e10
|
||||
else:
|
||||
score = reg_icp.inlier_rmse / reg_icp.fitness
|
||||
|
||||
if score < best_score:
|
||||
best_score = score
|
||||
best_reg = reg_icp
|
||||
|
||||
return best_reg, best_score
|
||||
|
||||
@staticmethod
|
||||
def multi_scale_ransac(source_downsampled, target_downsampled, source_fpfh, model_fpfh, voxel_size_range, steps=20):
|
||||
pipreg = o3d.pipelines.registration
|
||||
cnt = 0
|
||||
best_score = 1e10
|
||||
best_reg = None
|
||||
voxel_sizes = []
|
||||
for i in range(steps):
|
||||
voxel_sizes.append(
|
||||
voxel_size_range[0]
|
||||
+ i * (voxel_size_range[1] - voxel_size_range[0]) / steps
|
||||
)
|
||||
|
||||
for voxel_size in voxel_sizes:
|
||||
reg_ransac = pipreg.registration_ransac_based_on_feature_matching(
|
||||
source_downsampled,
|
||||
target_downsampled,
|
||||
source_fpfh,
|
||||
model_fpfh,
|
||||
mutual_filter=True,
|
||||
max_correspondence_distance=voxel_size*2,
|
||||
estimation_method=pipreg.TransformationEstimationPointToPoint(False),
|
||||
ransac_n=4,
|
||||
checkers=[pipreg.CorrespondenceCheckerBasedOnEdgeLength(0.9)],
|
||||
criteria=pipreg.RANSACConvergenceCriteria(8000000, 500),
|
||||
)
|
||||
cnt += 1
|
||||
if reg_ransac.fitness == 0:
|
||||
score = 1e10
|
||||
else:
|
||||
score = reg_ransac.inlier_rmse / reg_ransac.fitness
|
||||
if score < best_score:
|
||||
best_score = score
|
||||
best_reg = reg_ransac
|
||||
|
||||
return best_reg, best_score
|
||||
|
||||
@staticmethod
|
||||
def register(pcl: np.ndarray, model: trimesh.Trimesh, voxel_size=0.01):
|
||||
radius_normal = voxel_size * 2
|
||||
pipreg = o3d.pipelines.registration
|
||||
model_pcd = o3d.geometry.PointCloud()
|
||||
model_pcd.points = o3d.utility.Vector3dVector(model.vertices)
|
||||
model_downsampled = model_pcd.voxel_down_sample(voxel_size)
|
||||
model_downsampled.estimate_normals(
|
||||
search_param=o3d.geometry.KDTreeSearchParamHybrid(
|
||||
radius=radius_normal, max_nn=30
|
||||
)
|
||||
)
|
||||
model_fpfh = pipreg.compute_fpfh_feature(
|
||||
model_downsampled,
|
||||
o3d.geometry.KDTreeSearchParamHybrid(radius=radius_normal, max_nn=100),
|
||||
)
|
||||
|
||||
source_pcd = o3d.geometry.PointCloud()
|
||||
source_pcd.points = o3d.utility.Vector3dVector(pcl)
|
||||
source_downsampled = source_pcd.voxel_down_sample(voxel_size)
|
||||
source_downsampled.estimate_normals(
|
||||
search_param=o3d.geometry.KDTreeSearchParamHybrid(
|
||||
radius=radius_normal, max_nn=30
|
||||
)
|
||||
)
|
||||
source_fpfh = pipreg.compute_fpfh_feature(
|
||||
source_downsampled,
|
||||
o3d.geometry.KDTreeSearchParamHybrid(radius=radius_normal, max_nn=100),
|
||||
)
|
||||
|
||||
reg_ransac, ransac_best_score = PtsUtil.multi_scale_ransac(
|
||||
source_downsampled,
|
||||
model_downsampled,
|
||||
source_fpfh,
|
||||
model_fpfh,
|
||||
voxel_size_range=(0.03, 0.005),
|
||||
steps=3,
|
||||
)
|
||||
reg_icp, icp_best_score = PtsUtil.multi_scale_icp(
|
||||
source_downsampled,
|
||||
model_downsampled,
|
||||
voxel_size_range=(0.02, 0.001),
|
||||
init_transformation=reg_ransac.transformation,
|
||||
steps=50,
|
||||
)
|
||||
return reg_icp.transformation
|
||||
|
||||
@staticmethod
|
||||
def get_pts_from_depth(depth, cam_intrinsic, cam_extrinsic):
|
||||
h, w = depth.shape
|
||||
i, j = np.meshgrid(np.arange(w), np.arange(h), indexing="xy")
|
||||
|
||||
z = depth
|
||||
x = (i - cam_intrinsic[0, 2]) * z / cam_intrinsic[0, 0]
|
||||
y = (j - cam_intrinsic[1, 2]) * z / cam_intrinsic[1, 1]
|
||||
|
||||
points_camera = np.stack((x, y, z), axis=-1).reshape(-1, 3)
|
||||
mask = mask.reshape(-1, 4)
|
||||
points_camera = np.concatenate(
|
||||
[points_camera, np.ones((points_camera.shape[0], 1))], axis=-1
|
||||
)
|
||||
|
||||
points_world = np.dot(cam_extrinsic, points_camera.T).T[:, :3]
|
||||
data = {
|
||||
"points_world": points_world,
|
||||
"points_camera": points_camera,
|
||||
}
|
||||
return data
|
195
utils/reconstruction_util.py
Normal file
195
utils/reconstruction_util.py
Normal file
@@ -0,0 +1,195 @@
|
||||
import numpy as np
|
||||
from scipy.spatial import cKDTree
|
||||
from utils.pts_util import PtsUtil
|
||||
|
||||
class ReconstructionUtil:
|
||||
|
||||
@staticmethod
|
||||
def compute_coverage_rate(target_point_cloud, combined_point_cloud, threshold=0.01):
|
||||
kdtree = cKDTree(combined_point_cloud)
|
||||
distances, _ = kdtree.query(target_point_cloud)
|
||||
covered_points_num = np.sum(distances < threshold*2)
|
||||
coverage_rate = covered_points_num / target_point_cloud.shape[0]
|
||||
return coverage_rate, covered_points_num
|
||||
|
||||
@staticmethod
|
||||
def check_overlap(new_point_cloud, combined_point_cloud, overlap_area_threshold=25, voxel_size=0.01):
|
||||
kdtree = cKDTree(combined_point_cloud)
|
||||
distances, _ = kdtree.query(new_point_cloud)
|
||||
overlapping_points = np.sum(distances < voxel_size*2)
|
||||
cm = 0.01
|
||||
voxel_size_cm = voxel_size / cm
|
||||
overlap_area = overlapping_points * voxel_size_cm * voxel_size_cm
|
||||
return overlap_area > overlap_area_threshold
|
||||
|
||||
|
||||
@staticmethod
|
||||
def get_new_added_points(old_combined_pts, new_pts, threshold=0.005):
|
||||
if old_combined_pts.size == 0:
|
||||
return new_pts
|
||||
if new_pts.size == 0:
|
||||
return np.array([])
|
||||
|
||||
tree = cKDTree(old_combined_pts)
|
||||
distances, _ = tree.query(new_pts, k=1)
|
||||
new_added_points = new_pts[distances > threshold]
|
||||
return new_added_points
|
||||
|
||||
@staticmethod
|
||||
def compute_next_best_view_sequence_with_overlap(target_point_cloud, point_cloud_list, scan_points_indices_list, threshold=0.01, soft_overlap_threshold=0.5, hard_overlap_threshold=0.7, init_view = 0, scan_points_threshold=5, status_info=None):
|
||||
selected_views = [init_view]
|
||||
combined_point_cloud = point_cloud_list[init_view]
|
||||
history_indices = [scan_points_indices_list[init_view]]
|
||||
|
||||
max_rec_pts = np.vstack(point_cloud_list)
|
||||
downsampled_max_rec_pts = PtsUtil.voxel_downsample_point_cloud(max_rec_pts, threshold)
|
||||
|
||||
max_rec_pts_num = downsampled_max_rec_pts.shape[0]
|
||||
max_real_rec_pts_coverage, _ = ReconstructionUtil.compute_coverage_rate(target_point_cloud, downsampled_max_rec_pts, threshold)
|
||||
|
||||
new_coverage, new_covered_num = ReconstructionUtil.compute_coverage_rate(downsampled_max_rec_pts, combined_point_cloud, threshold)
|
||||
current_coverage = new_coverage
|
||||
current_covered_num = new_covered_num
|
||||
|
||||
remaining_views = list(range(len(point_cloud_list)))
|
||||
view_sequence = [(init_view, current_coverage)]
|
||||
cnt_processed_view = 0
|
||||
remaining_views.remove(init_view)
|
||||
curr_rec_pts_num = combined_point_cloud.shape[0]
|
||||
|
||||
while remaining_views:
|
||||
best_view = None
|
||||
best_coverage_increase = -1
|
||||
best_combined_point_cloud = None
|
||||
best_covered_num = 0
|
||||
|
||||
for view_index in remaining_views:
|
||||
if point_cloud_list[view_index].shape[0] == 0:
|
||||
continue
|
||||
if selected_views:
|
||||
new_scan_points_indices = scan_points_indices_list[view_index]
|
||||
if not ReconstructionUtil.check_scan_points_overlap(history_indices, new_scan_points_indices, scan_points_threshold):
|
||||
overlap_threshold = hard_overlap_threshold
|
||||
else:
|
||||
overlap_threshold = soft_overlap_threshold
|
||||
overlap_rate = ReconstructionUtil.compute_overlap_rate(point_cloud_list[view_index],combined_point_cloud, threshold)
|
||||
if overlap_rate < overlap_threshold:
|
||||
continue
|
||||
new_combined_point_cloud = np.vstack([combined_point_cloud, point_cloud_list[view_index]])
|
||||
new_downsampled_combined_point_cloud = PtsUtil.voxel_downsample_point_cloud(new_combined_point_cloud,threshold)
|
||||
new_coverage, new_covered_num = ReconstructionUtil.compute_coverage_rate(downsampled_max_rec_pts, new_downsampled_combined_point_cloud, threshold)
|
||||
|
||||
coverage_increase = new_coverage - current_coverage
|
||||
if coverage_increase > best_coverage_increase:
|
||||
best_coverage_increase = coverage_increase
|
||||
best_view = view_index
|
||||
best_covered_num = new_covered_num
|
||||
best_combined_point_cloud = new_downsampled_combined_point_cloud
|
||||
|
||||
|
||||
if best_view is not None:
|
||||
if best_coverage_increase <=1e-3 or best_covered_num - current_covered_num <= 5:
|
||||
break
|
||||
|
||||
selected_views.append(best_view)
|
||||
best_rec_pts_num = best_combined_point_cloud.shape[0]
|
||||
print(f"Current rec pts num: {curr_rec_pts_num}, Best rec pts num: {best_rec_pts_num}, Best cover pts: {best_covered_num}, Max rec pts num: {max_rec_pts_num}")
|
||||
print(f"Current coverage: {current_coverage}, Best coverage increase: {best_coverage_increase}, Max Real coverage: {max_real_rec_pts_coverage}")
|
||||
current_covered_num = best_covered_num
|
||||
curr_rec_pts_num = best_rec_pts_num
|
||||
combined_point_cloud = best_combined_point_cloud
|
||||
remaining_views.remove(best_view)
|
||||
history_indices.append(scan_points_indices_list[best_view])
|
||||
current_coverage += best_coverage_increase
|
||||
cnt_processed_view += 1
|
||||
if status_info is not None:
|
||||
sm = status_info["status_manager"]
|
||||
app_name = status_info["app_name"]
|
||||
runner_name = status_info["runner_name"]
|
||||
sm.set_status(app_name, runner_name, "current coverage", current_coverage)
|
||||
sm.set_progress(app_name, runner_name, "processed view", cnt_processed_view, len(point_cloud_list))
|
||||
|
||||
view_sequence.append((best_view, current_coverage))
|
||||
|
||||
else:
|
||||
break
|
||||
if status_info is not None:
|
||||
sm = status_info["status_manager"]
|
||||
app_name = status_info["app_name"]
|
||||
runner_name = status_info["runner_name"]
|
||||
sm.set_progress(app_name, runner_name, "processed view", len(point_cloud_list), len(point_cloud_list))
|
||||
return view_sequence, remaining_views, combined_point_cloud
|
||||
|
||||
@staticmethod
|
||||
def compute_next_best_view_with_overlap(scanned_pts, point_cloud_list, history_indices, scan_points_indices_list, threshold=0.01, overlap_area_threshold=25, scan_points_threshold=5):
|
||||
max_rec_pts = np.vstack(point_cloud_list)
|
||||
downsampled_max_rec_pts = PtsUtil.voxel_downsample_point_cloud(max_rec_pts, threshold)
|
||||
best_view = None
|
||||
best_coverage = -1
|
||||
best_covered_num = 0
|
||||
for view in range(len(point_cloud_list)):
|
||||
if point_cloud_list[view].shape[0] == 0:
|
||||
continue
|
||||
new_scan_points_indices = scan_points_indices_list[view]
|
||||
|
||||
if not ReconstructionUtil.check_scan_points_overlap(history_indices, new_scan_points_indices, scan_points_threshold):
|
||||
curr_overlap_area_threshold = overlap_area_threshold
|
||||
else:
|
||||
curr_overlap_area_threshold = overlap_area_threshold * 0.5
|
||||
|
||||
if not ReconstructionUtil.check_overlap(point_cloud_list[view], scanned_pts, overlap_area_threshold = curr_overlap_area_threshold, voxel_size=threshold):
|
||||
continue
|
||||
|
||||
|
||||
new_combined_point_cloud = np.vstack([scanned_pts ,point_cloud_list[view]])
|
||||
new_downsampled_combined_point_cloud = PtsUtil.voxel_downsample_point_cloud(new_combined_point_cloud,threshold)
|
||||
new_coverage, new_covered_num = ReconstructionUtil.compute_coverage_rate(downsampled_max_rec_pts, new_downsampled_combined_point_cloud, threshold)
|
||||
if new_coverage > best_coverage:
|
||||
best_coverage = new_coverage
|
||||
best_covered_num = new_covered_num
|
||||
best_view = view
|
||||
|
||||
return best_view, best_coverage, best_covered_num
|
||||
|
||||
@staticmethod
|
||||
def generate_scan_points(display_table_top, display_table_radius, min_distance=0.03, max_points_num = 500, max_attempts = 1000):
|
||||
points = []
|
||||
attempts = 0
|
||||
while len(points) < max_points_num and attempts < max_attempts:
|
||||
angle = np.random.uniform(0, 2 * np.pi)
|
||||
r = np.random.uniform(0, display_table_radius)
|
||||
x = r * np.cos(angle)
|
||||
y = r * np.sin(angle)
|
||||
z = display_table_top
|
||||
new_point = (x, y, z)
|
||||
if all(np.linalg.norm(np.array(new_point) - np.array(existing_point)) >= min_distance for existing_point in points):
|
||||
points.append(new_point)
|
||||
attempts += 1
|
||||
return points
|
||||
|
||||
@staticmethod
|
||||
def compute_covered_scan_points(scan_points, point_cloud, threshold=0.01):
|
||||
|
||||
tree = cKDTree(point_cloud)
|
||||
covered_points = []
|
||||
indices = []
|
||||
for i, scan_point in enumerate(scan_points):
|
||||
if tree.query_ball_point(scan_point, threshold):
|
||||
covered_points.append(scan_point)
|
||||
indices.append(i)
|
||||
return covered_points, indices
|
||||
|
||||
@staticmethod
|
||||
def check_scan_points_overlap(history_indices, indices2, threshold=5):
|
||||
try:
|
||||
if len(indices2) == 0:
|
||||
return False
|
||||
for indices1 in history_indices:
|
||||
if len(set(indices1).intersection(set(indices2))) >= threshold:
|
||||
return True
|
||||
except Exception as e:
|
||||
print(e)
|
||||
import ipdb; ipdb.set_trace()
|
||||
return False
|
||||
|
||||
|
45
utils/render_util.py
Normal file
45
utils/render_util.py
Normal file
@@ -0,0 +1,45 @@
|
||||
|
||||
import os
|
||||
import json
|
||||
import subprocess
|
||||
import tempfile
|
||||
import shutil
|
||||
from utils.data_load import DataLoadUtil
|
||||
from utils.pts_util import PtsUtil
|
||||
class RenderUtil:
|
||||
|
||||
@staticmethod
|
||||
def render_pts(cam_pose, object_name, script_path, model_points_normals, voxel_threshold=0.005, filter_degree=75, nO_to_nL_pose=None, require_full_scene=False):
|
||||
nO_to_world_pose = DataLoadUtil.get_real_cam_O_from_cam_L(cam_pose, nO_to_nL_pose, scene_path=scene_path)
|
||||
with tempfile.TemporaryDirectory() as temp_dir:
|
||||
params = {
|
||||
"cam_pose": nO_to_world_pose.tolist(),
|
||||
"object_name": scene_path
|
||||
}
|
||||
params_data_path = os.path.join(temp_dir, "params.json")
|
||||
with open(params_data_path, 'w') as f:
|
||||
json.dump(params, f)
|
||||
result = subprocess.run([
|
||||
'blender', '-b', '-P', script_path, '--', temp_dir
|
||||
], capture_output=True, text=True)
|
||||
if result.returncode != 0:
|
||||
print("Blender script failed:")
|
||||
print(result.stderr)
|
||||
return None
|
||||
path = os.path.join(temp_dir, "tmp")
|
||||
point_cloud = DataLoadUtil.get_target_point_cloud_world_from_path(path, binocular=True)
|
||||
cam_params = DataLoadUtil.load_cam_info(path, binocular=True)
|
||||
|
||||
filtered_point_cloud = PtsUtil.filter_points(point_cloud, model_points_normals, cam_pose=cam_params["cam_to_world"], voxel_size=voxel_threshold, theta=filter_degree)
|
||||
full_scene_point_cloud = None
|
||||
if require_full_scene:
|
||||
depth_L, depth_R = DataLoadUtil.load_depth(path, cam_params['near_plane'], cam_params['far_plane'], binocular=True)
|
||||
point_cloud_L = DataLoadUtil.get_point_cloud(depth_L, cam_params['cam_intrinsic'], cam_params['cam_to_world'])['points_world']
|
||||
point_cloud_R = DataLoadUtil.get_point_cloud(depth_R, cam_params['cam_intrinsic'], cam_params['cam_to_world_R'])['points_world']
|
||||
|
||||
point_cloud_L = PtsUtil.random_downsample_point_cloud(point_cloud_L, 65536)
|
||||
point_cloud_R = PtsUtil.random_downsample_point_cloud(point_cloud_R, 65536)
|
||||
full_scene_point_cloud = PtsUtil.get_overlapping_points(point_cloud_L, point_cloud_R)
|
||||
|
||||
|
||||
return filtered_point_cloud, full_scene_point_cloud
|
127
utils/view_util.py
Normal file
127
utils/view_util.py
Normal file
@@ -0,0 +1,127 @@
|
||||
import numpy as np
|
||||
from scipy.spatial.transform import Rotation as R
|
||||
from dataclasses import dataclass
|
||||
|
||||
|
||||
@dataclass
|
||||
class CameraIntrinsics:
|
||||
width: int
|
||||
height: int
|
||||
fx: float
|
||||
fy: float
|
||||
cx: float
|
||||
cy: float
|
||||
|
||||
@property
|
||||
def intrinsic_matrix(self):
|
||||
return np.array([[self.fx, 0, self.cx], [0, self.fy, self.cy], [0, 0, 1]])
|
||||
|
||||
|
||||
@dataclass
|
||||
class CameraExtrinsics:
|
||||
def __init__(self, rotation: np.ndarray, translation: np.ndarray, rot_type: str):
|
||||
"""
|
||||
rotation: 3x3 rotation matrix or 1x3 euler angles or 1x4 quaternion
|
||||
translation: 1x3 or 3x1 translation vector
|
||||
rot_type: "mat", "euler_xyz", "quat_xyzw"
|
||||
"""
|
||||
assert rot_type in ["mat", "euler_xyz", "quat_xyzw"]
|
||||
if rot_type == "mat":
|
||||
self._rot = R.from_matrix(rotation)
|
||||
elif rot_type == "euler_xyz":
|
||||
self._rot = R.from_euler('xyz', rotation, degrees=True)
|
||||
elif rot_type == "quat_xyzw":
|
||||
self._rot = R.from_quat(rotation)
|
||||
self._translation = translation
|
||||
|
||||
@property
|
||||
def extrinsic_matrix(self):
|
||||
return np.vstack([np.hstack([self._rot.as_matrix(), self._translation.reshape(3, 1)]), [0, 0, 0, 1]])
|
||||
|
||||
@property
|
||||
def rotation_euler_xyz(self):
|
||||
return self._rot.as_euler('xyz', degrees=True)
|
||||
|
||||
@property
|
||||
def rotation_quat_xyzw(self):
|
||||
return self._rot.as_quat()
|
||||
|
||||
@property
|
||||
def rotation_matrix(self):
|
||||
return self._rot.as_matrix()
|
||||
|
||||
@property
|
||||
def translation(self):
|
||||
return self._translation
|
||||
|
||||
|
||||
@dataclass
|
||||
class CameraData:
|
||||
def __init__(self, depth_image: np.ndarray, image_id: int, intrinsics: CameraIntrinsics, extrinsics: CameraExtrinsics):
|
||||
self._depth_image = depth_image
|
||||
self._image_id = image_id
|
||||
self._intrinsics = intrinsics
|
||||
self._extrinsics = extrinsics
|
||||
|
||||
@property
|
||||
def depth_image(self):
|
||||
return self._depth_image
|
||||
|
||||
@property
|
||||
def image_id(self):
|
||||
return self._image_id
|
||||
|
||||
@property
|
||||
def intrinsics(self):
|
||||
return self._intrinsics.intrinsic_matrix
|
||||
|
||||
@property
|
||||
def extrinsics(self):
|
||||
return self._extrinsics.extrinsic_matrix
|
||||
|
||||
@property
|
||||
def projection_matrix(self):
|
||||
return self.intrinsics @ self.extrinsics[:3, :4]
|
||||
|
||||
@property
|
||||
def pts_camera(self):
|
||||
height, width = self.depth_image.shape
|
||||
v, u = np.indices((height, width))
|
||||
points = np.vstack([u.flatten(), v.flatten(), np.ones_like(u.flatten())]) # 3xN
|
||||
points = np.linalg.inv(self.intrinsics) @ points # 3xN
|
||||
points = points.T # Nx3
|
||||
points = points * self.depth_image.flatten()[:, np.newaxis] # Nx3
|
||||
points = points[points[:, 2] > 0] # Nx3
|
||||
return points
|
||||
|
||||
@property
|
||||
def pts_world(self):
|
||||
homogeneous_pts = np.hstack([self.pts_camera, np.ones((self.pts_camera.shape[0], 1))]) # Nx4
|
||||
pts_world = self.extrinsics @ homogeneous_pts.T # 4xN
|
||||
return pts_world[:3, :].T
|
||||
|
||||
class ViewUtil:
|
||||
def get_pts(view_data):
|
||||
image_id = view_data["image_id"]
|
||||
depth_intrinsics = view_data["depth_intrinsics"]
|
||||
depth_extrinsics = view_data["depth_extrinsics"]
|
||||
depth_image = np.array(view_data["depth_image"], dtype=np.uint16)
|
||||
if image_id is None:
|
||||
return None
|
||||
else:
|
||||
camera_intrinsics = CameraIntrinsics(
|
||||
depth_intrinsics['width'],
|
||||
depth_intrinsics['height'],
|
||||
depth_intrinsics['fx'],
|
||||
depth_intrinsics['fy'],
|
||||
depth_intrinsics['cx'],
|
||||
depth_intrinsics['cy']
|
||||
)
|
||||
camera_extrinsics = CameraExtrinsics(
|
||||
depth_extrinsics[:3, :3],
|
||||
depth_extrinsics[:3, 3],
|
||||
rot_type="mat"
|
||||
)
|
||||
camera_data = CameraData(depth_image, image_id, camera_intrinsics, camera_extrinsics)
|
||||
pts = camera_data.pts_world
|
||||
return pts/1000
|
54
vis_pts_and_nrm.py
Normal file
54
vis_pts_and_nrm.py
Normal file
@@ -0,0 +1,54 @@
|
||||
# import numpy as np
|
||||
# import matplotlib.pyplot as plt
|
||||
# from mpl_toolkits.mplot3d import Axes3D
|
||||
|
||||
# # 假设 points_and_normals 是你的 Nx6 矩阵
|
||||
# # 前三列是点坐标,后三列是法线
|
||||
# points_and_normals = np.loadtxt("/Users/hofee/Downloads/temp_output/cad_model_world/points_and_normals.txt") # 这里用随机点代替你的数据
|
||||
# points = points_and_normals[:100, :3]
|
||||
# normals = points_and_normals[:100, 3:]
|
||||
|
||||
# # 创建3D图形
|
||||
# fig = plt.figure()
|
||||
# ax = fig.add_subplot(111, projection='3d')
|
||||
|
||||
# # 绘制点云
|
||||
# ax.scatter(points[:, 0], points[:, 1], points[:, 2], color='b', marker='o')
|
||||
|
||||
# # 绘制法线 (从每个点出发的一小段箭头)
|
||||
# ax.quiver(points[:, 0], points[:, 1], points[:, 2],
|
||||
# normals[:, 0], normals[:, 1], normals[:, 2], length=0.1, color='r')
|
||||
|
||||
# plt.show()
|
||||
|
||||
import numpy as np
|
||||
|
||||
# 假设 points_and_normals 是你的 Nx6 矩阵
|
||||
# points_and_normals[:,:3] 是点的坐标
|
||||
# points_and_normals[:,3:] 是法线
|
||||
points_and_normals = np.loadtxt("/Users/hofee/Downloads/temp_output/cad_model_world/points_and_normals.txt") # 这里用随机点代替你的数据
|
||||
print(points_and_normals.shape)
|
||||
points = points_and_normals[300:400, :3]
|
||||
normals = points_and_normals[300:400, 3:]
|
||||
|
||||
# 设置你想在法线方向上采样的距离范围和点数
|
||||
num_samples_per_point = 20 # 每个法线方向采样的点数
|
||||
sampling_distances = np.linspace(0, 0.5, num_samples_per_point) # 采样距离范围
|
||||
|
||||
# 创建一个空列表来保存采样点
|
||||
sampled_points = []
|
||||
|
||||
# 对每个点进行法线方向的采样
|
||||
for point, normal in zip(points, normals):
|
||||
for dist in sampling_distances:
|
||||
# 在法线方向上偏移点
|
||||
sampled_point = point + dist * normal
|
||||
sampled_points.append(sampled_point)
|
||||
|
||||
# 转换为 numpy 数组
|
||||
sampled_points = np.array(sampled_points)
|
||||
|
||||
# 保存为点云文件 (例如 .txt 或 .xyz 格式)
|
||||
np.savetxt('sampled_points.txt', sampled_points)
|
||||
|
||||
print("采样点云已保存为 'sampled_points.xyz'")
|
Reference in New Issue
Block a user