add multiprocess

This commit is contained in:
hofee 2024-10-10 14:42:57 +08:00
parent ba36803fba
commit f6c4db859e

View File

@ -4,7 +4,7 @@ import time
import sys import sys
np.random.seed(0) np.random.seed(0)
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from concurrent.futures import ThreadPoolExecutor, as_completed
from utils.reconstruction_util import ReconstructionUtil from utils.reconstruction_util import ReconstructionUtil
from utils.data_load import DataLoadUtil from utils.data_load import DataLoadUtil
from utils.pts_util import PtsUtil from utils.pts_util import PtsUtil
@ -58,80 +58,77 @@ def get_scan_points_indices(scan_points, mask, display_table_mask_label, cam_int
selected_points_indices = np.where(valid_indices)[0][selected_points_indices] selected_points_indices = np.where(valid_indices)[0][selected_points_indices]
return selected_points_indices return selected_points_indices
def process_frame(frame_id, root, scene, scan_points, file_type, target_mask_label, display_table_mask_label, random_downsample_N, voxel_size, filter_degree, min_z, max_z):
Log.info(f"[frame({frame_id})]Processing {scene} frame {frame_id}")
path = DataLoadUtil.get_path(root, scene, frame_id)
cam_info = DataLoadUtil.load_cam_info(path, binocular=True)
depth_L, depth_R = DataLoadUtil.load_depth(
path, cam_info["near_plane"],
cam_info["far_plane"],
binocular=True
)
mask_L, mask_R = DataLoadUtil.load_seg(path, binocular=True)
def save_scene_data(root, scene, scene_idx=0, scene_total=1,file_type="txt"): target_mask_img_L = (mask_L == target_mask_label).all(axis=-1)
target_mask_img_R = (mask_R == target_mask_label).all(axis=-1)
''' configuration ''' target_points_L = get_world_points(depth_L, target_mask_img_L, cam_info["cam_intrinsic"], cam_info["cam_to_world"])
target_points_R = get_world_points(depth_R, target_mask_img_R, cam_info["cam_intrinsic"], cam_info["cam_to_world_R"])
sampled_target_points_L = PtsUtil.random_downsample_point_cloud(
target_points_L, random_downsample_N
)
sampled_target_points_R = PtsUtil.random_downsample_point_cloud(
target_points_R, random_downsample_N
)
has_points = sampled_target_points_L.shape[0] > 0 and sampled_target_points_R.shape[0] > 0
target_points = np.zeros((0, 3))
if has_points:
target_points = PtsUtil.get_overlapping_points(
sampled_target_points_L, sampled_target_points_R, voxel_size
)
if has_points and target_points.shape[0] > 0:
points_normals = DataLoadUtil.load_points_normals(root, scene, display_table_as_world_space_origin=True)
target_points = PtsUtil.filter_points(
target_points, points_normals, cam_info["cam_to_world"], voxel_size=0.002, theta=filter_degree, z_range=(min_z, max_z)
)
scan_points_indices_L = get_scan_points_indices(scan_points, mask_L, display_table_mask_label, cam_info["cam_intrinsic"], cam_info["cam_to_world"])
scan_points_indices_R = get_scan_points_indices(scan_points, mask_R, display_table_mask_label, cam_info["cam_intrinsic"], cam_info["cam_to_world_R"])
scan_points_indices = np.intersect1d(scan_points_indices_L, scan_points_indices_R)
if not has_points:
target_points = np.zeros((0, 3))
save_target_points(root, scene, frame_id, target_points, file_type=file_type)
save_scan_points_indices(root, scene, frame_id, scan_points_indices, file_type=file_type)
def save_scene_data(root, scene, file_type="txt"):
target_mask_label = (0, 255, 0, 255) target_mask_label = (0, 255, 0, 255)
display_table_mask_label=(0, 0, 255, 255) display_table_mask_label = (0, 0, 255, 255)
random_downsample_N = 32768 random_downsample_N = 32768
voxel_size=0.002 voxel_size = 0.002
filter_degree = 75 filter_degree = 75
min_z = 0.2 min_z = 0.2
max_z = 0.5 max_z = 0.5
''' scan points ''' scan_points = np.asarray(ReconstructionUtil.generate_scan_points(display_table_top=0, display_table_radius=0.25))
scan_points = np.asarray(ReconstructionUtil.generate_scan_points(display_table_top=0,display_table_radius=0.25))
''' read frame data(depth|mask|normal) '''
frame_num = DataLoadUtil.get_scene_seq_length(root, scene) frame_num = DataLoadUtil.get_scene_seq_length(root, scene)
for frame_id in range(frame_num):
Log.info(f"[frame({frame_id}/{frame_num})]Processing {scene} frame {frame_id}")
path = DataLoadUtil.get_path(root, scene, frame_id)
cam_info = DataLoadUtil.load_cam_info(path, binocular=True)
depth_L, depth_R = DataLoadUtil.load_depth(
path, cam_info["near_plane"],
cam_info["far_plane"],
binocular=True
)
mask_L, mask_R = DataLoadUtil.load_seg(path, binocular=True)
''' target points ''' with ThreadPoolExecutor() as executor:
mask_img_L = mask_L futures = {executor.submit(process_frame, frame_id, root, scene, scan_points, file_type, target_mask_label, display_table_mask_label, random_downsample_N, voxel_size, filter_degree, min_z, max_z): frame_id for frame_id in range(frame_num)}
mask_img_R = mask_R
target_mask_img_L = (mask_L == target_mask_label).all(axis=-1) for future in as_completed(futures):
target_mask_img_R = (mask_R == target_mask_label).all(axis=-1) frame_id = futures[future]
try:
future.result()
except Exception as e:
Log.error(f"Error processing frame {frame_id}: {e}")
save_scan_points(root, scene, scan_points) # The "done" flag of scene preprocess
target_points_L = get_world_points(depth_L, target_mask_img_L, cam_info["cam_intrinsic"], cam_info["cam_to_world"])
target_points_R = get_world_points(depth_R, target_mask_img_R, cam_info["cam_intrinsic"], cam_info["cam_to_world_R"])
sampled_target_points_L = PtsUtil.random_downsample_point_cloud(
target_points_L, random_downsample_N
)
sampled_target_points_R = PtsUtil.random_downsample_point_cloud(
target_points_R, random_downsample_N
)
has_points = sampled_target_points_L.shape[0] > 0 and sampled_target_points_R.shape[0] > 0
if has_points:
target_points = PtsUtil.get_overlapping_points(
sampled_target_points_L, sampled_target_points_R, voxel_size
)
if has_points:
has_points = target_points.shape[0] > 0
if has_points:
points_normals = DataLoadUtil.load_points_normals(root, scene, display_table_as_world_space_origin=True)
target_points = PtsUtil.filter_points(
target_points, points_normals, cam_info["cam_to_world"],voxel_size=0.002, theta = filter_degree, z_range=(min_z, max_z)
)
''' scan points indices '''
scan_points_indices_L = get_scan_points_indices(scan_points, mask_img_L, display_table_mask_label, cam_info["cam_intrinsic"], cam_info["cam_to_world"])
scan_points_indices_R = get_scan_points_indices(scan_points, mask_img_R, display_table_mask_label, cam_info["cam_intrinsic"], cam_info["cam_to_world_R"])
scan_points_indices = np.intersect1d(scan_points_indices_L, scan_points_indices_R)
if not has_points:
target_points = np.zeros((0, 3))
save_target_points(root, scene, frame_id, target_points, file_type=file_type)
save_scan_points_indices(root, scene, frame_id, scan_points_indices, file_type=file_type)
save_scan_points(root, scene, scan_points) # The "done" flag of scene preprocess
if __name__ == "__main__": if __name__ == "__main__":