debug view sample

This commit is contained in:
hofee 2024-10-07 22:03:50 -05:00
parent 825f8652d5
commit d9d2716ba7
4 changed files with 224 additions and 15 deletions

160
cam_directions.txt Normal file
View File

@ -0,0 +1,160 @@
-2.976360870451021934e-01 2.612396282015549270e-02 2.722307168556427626e-01
-2.807145935740879561e-01 2.344288301708187527e-02 2.619120507693710187e-01
-2.637931001030737743e-01 2.076180321400825785e-02 2.515933846830992748e-01
-2.468716066320595925e-01 1.808072341093463695e-02 2.412747185968275587e-01
-2.299501131610453553e-01 1.539964360786101778e-02 2.309560525105558149e-01
-2.130286196900311735e-01 1.271856380478740209e-02 2.206373864242840988e-01
-1.961071262190169640e-01 1.003748400171378119e-02 2.103187203380123549e-01
-1.791856327480027822e-01 7.356404198640163761e-03 2.000000542517406110e-01
-1.622641392769885726e-01 4.675324395566546332e-03 1.896813881654688672e-01
-1.453426458059743631e-01 1.994244592492925433e-03 1.793627220791971233e-01
1.058318675876641773e-01 1.913315480742055485e-01 3.701966140390944293e-01
9.931276171077207948e-02 1.796797252938450440e-01 3.553058019571109782e-01
9.279365583387996774e-02 1.680279025134845672e-01 3.404149898751275827e-01
8.627454995698786988e-02 1.563760797331240904e-01 3.255241777931441316e-01
7.975544408009577202e-02 1.447242569527635858e-01 3.106333657111607360e-01
7.323633820320367416e-02 1.330724341724031090e-01 2.957425536291773405e-01
6.671723232631157630e-02 1.214206113920426183e-01 2.808517415471938894e-01
6.019812644941947150e-02 1.097687886116821415e-01 2.659609294652104938e-01
5.367902057252737363e-02 9.811696583132166471e-02 2.510701173832270983e-01
4.715991469563526883e-02 8.646514305096116015e-02 2.361793053012436749e-01
-3.921455052209112946e-01 5.125427963019697081e-02 2.092982359830542760e-01
-3.736810423058752328e-01 4.853268829412461099e-02 2.021109868668294895e-01
-3.552165793908391711e-01 4.581109695805224424e-02 1.949237377506047031e-01
-3.367521164758031094e-01 4.308950562197988443e-02 1.877364886343799166e-01
-3.182876535607670476e-01 4.036791428590751768e-02 1.805492395181551302e-01
-2.998231906457310414e-01 3.764632294983515093e-02 1.733619904019303437e-01
-2.813587277306949241e-01 3.492473161376279112e-02 1.661747412857055572e-01
-2.628942648156589179e-01 3.220314027769043130e-02 1.589874921694807708e-01
-2.444298019006228562e-01 2.948154894161806455e-02 1.518002430532560121e-01
-2.259653389855867667e-01 2.675995760554569780e-02 1.446129939370311979e-01
2.966121428882431688e-01 -1.243668772355264462e-01 2.528267403420925707e-01
2.794781650275093843e-01 -1.175232445334360720e-01 2.451071876279281303e-01
2.623441871667755443e-01 -1.106796118313456839e-01 2.373876349137637176e-01
2.452102093060417598e-01 -1.038359791292553097e-01 2.296680821995992772e-01
2.280762314453079753e-01 -9.699234642716492161e-02 2.219485294854348645e-01
2.109422535845741908e-01 -9.014871372507454739e-02 2.142289767712704240e-01
1.938082757238404064e-01 -8.330508102298417317e-02 2.065094240571059836e-01
1.766742978631065941e-01 -7.646144832089379895e-02 1.987898713429415709e-01
1.595403200023728096e-01 -6.961781561880342473e-02 1.910703186287771582e-01
1.424063421416389974e-01 -6.277418291671303663e-02 1.833507659146127178e-01
1.516386400982264460e-01 -1.586701464075628287e-01 2.415754089606511334e-01
1.434280702011365705e-01 -1.455541040346652326e-01 2.289043405590775460e-01
1.352175003040466672e-01 -1.324380616617676643e-01 2.162332721575039862e-01
1.270069304069567917e-01 -1.193220192888700681e-01 2.035622037559303987e-01
1.187963605098669162e-01 -1.062059769159724720e-01 1.908911353543568112e-01
1.105857906127770407e-01 -9.308993454307488979e-02 1.782200669527832515e-01
1.023752207156871513e-01 -7.997389217017729368e-02 1.655489985512096363e-01
9.416465081859727582e-02 -6.685784979727971145e-02 1.528779301496360765e-01
8.595408092150740031e-02 -5.374180742438212921e-02 1.402068617480624890e-01
7.774351102441751094e-02 -4.062576505148451922e-02 1.275357933464889015e-01
-1.305310885675468879e-01 -2.574515835723965029e-01 3.302868348637944540e-01
-1.245164210467534782e-01 -2.462217366382081774e-01 3.148688482102455222e-01
-1.185017535259600685e-01 -2.349918897040197963e-01 2.994508615566965903e-01
-1.124870860051666588e-01 -2.237620427698314429e-01 2.840328749031476585e-01
-1.064724184843732491e-01 -2.125321958356430896e-01 2.686148882495986712e-01
-1.004577509635798394e-01 -2.013023489014547363e-01 2.531969015960497393e-01
-9.444308344278641576e-02 -1.900725019672663829e-01 2.377789149425008075e-01
-8.842841592199301992e-02 -1.788426550330780018e-01 2.223609282889518757e-01
-8.241374840119961021e-02 -1.676128080988896762e-01 2.069429416354029438e-01
-7.639908088040618661e-02 -1.563829611647012952e-01 1.915249549818539843e-01
-2.141758616454684239e-01 -1.401142265731682157e-01 3.208142574142802683e-01
-2.034685215614439324e-01 -1.329408282550643694e-01 3.055206239383900790e-01
-1.927611814774194687e-01 -1.257674299369604953e-01 2.902269904624999453e-01
-1.820538413933950050e-01 -1.185940316188566629e-01 2.749333569866098115e-01
-1.713465013093705136e-01 -1.114206333007528027e-01 2.596397235107196777e-01
-1.606391612253460499e-01 -1.042472349826489564e-01 2.443460900348295162e-01
-1.499318211413215862e-01 -9.707383666454511006e-02 2.290524565589393546e-01
-1.392244810572971225e-01 -8.990043834644126375e-02 2.137588230830492209e-01
-1.285171409732726311e-01 -8.272704002833740355e-02 1.984651896071590871e-01
-1.178098008892481535e-01 -7.555364171023355724e-02 1.831715561312689255e-01
-1.002417282812653465e-01 -1.857441582228861743e-01 2.313739119119407606e-01
-9.359755865267997688e-02 -1.758149544613172577e-01 2.153344006161490576e-01
-8.695338902409460724e-02 -1.658857506997483688e-01 1.992948893203573268e-01
-8.030921939550925148e-02 -1.559565469381794800e-01 1.832553780245656239e-01
-7.366504976692386797e-02 -1.460273431766105634e-01 1.672158667287739209e-01
-6.702088013833851221e-02 -1.360981394150416746e-01 1.511763554329821901e-01
-6.037671050975313564e-02 -1.261689356534727580e-01 1.351368441371904594e-01
-5.373254088116777294e-02 -1.162397318919038830e-01 1.190973328413987842e-01
-4.708837125258240330e-02 -1.063105281303349803e-01 1.030578215456070812e-01
-4.044420162399703367e-02 -9.638132436876607756e-02 8.701831024981535045e-02
1.554821963443976385e-01 -2.148257011199891098e-01 5.250742981755206484e-01
1.482802959028949041e-01 -2.064840275062017061e-01 5.083845075431692173e-01
1.410783954613921698e-01 -1.981423538924143024e-01 4.916947169108177862e-01
1.338764950198894355e-01 -1.898006802786268987e-01 4.750049262784663551e-01
1.266745945783867011e-01 -1.814590066648394673e-01 4.583151356461149240e-01
1.194726941368839807e-01 -1.731173330510520636e-01 4.416253450137634928e-01
1.122707936953812463e-01 -1.647756594372646599e-01 4.249355543814120062e-01
1.050688932538785120e-01 -1.564339858234772562e-01 4.082457637490606306e-01
9.786699281237579151e-02 -1.480923122096898525e-01 3.915559731167091995e-01
9.066509237087304329e-02 -1.397506385959024211e-01 3.748661824843577128e-01
8.025776028547672303e-02 2.944407235099611442e-01 2.936572800346861634e-01
7.539005914741314651e-02 2.795810656774440073e-01 2.811874743132241616e-01
7.052235800934955612e-02 2.647214078449268704e-01 2.687176685917621599e-01
6.565465687128596572e-02 2.498617500124097057e-01 2.562478628703001582e-01
6.078695573322238921e-02 2.350020921798925411e-01 2.437780571488381842e-01
5.591925459515880575e-02 2.201424343473754042e-01 2.313082514273761825e-01
5.105155345709521536e-02 2.052827765148582673e-01 2.188384457059141808e-01
4.618385231903163191e-02 1.904231186823411304e-01 2.063686399844521790e-01
4.131615118096804845e-02 1.755634608498239935e-01 1.938988342629902051e-01
3.644845004290446500e-02 1.607038030173068288e-01 1.814290285415282034e-01
-5.157790449341418532e-02 -2.280915238559273472e-01 2.331722629466718155e-01
-4.687897960620368565e-02 -2.143414166823043310e-01 2.194298229297667047e-01
-4.218005471899319292e-02 -2.005913095086813147e-01 2.056873829128615938e-01
-3.748112983178270019e-02 -1.868412023350582984e-01 1.919449428959564830e-01
-3.278220494457220052e-02 -1.730910951614352822e-01 1.782025028790513721e-01
-2.808328005736170779e-02 -1.593409879878122659e-01 1.644600628621462890e-01
-2.338435517015120813e-02 -1.455908808141892496e-01 1.507176228452411781e-01
-1.868543028294071540e-02 -1.318407736405662334e-01 1.369751828283360673e-01
-1.398650539573022267e-02 -1.180906664669432449e-01 1.232327428114309703e-01
-9.287580508519722999e-03 -1.043405592933202286e-01 1.094903027945258456e-01
-1.269215451024525432e-01 2.625545655654951682e-01 3.417737734235570812e-01
-1.199871749412033256e-01 2.471706458737163714e-01 3.310383402518738971e-01
-1.130528047799540942e-01 2.317867261819375746e-01 3.203029070801906575e-01
-1.061184346187048627e-01 2.164028064901587500e-01 3.095674739085074179e-01
-9.918406445745564515e-02 2.010188867983799255e-01 2.988320407368242337e-01
-9.224969429620641370e-02 1.856349671066011287e-01 2.880966075651409941e-01
-8.531532413495718226e-02 1.702510474148223041e-01 2.773611743934577545e-01
-7.838095397370795081e-02 1.548671277230435073e-01 2.666257412217745704e-01
-7.144658381245873324e-02 1.394832080312647105e-01 2.558903080500913307e-01
-6.451221365120950180e-02 1.240992883394858581e-01 2.451548748784081189e-01
-2.341853875412766850e-01 5.152039859854373044e-02 5.197893180168721150e-01
-2.252007148693486449e-01 4.944684319447055498e-02 5.020417541005327555e-01
-2.162160421974206326e-01 4.737328779039738647e-02 4.842941901841934516e-01
-2.072313695254926202e-01 4.529973238632421795e-02 4.665466262678541476e-01
-1.982466968535646079e-01 4.322617698225104943e-02 4.487990623515148436e-01
-1.892620241816365678e-01 4.115262157817788091e-02 4.310514984351755396e-01
-1.802773515097085555e-01 3.907906617410470546e-02 4.133039345188362357e-01
-1.712926788377805432e-01 3.700551077003153000e-02 3.955563706024969317e-01
-1.623080061658525031e-01 3.493195536595836148e-02 3.778088066861576833e-01
-1.533233334939244907e-01 3.285839996188519296e-02 3.600612427698183238e-01
1.210235277878131122e-01 -3.921239465826816817e-01 2.952365626755736328e-01
1.155743475904795203e-01 -3.762006607063697050e-01 2.844312213076097273e-01
1.101251673931459424e-01 -3.602773748300577838e-01 2.736258799396458774e-01
1.046759871958123506e-01 -3.443540889537458072e-01 2.628205385716819720e-01
9.922680699847875874e-02 -3.284308030774338305e-01 2.520151972037181221e-01
9.377762680114518079e-02 -3.125075172011218538e-01 2.412098558357542721e-01
8.832844660381158897e-02 -2.965842313248098772e-01 2.304045144677903667e-01
8.287926640647799714e-02 -2.806609454484979560e-01 2.195991730998265168e-01
7.743008620914440532e-02 -2.647376595721859793e-01 2.087938317318626391e-01
7.198090601181081349e-02 -2.488143736958740027e-01 1.979884903638987614e-01
-7.634513431648837223e-02 1.841063024461145892e-01 3.127523209464129761e-01
-7.178553403421568391e-02 1.753640395784209771e-01 2.953516633376314648e-01
-6.722593375194299559e-02 1.666217767107273651e-01 2.779510057288500091e-01
-6.266633346967032114e-02 1.578795138430337808e-01 2.605503481200685534e-01
-5.810673318739763282e-02 1.491372509753401687e-01 2.431496905112870421e-01
-5.354713290512495838e-02 1.403949881076465844e-01 2.257490329025055864e-01
-4.898753262285227006e-02 1.316527252399529724e-01 2.083483752937241029e-01
-4.442793234057959562e-02 1.229104623722593881e-01 1.909477176849426472e-01
-3.986833205830691423e-02 1.141681995045657899e-01 1.735470600761611637e-01
-3.530873177603422591e-02 1.054259366368721779e-01 1.561464024673796802e-01
-2.097103305076620516e-01 -1.384789009505066615e-01 2.811056276500599749e-01
-1.943908481741861705e-01 -1.318322337484758855e-01 2.700994804522541815e-01
-1.790713658407102893e-01 -1.251855665464451373e-01 2.590933332544483880e-01
-1.637518835072344081e-01 -1.185388993444143890e-01 2.480871860566425391e-01
-1.484324011737584992e-01 -1.118922321423836130e-01 2.370810388588367179e-01
-1.331129188402826458e-01 -1.052455649403528648e-01 2.260748916610308967e-01
-1.177934365068067368e-01 -9.859889773832210269e-02 2.150687444632250478e-01
-1.024739541733308557e-01 -9.195223053629135446e-02 2.040625972654192544e-01
-8.715447183985497448e-02 -8.530556333426059235e-02 1.930564500676134332e-01
-7.183498950637906555e-02 -7.865889613222983023e-02 1.820503028698076120e-01

16
cam_poses.txt Normal file
View File

@ -0,0 +1,16 @@
-3.145575805161163752e-01 2.880504262322911013e-02 2.825493829419145064e-01
1.123509734645562752e-01 2.029833708545660254e-01 3.850874261210778249e-01
-4.106099681359473563e-01 5.397587096626933756e-02 2.164854850992790625e-01
3.137461207489769532e-01 -1.312105099376168205e-01 2.605462930562569834e-01
1.598492099953163215e-01 -1.717861887804604248e-01 2.542464773622247209e-01
-1.365457560883402977e-01 -2.686814305065848840e-01 3.457048215173433858e-01
-2.248832017294928876e-01 -1.472876248912720620e-01 3.361078908901704021e-01
-1.068858979098507161e-01 -1.956733619844550631e-01 2.474134232077324635e-01
1.626840967859003728e-01 -2.231673747337765135e-01 5.417640888078720796e-01
8.512546142354031342e-02 3.093003813424782811e-01 3.061270857561481651e-01
-5.627682938062467805e-02 -2.418416310295503635e-01 2.469147029635769264e-01
-1.338559152637017746e-01 2.779384852572739928e-01 3.525092065952403209e-01
-2.431700602132046973e-01 5.359395400261689896e-02 5.375368819332113635e-01
1.264727079851467040e-01 -4.080472324589936584e-01 3.060419040435374827e-01
-8.090473459876104667e-02 1.928485653138081735e-01 3.301529785551944318e-01
-2.250298128411379328e-01 -1.451255681525374097e-01 2.921117748478658238e-01

View File

@ -17,7 +17,7 @@ runner:
min_view: 128 min_view: 128
max_diag: 0.7 max_diag: 0.7
min_diag: 0.01 min_diag: 0.01
random_view_ratio: 0.2 random_view_ratio: 0
min_cam_table_included_degree: 20 min_cam_table_included_degree: 20
reconstruct: reconstruct:

View File

@ -133,25 +133,58 @@ class CADStrategyRunner(Runner):
Log.info(f"[{count_object}/{total}]Processing {model_name}") Log.info(f"[{count_object}/{total}]Processing {model_name}")
self.run_one_model(model_name) self.run_one_model(model_name)
Log.success(f"[{count_object}/{total}]Finished processing {model_name}") Log.success(f"[{count_object}/{total}]Finished processing {model_name}")
# ---------------------------- test ---------------------------- #
if __name__ == "__main__": if __name__ == "__main__":
model_path = r"C:\Users\hofee\Downloads\mesh.obj" model_path = r"C:\Users\hofee\Downloads\mesh.obj"
model = trimesh.load(model_path) model = trimesh.load(model_path)
test_pts_L = np.load(r"C:\Users\hofee\Downloads\0.npy")
import open3d as o3d ''' test register '''
def add_noise(points, translation, rotation): # test_pts_L = np.load(r"C:\Users\hofee\Downloads\0.npy")
R = o3d.geometry.get_rotation_matrix_from_axis_angle(rotation)
noisy_points = points @ R.T + translation
return noisy_points
translation_noise = np.random.uniform(-0.5, 0.5, size=3) # import open3d as o3d
rotation_noise = np.random.uniform(-np.pi/4, np.pi/4, size=3) # def add_noise(points, translation, rotation):
noisy_pts_L = add_noise(test_pts_L, translation_noise, rotation_noise) # R = o3d.geometry.get_rotation_matrix_from_axis_angle(rotation)
# noisy_points = points @ R.T + translation
# return noisy_points
cad_to_cam_L = PtsUtil.register(noisy_pts_L, model) # translation_noise = np.random.uniform(-0.5, 0.5, size=3)
# rotation_noise = np.random.uniform(-np.pi/4, np.pi/4, size=3)
# noisy_pts_L = add_noise(test_pts_L, translation_noise, rotation_noise)
cad_pts_L = PtsUtil.transform_point_cloud(noisy_pts_L, cad_to_cam_L) # cad_to_cam_L = PtsUtil.register(noisy_pts_L, model)
np.savetxt(r"test.txt", cad_pts_L)
np.savetxt(r"src.txt", noisy_pts_L) # cad_pts_L = PtsUtil.transform_point_cloud(noisy_pts_L, cad_to_cam_L)
# np.savetxt(r"test.txt", cad_pts_L)
# np.savetxt(r"src.txt", noisy_pts_L)
''' test view sample '''
sampled_view_data = ViewSampleUtil.sample_view_data_world_space(
model, np.eye(4),
voxel_size = 0.005,
max_views = 20,
min_cam_table_included_degree= 20,
random_view_ratio = 0
)
cam_poses = sampled_view_data["cam_to_world_poses"]
cam_poses = np.array(cam_poses)
print(cam_poses.shape)
def sample_camera_direction(cam_pose, num_samples, sample_distance):
cam_position = cam_pose[:3, 3]
cam_direction = cam_pose[:3, 2]
sampled_points = np.array([cam_position - (i + 1) * sample_distance * cam_direction for i in range(num_samples)])
return sampled_points
all_sampled_points = []
for i in range(cam_poses.shape[0]):
samped_points = sample_camera_direction(cam_poses[i], 10, 0.02)
all_sampled_points.append(samped_points)
all_sampled_points = np.concatenate(all_sampled_points, axis=0)
np.savetxt(r"cam_poses.txt", cam_poses[:, :3, 3])
np.savetxt(r"cam_directions.txt", all_sampled_points)