This commit is contained in:
2024-10-12 16:39:00 +08:00
parent cd85fed3a0
commit 3fe74eb6eb
5 changed files with 226 additions and 32 deletions

View File

@@ -3,6 +3,7 @@ import open3d as o3d
import torch
import trimesh
from scipy.spatial import cKDTree
from utils.pose_util import PoseUtil
class PtsUtil:
@@ -117,8 +118,8 @@ class PtsUtil:
return filtered_sampled_points[:, :3]
@staticmethod
def register(pcl: np.ndarray, model: trimesh.Trimesh, voxel_size=0.01):
radius_normal = voxel_size * 2
def old_register(pcl: np.ndarray, model: trimesh.Trimesh, voxel_size=0.002):
radius_normal = voxel_size * 3
pipreg = o3d.pipelines.registration
model_pcd = o3d.geometry.PointCloud()
model_pcd.points = o3d.utility.Vector3dVector(model.vertices)
@@ -152,7 +153,7 @@ class PtsUtil:
source_fpfh,
model_fpfh,
mutual_filter=True,
max_correspondence_distance=voxel_size * 1.5,
max_correspondence_distance=voxel_size * 2,
estimation_method=pipreg.TransformationEstimationPointToPoint(False),
ransac_n=4,
checkers=[pipreg.CorrespondenceCheckerBasedOnEdgeLength(0.9)],
@@ -162,14 +163,59 @@ class PtsUtil:
reg_icp = pipreg.registration_icp(
source_downsampled,
model_downsampled,
voxel_size * 2,
voxel_size/2,
reg_ransac.transformation,
pipreg.TransformationEstimationPointToPlane(),
pipreg.ICPConvergenceCriteria(max_iteration=200),
pipreg.ICPConvergenceCriteria(max_iteration=2000),
)
return reg_icp.transformation
@staticmethod
def chamfer_distance(pcl_a, pcl_b):
distances = np.linalg.norm(pcl_a[:, None] - pcl_b, axis=2)
min_distances = np.min(distances, axis=1)
return np.sum(min_distances)
@staticmethod
def register(pcl: np.ndarray, model: trimesh.Trimesh, voxel_size=0.008, max_iter=100000):
model_pts = model.vertices
sampled_world_pts = PtsUtil.voxel_downsample_point_cloud(pcl, voxel_size)
sampled_model_pts = PtsUtil.voxel_downsample_point_cloud(model_pts, voxel_size)
best_pose = np.eye(4)
best_pose[:3, 3] = np.mean(sampled_world_pts, axis=0) - np.mean(sampled_model_pts, axis=0)
best_distance = float('inf')
temperature = 1.0
cnt_unchange = 0
for _ in range(max_iter):
print(best_distance)
new_pose = best_pose.copy()
rotation_noise = np.random.randn(3)
rotation_noise /= np.linalg.norm(rotation_noise)
rotation_noise *= temperature
translation_noise = np.random.randn(3) * 0.1 * temperature
rotation_matrix = PoseUtil.get_uniform_rotation(0, 360)
new_pose[:3, :3] = rotation_matrix @ best_pose[:3, :3]
new_pose[:3, 3] += translation_noise
distance = PtsUtil.chamfer_distance(
PtsUtil.transform_point_cloud(sampled_world_pts, new_pose),
sampled_model_pts
)
if distance < best_distance:
best_pose, best_distance = new_pose, distance
cnt_unchange = 0
else:
cnt_unchange += 1
if cnt_unchange > 11110:
break
temperature *= 0.999
print(temperature)
return best_pose
@staticmethod
def get_pts_from_depth(depth, cam_intrinsic, cam_extrinsic):
h, w = depth.shape