This commit is contained in:
hofee
2024-10-08 21:28:30 +08:00
parent d9d2716ba7
commit 3ab046b134
11 changed files with 773 additions and 354 deletions

View File

@@ -1,10 +1,20 @@
import requests
import numpy as np
import cv2
class CommunicateUtil:
VIEW_HOST = "127.0.0.1:5000"
INFERENCE_HOST = "127.0.0.1:5000"
def get_view_data() -> dict:
data = {}
def get_view_data(init = False) -> dict:
params = {}
params["create_scanner"] = init
response = requests.get(f"http://{CommunicateUtil.VIEW_HOST}/api/data", json=params)
data = response.json()
if not data["success"]:
print(f"Failed to get view data")
return None
return data
def get_inference_data(view_data:dict) -> dict:

410
utils/data_load.py Normal file
View File

@@ -0,0 +1,410 @@
import os
import numpy as np
import json
import cv2
import trimesh
import torch
from utils.pts_util import PtsUtil
class DataLoadUtil:
TABLE_POSITION = np.asarray([0, 0, 0.8215])
@staticmethod
def get_display_table_info(root, scene_name):
scene_info = DataLoadUtil.load_scene_info(root, scene_name)
display_table_info = scene_info["display_table"]
return display_table_info
@staticmethod
def get_display_table_top(root, scene_name):
display_table_height = DataLoadUtil.get_display_table_info(root, scene_name)[
"height"
]
display_table_top = DataLoadUtil.TABLE_POSITION + np.asarray(
[0, 0, display_table_height]
)
return display_table_top
@staticmethod
def get_path(root, scene_name, frame_idx):
path = os.path.join(root, scene_name, f"{frame_idx}")
return path
@staticmethod
def get_label_num(root, scene_name):
label_dir = os.path.join(root, scene_name, "label")
return len(os.listdir(label_dir))
@staticmethod
def get_label_path(root, scene_name, seq_idx):
label_dir = os.path.join(root, scene_name, "label")
if not os.path.exists(label_dir):
os.makedirs(label_dir)
path = os.path.join(label_dir, f"{seq_idx}.json")
return path
@staticmethod
def get_label_path_old(root, scene_name):
path = os.path.join(root, scene_name, "label.json")
return path
@staticmethod
def get_scene_seq_length(root, scene_name):
camera_params_path = os.path.join(root, scene_name, "camera_params")
return len(os.listdir(camera_params_path))
@staticmethod
def load_mesh_at(model_dir, object_name, world_object_pose):
model_path = os.path.join(model_dir, object_name, "mesh.obj")
mesh = trimesh.load(model_path)
mesh.apply_transform(world_object_pose)
return mesh
@staticmethod
def get_bbox_diag(model_dir, object_name):
model_path = os.path.join(model_dir, object_name, "mesh.obj")
mesh = trimesh.load(model_path)
bbox = mesh.bounding_box.extents
diagonal_length = np.linalg.norm(bbox)
return diagonal_length
@staticmethod
def save_mesh_at(model_dir, output_dir, object_name, scene_name, world_object_pose):
mesh = DataLoadUtil.load_mesh_at(model_dir, object_name, world_object_pose)
model_path = os.path.join(output_dir, scene_name, "world_mesh.obj")
mesh.export(model_path)
@staticmethod
def save_target_mesh_at_world_space(
root, model_dir, scene_name, display_table_as_world_space_origin=True
):
scene_info = DataLoadUtil.load_scene_info(root, scene_name)
target_name = scene_info["target_name"]
transformation = scene_info[target_name]
if display_table_as_world_space_origin:
location = transformation["location"] - DataLoadUtil.get_display_table_top(
root, scene_name
)
else:
location = transformation["location"]
rotation_euler = transformation["rotation_euler"]
pose_mat = trimesh.transformations.euler_matrix(*rotation_euler)
pose_mat[:3, 3] = location
mesh = DataLoadUtil.load_mesh_at(model_dir, target_name, pose_mat)
mesh_dir = os.path.join(root, scene_name, "mesh")
if not os.path.exists(mesh_dir):
os.makedirs(mesh_dir)
model_path = os.path.join(mesh_dir, "world_target_mesh.obj")
mesh.export(model_path)
@staticmethod
def load_scene_info(root, scene_name):
scene_info_path = os.path.join(root, scene_name, "scene_info.json")
with open(scene_info_path, "r") as f:
scene_info = json.load(f)
return scene_info
@staticmethod
def load_target_pts_num_dict(root, scene_name):
target_pts_num_path = os.path.join(root, scene_name, "target_pts_num.json")
with open(target_pts_num_path, "r") as f:
target_pts_num_dict = json.load(f)
return target_pts_num_dict
@staticmethod
def load_target_object_pose(root, scene_name):
scene_info = DataLoadUtil.load_scene_info(root, scene_name)
target_name = scene_info["target_name"]
transformation = scene_info[target_name]
location = transformation["location"]
rotation_euler = transformation["rotation_euler"]
pose_mat = trimesh.transformations.euler_matrix(*rotation_euler)
pose_mat[:3, 3] = location
return pose_mat
@staticmethod
def load_depth(path, min_depth=0.01, max_depth=5.0, binocular=False):
def load_depth_from_real_path(real_path, min_depth, max_depth):
depth = cv2.imread(real_path, cv2.IMREAD_UNCHANGED)
depth = depth.astype(np.float32) / 65535.0
min_depth = min_depth
max_depth = max_depth
depth_meters = min_depth + (max_depth - min_depth) * depth
return depth_meters
if binocular:
depth_path_L = os.path.join(
os.path.dirname(path), "depth", os.path.basename(path) + "_L.png"
)
depth_path_R = os.path.join(
os.path.dirname(path), "depth", os.path.basename(path) + "_R.png"
)
depth_meters_L = load_depth_from_real_path(
depth_path_L, min_depth, max_depth
)
depth_meters_R = load_depth_from_real_path(
depth_path_R, min_depth, max_depth
)
return depth_meters_L, depth_meters_R
else:
depth_path = os.path.join(
os.path.dirname(path), "depth", os.path.basename(path) + ".png"
)
depth_meters = load_depth_from_real_path(depth_path, min_depth, max_depth)
return depth_meters
@staticmethod
def load_seg(path, binocular=False, left_only=False):
if binocular and not left_only:
def clean_mask(mask_image):
green = [0, 255, 0, 255]
red = [255, 0, 0, 255]
threshold = 2
mask_image = np.where(
np.abs(mask_image - green) <= threshold, green, mask_image
)
mask_image = np.where(
np.abs(mask_image - red) <= threshold, red, mask_image
)
return mask_image
mask_path_L = os.path.join(
os.path.dirname(path), "mask", os.path.basename(path) + "_L.png"
)
mask_image_L = clean_mask(cv2.imread(mask_path_L, cv2.IMREAD_UNCHANGED))
mask_path_R = os.path.join(
os.path.dirname(path), "mask", os.path.basename(path) + "_R.png"
)
mask_image_R = clean_mask(cv2.imread(mask_path_R, cv2.IMREAD_UNCHANGED))
return mask_image_L, mask_image_R
else:
if binocular and left_only:
mask_path = os.path.join(
os.path.dirname(path), "mask", os.path.basename(path) + "_L.png"
)
else:
mask_path = os.path.join(
os.path.dirname(path), "mask", os.path.basename(path) + ".png"
)
mask_image = cv2.imread(mask_path, cv2.IMREAD_UNCHANGED)
return mask_image
@staticmethod
def load_normal(path, binocular=False, left_only=False):
if binocular and not left_only:
normal_path_L = os.path.join(
os.path.dirname(path), "normal", os.path.basename(path) + "_L.png"
)
normal_image_L = cv2.imread(normal_path_L, cv2.IMREAD_COLOR)
normal_path_R = os.path.join(
os.path.dirname(path), "normal", os.path.basename(path) + "_R.png"
)
normal_image_R = cv2.imread(normal_path_R, cv2.IMREAD_COLOR)
normalized_normal_image_L = normal_image_L / 255.0 * 2.0 - 1.0
normalized_normal_image_R = normal_image_R / 255.0 * 2.0 - 1.0
return normalized_normal_image_L, normalized_normal_image_R
else:
if binocular and left_only:
normal_path = os.path.join(
os.path.dirname(path), "normal", os.path.basename(path) + "_L.png"
)
else:
normal_path = os.path.join(
os.path.dirname(path), "normal", os.path.basename(path) + ".png"
)
normal_image = cv2.imread(normal_path, cv2.IMREAD_COLOR)
normalized_normal_image = normal_image / 255.0 * 2.0 - 1.0
return normalized_normal_image
@staticmethod
def load_label(path):
with open(path, "r") as f:
label_data = json.load(f)
return label_data
@staticmethod
def load_rgb(path):
rgb_path = os.path.join(
os.path.dirname(path), "rgb", os.path.basename(path) + ".png"
)
rgb_image = cv2.imread(rgb_path, cv2.IMREAD_COLOR)
return rgb_image
@staticmethod
def load_from_preprocessed_pts(path):
npy_path = os.path.join(
os.path.dirname(path), "pts", os.path.basename(path) + ".npy"
)
pts = np.load(npy_path)
return pts
@staticmethod
def cam_pose_transformation(cam_pose_before):
offset = np.asarray([[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, 1]])
cam_pose_after = cam_pose_before @ offset
return cam_pose_after
@staticmethod
def load_cam_info(path, binocular=False, display_table_as_world_space_origin=True):
scene_dir = os.path.dirname(path)
root_dir = os.path.dirname(scene_dir)
scene_name = os.path.basename(scene_dir)
camera_params_path = os.path.join(
os.path.dirname(path), "camera_params", os.path.basename(path) + ".json"
)
with open(camera_params_path, "r") as f:
label_data = json.load(f)
cam_to_world = np.asarray(label_data["extrinsic"])
cam_to_world = DataLoadUtil.cam_pose_transformation(cam_to_world)
world_to_display_table = np.eye(4)
world_to_display_table[:3, 3] = -DataLoadUtil.get_display_table_top(
root_dir, scene_name
)
if display_table_as_world_space_origin:
cam_to_world = np.dot(world_to_display_table, cam_to_world)
cam_intrinsic = np.asarray(label_data["intrinsic"])
cam_info = {
"cam_to_world": cam_to_world,
"cam_intrinsic": cam_intrinsic,
"far_plane": label_data["far_plane"],
"near_plane": label_data["near_plane"],
}
if binocular:
cam_to_world_R = np.asarray(label_data["extrinsic_R"])
cam_to_world_R = DataLoadUtil.cam_pose_transformation(cam_to_world_R)
cam_to_world_O = np.asarray(label_data["extrinsic_cam_object"])
cam_to_world_O = DataLoadUtil.cam_pose_transformation(cam_to_world_O)
if display_table_as_world_space_origin:
cam_to_world_O = np.dot(world_to_display_table, cam_to_world_O)
cam_to_world_R = np.dot(world_to_display_table, cam_to_world_R)
cam_info["cam_to_world_O"] = cam_to_world_O
cam_info["cam_to_world_R"] = cam_to_world_R
return cam_info
@staticmethod
def get_real_cam_O_from_cam_L(
cam_L, cam_O_to_cam_L, scene_path, display_table_as_world_space_origin=True
):
root_dir = os.path.dirname(scene_path)
scene_name = os.path.basename(scene_path)
if isinstance(cam_L, torch.Tensor):
cam_L = cam_L.cpu().numpy()
nO_to_display_table_pose = cam_L @ cam_O_to_cam_L
if display_table_as_world_space_origin:
display_table_to_world = np.eye(4)
display_table_to_world[:3, 3] = DataLoadUtil.get_display_table_top(
root_dir, scene_name
)
nO_to_world_pose = np.dot(display_table_to_world, nO_to_display_table_pose)
nO_to_world_pose = DataLoadUtil.cam_pose_transformation(nO_to_world_pose)
return nO_to_world_pose
@staticmethod
def get_target_point_cloud(
depth, cam_intrinsic, cam_extrinsic, mask, target_mask_label=(0, 255, 0, 255), require_full_points=False
):
h, w = depth.shape
i, j = np.meshgrid(np.arange(w), np.arange(h), indexing="xy")
z = depth
x = (i - cam_intrinsic[0, 2]) * z / cam_intrinsic[0, 0]
y = (j - cam_intrinsic[1, 2]) * z / cam_intrinsic[1, 1]
points_camera = np.stack((x, y, z), axis=-1).reshape(-1, 3)
mask = mask.reshape(-1, 4)
target_mask = (mask == target_mask_label).all(axis=-1)
target_points_camera = points_camera[target_mask]
target_points_camera_aug = np.concatenate(
[target_points_camera, np.ones((target_points_camera.shape[0], 1))], axis=-1
)
target_points_world = np.dot(cam_extrinsic, target_points_camera_aug.T).T[:, :3]
data = {
"points_world": target_points_world,
"points_camera": target_points_camera,
}
return data
@staticmethod
def get_point_cloud(depth, cam_intrinsic, cam_extrinsic):
h, w = depth.shape
i, j = np.meshgrid(np.arange(w), np.arange(h), indexing="xy")
z = depth
x = (i - cam_intrinsic[0, 2]) * z / cam_intrinsic[0, 0]
y = (j - cam_intrinsic[1, 2]) * z / cam_intrinsic[1, 1]
points_camera = np.stack((x, y, z), axis=-1).reshape(-1, 3)
points_camera_aug = np.concatenate(
[points_camera, np.ones((points_camera.shape[0], 1))], axis=-1
)
points_world = np.dot(cam_extrinsic, points_camera_aug.T).T[:, :3]
return {"points_world": points_world, "points_camera": points_camera}
@staticmethod
def get_target_point_cloud_world_from_path(
path,
binocular=False,
random_downsample_N=65536,
voxel_size=0.005,
target_mask_label=(0, 255, 0, 255),
display_table_mask_label=(0, 0, 255, 255),
get_display_table_pts=False,
require_normal=False,
):
cam_info = DataLoadUtil.load_cam_info(path, binocular=binocular)
if binocular:
depth_L, depth_R = DataLoadUtil.load_depth(
path, cam_info["near_plane"], cam_info["far_plane"], binocular=True
)
mask_L, mask_R = DataLoadUtil.load_seg(path, binocular=True)
point_cloud_L = DataLoadUtil.get_target_point_cloud(
depth_L,
cam_info["cam_intrinsic"],
cam_info["cam_to_world"],
mask_L,
target_mask_label,
)["points_world"]
point_cloud_R = DataLoadUtil.get_target_point_cloud(
depth_R,
cam_info["cam_intrinsic"],
cam_info["cam_to_world_R"],
mask_R,
target_mask_label,
)["points_world"]
point_cloud_L = PtsUtil.random_downsample_point_cloud(
point_cloud_L, random_downsample_N
)
point_cloud_R = PtsUtil.random_downsample_point_cloud(
point_cloud_R, random_downsample_N
)
overlap_points = PtsUtil.get_overlapping_points(
point_cloud_L, point_cloud_R, voxel_size
)
return overlap_points
else:
depth = DataLoadUtil.load_depth(
path, cam_info["near_plane"], cam_info["far_plane"]
)
mask = DataLoadUtil.load_seg(path)
point_cloud = DataLoadUtil.get_target_point_cloud(
depth, cam_info["cam_intrinsic"], cam_info["cam_to_world"], mask
)["points_world"]
return point_cloud
@staticmethod
def load_points_normals(root, scene_name, display_table_as_world_space_origin=True):
points_path = os.path.join(root, scene_name, "points_and_normals.txt")
points_normals = np.loadtxt(points_path)
if display_table_as_world_space_origin:
points_normals[:, :3] = points_normals[
:, :3
] - DataLoadUtil.get_display_table_top(root, scene_name)
return points_normals

158
utils/preprocess_util.py Normal file
View File

@@ -0,0 +1,158 @@
import os
import numpy as np
import time
import sys
np.random.seed(0)
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from utils.reconstruction_util import ReconstructionUtil
from utils.data_load import DataLoadUtil
from utils.pts_util import PtsUtil
def save_np_pts(path, pts: np.ndarray, file_type="txt"):
if file_type == "txt":
np.savetxt(path, pts)
else:
np.save(path, pts)
def save_target_points(root, scene, frame_idx, target_points: np.ndarray, file_type="txt"):
pts_path = os.path.join(root,scene, "pts", f"{frame_idx}.{file_type}")
if not os.path.exists(os.path.join(root,scene, "pts")):
os.makedirs(os.path.join(root,scene, "pts"))
save_np_pts(pts_path, target_points, file_type)
def save_scan_points_indices(root, scene, frame_idx, scan_points_indices: np.ndarray, file_type="txt"):
indices_path = os.path.join(root,scene, "scan_points_indices", f"{frame_idx}.{file_type}")
if not os.path.exists(os.path.join(root,scene, "scan_points_indices")):
os.makedirs(os.path.join(root,scene, "scan_points_indices"))
save_np_pts(indices_path, scan_points_indices, file_type)
def save_scan_points(root, scene, scan_points: np.ndarray):
scan_points_path = os.path.join(root,scene, "scan_points.txt")
save_np_pts(scan_points_path, scan_points)
def get_world_points(depth, mask, cam_intrinsic, cam_extrinsic):
z = depth[mask]
i, j = np.nonzero(mask)
x = (j - cam_intrinsic[0, 2]) * z / cam_intrinsic[0, 0]
y = (i - cam_intrinsic[1, 2]) * z / cam_intrinsic[1, 1]
points_camera = np.stack((x, y, z), axis=-1).reshape(-1, 3)
points_camera_aug = np.concatenate((points_camera, np.ones((points_camera.shape[0], 1))), axis=-1)
points_camera_world = np.dot(cam_extrinsic, points_camera_aug.T).T[:, :3]
return points_camera_world
def get_scan_points_indices(scan_points, mask, display_table_mask_label, cam_intrinsic, cam_extrinsic):
scan_points_homogeneous = np.hstack((scan_points, np.ones((scan_points.shape[0], 1))))
points_camera = np.dot(np.linalg.inv(cam_extrinsic), scan_points_homogeneous.T).T[:, :3]
points_image_homogeneous = np.dot(cam_intrinsic, points_camera.T).T
points_image_homogeneous /= points_image_homogeneous[:, 2:]
pixel_x = points_image_homogeneous[:, 0].astype(int)
pixel_y = points_image_homogeneous[:, 1].astype(int)
h, w = mask.shape[:2]
valid_indices = (pixel_x >= 0) & (pixel_x < w) & (pixel_y >= 0) & (pixel_y < h)
mask_colors = mask[pixel_y[valid_indices], pixel_x[valid_indices]]
selected_points_indices = np.where((mask_colors == display_table_mask_label).all(axis=-1))[0]
selected_points_indices = np.where(valid_indices)[0][selected_points_indices]
return selected_points_indices
def save_scene_data(root, scene, scene_idx=0, scene_total=1,file_type="txt"):
''' configuration '''
target_mask_label = (0, 255, 0, 255)
display_table_mask_label=(0, 0, 255, 255)
random_downsample_N = 32768
voxel_size=0.002
filter_degree = 75
min_z = 0.2
max_z = 0.5
''' scan points '''
scan_points = np.asarray(ReconstructionUtil.generate_scan_points(display_table_top=0,display_table_radius=0.25))
''' read frame data(depth|mask|normal) '''
frame_num = DataLoadUtil.get_scene_seq_length(root, scene)
for frame_id in range(frame_num):
print(f"[scene({scene_idx}/{scene_total})|frame({frame_id}/{frame_num})]Processing {scene} frame {frame_id}")
path = DataLoadUtil.get_path(root, scene, frame_id)
cam_info = DataLoadUtil.load_cam_info(path, binocular=True)
depth_L, depth_R = DataLoadUtil.load_depth(
path, cam_info["near_plane"],
cam_info["far_plane"],
binocular=True
)
mask_L, mask_R = DataLoadUtil.load_seg(path, binocular=True)
''' target points '''
mask_img_L = mask_L
mask_img_R = mask_R
target_mask_img_L = (mask_L == target_mask_label).all(axis=-1)
target_mask_img_R = (mask_R == target_mask_label).all(axis=-1)
target_points_L = get_world_points(depth_L, target_mask_img_L, cam_info["cam_intrinsic"], cam_info["cam_to_world"])
target_points_R = get_world_points(depth_R, target_mask_img_R, cam_info["cam_intrinsic"], cam_info["cam_to_world_R"])
sampled_target_points_L = PtsUtil.random_downsample_point_cloud(
target_points_L, random_downsample_N
)
sampled_target_points_R = PtsUtil.random_downsample_point_cloud(
target_points_R, random_downsample_N
)
has_points = sampled_target_points_L.shape[0] > 0 and sampled_target_points_R.shape[0] > 0
if has_points:
target_points = PtsUtil.get_overlapping_points(
sampled_target_points_L, sampled_target_points_R, voxel_size
)
if has_points:
has_points = target_points.shape[0] > 0
if has_points:
points_normals = DataLoadUtil.load_points_normals(root, scene, display_table_as_world_space_origin=True)
target_points = PtsUtil.filter_points(
target_points, points_normals, cam_info["cam_to_world"],voxel_size=0.002, theta = filter_degree, z_range=(min_z, max_z)
)
''' scan points indices '''
scan_points_indices_L = get_scan_points_indices(scan_points, mask_img_L, display_table_mask_label, cam_info["cam_intrinsic"], cam_info["cam_to_world"])
scan_points_indices_R = get_scan_points_indices(scan_points, mask_img_R, display_table_mask_label, cam_info["cam_intrinsic"], cam_info["cam_to_world_R"])
scan_points_indices = np.intersect1d(scan_points_indices_L, scan_points_indices_R)
if not has_points:
target_points = np.zeros((0, 3))
save_target_points(root, scene, frame_id, target_points, file_type=file_type)
save_scan_points_indices(root, scene, frame_id, scan_points_indices, file_type=file_type)
save_scan_points(root, scene, scan_points) # The "done" flag of scene preprocess
if __name__ == "__main__":
#root = "/media/hofee/repository/new_data_with_normal"
root = r"/media/hofee/data/tempdir/test_real_output"
# list_path = r"/media/hofee/repository/full_list.txt"
# scene_list = []
# with open(list_path, "r") as f:
# for line in f:
# scene_list.append(line.strip())
scene_list = os.listdir(root)
from_idx = 0 # 1000
to_idx = 1 # 1500
cnt = 0
import time
total = to_idx - from_idx
for scene in scene_list[from_idx:to_idx]:
start = time.time()
save_scene_data(root, scene, cnt, total, file_type="npy")
cnt+=1
end = time.time()
print(f"Time cost: {end-start}")

View File

@@ -169,3 +169,25 @@ class PtsUtil:
)
return reg_icp.transformation
@staticmethod
def get_pts_from_depth(depth, cam_intrinsic, cam_extrinsic):
h, w = depth.shape
i, j = np.meshgrid(np.arange(w), np.arange(h), indexing="xy")
z = depth
x = (i - cam_intrinsic[0, 2]) * z / cam_intrinsic[0, 0]
y = (j - cam_intrinsic[1, 2]) * z / cam_intrinsic[1, 1]
points_camera = np.stack((x, y, z), axis=-1).reshape(-1, 3)
mask = mask.reshape(-1, 4)
points_camera = np.concatenate(
[points_camera, np.ones((points_camera.shape[0], 1))], axis=-1
)
points_world = np.dot(cam_extrinsic, points_camera.T).T[:, :3]
data = {
"points_world": points_world,
"points_camera": points_camera,
}
return data

View File

@@ -152,9 +152,15 @@ class ReconstructionUtil:
@staticmethod
def check_scan_points_overlap(history_indices, indices2, threshold=5):
for indices1 in history_indices:
if len(set(indices1).intersection(set(indices2))) >= threshold:
return True
try:
if len(indices2) == 0:
return False
for indices1 in history_indices:
if len(set(indices1).intersection(set(indices2))) >= threshold:
return True
except Exception as e:
print(e)
import ipdb; ipdb.set_trace()
return False

45
utils/render_util.py Normal file
View File

@@ -0,0 +1,45 @@
import os
import json
import subprocess
import tempfile
import shutil
from utils.data_load import DataLoadUtil
from utils.pts_util import PtsUtil
class RenderUtil:
@staticmethod
def render_pts(cam_pose, object_name, script_path, model_points_normals, voxel_threshold=0.005, filter_degree=75, nO_to_nL_pose=None, require_full_scene=False):
nO_to_world_pose = DataLoadUtil.get_real_cam_O_from_cam_L(cam_pose, nO_to_nL_pose, scene_path=scene_path)
with tempfile.TemporaryDirectory() as temp_dir:
params = {
"cam_pose": nO_to_world_pose.tolist(),
"object_name": scene_path
}
params_data_path = os.path.join(temp_dir, "params.json")
with open(params_data_path, 'w') as f:
json.dump(params, f)
result = subprocess.run([
'blender', '-b', '-P', script_path, '--', temp_dir
], capture_output=True, text=True)
if result.returncode != 0:
print("Blender script failed:")
print(result.stderr)
return None
path = os.path.join(temp_dir, "tmp")
point_cloud = DataLoadUtil.get_target_point_cloud_world_from_path(path, binocular=True)
cam_params = DataLoadUtil.load_cam_info(path, binocular=True)
filtered_point_cloud = PtsUtil.filter_points(point_cloud, model_points_normals, cam_pose=cam_params["cam_to_world"], voxel_size=voxel_threshold, theta=filter_degree)
full_scene_point_cloud = None
if require_full_scene:
depth_L, depth_R = DataLoadUtil.load_depth(path, cam_params['near_plane'], cam_params['far_plane'], binocular=True)
point_cloud_L = DataLoadUtil.get_point_cloud(depth_L, cam_params['cam_intrinsic'], cam_params['cam_to_world'])['points_world']
point_cloud_R = DataLoadUtil.get_point_cloud(depth_R, cam_params['cam_intrinsic'], cam_params['cam_to_world_R'])['points_world']
point_cloud_L = PtsUtil.random_downsample_point_cloud(point_cloud_L, 65536)
point_cloud_R = PtsUtil.random_downsample_point_cloud(point_cloud_R, 65536)
full_scene_point_cloud = PtsUtil.get_overlapping_points(point_cloud_L, point_cloud_R)
return filtered_point_cloud, full_scene_point_cloud

View File

@@ -1,162 +0,0 @@
import numpy as np
from utils.pose_util import PoseUtil
import trimesh
from collections import defaultdict
from scipy.spatial.transform import Rotation as R
import random
class ViewSampleUtil:
@staticmethod
def farthest_point_sampling(points, num_samples):
num_points = points.shape[0]
if num_samples >= num_points:
return points, np.arange(num_points)
sampled_indices = np.zeros(num_samples, dtype=int)
sampled_indices[0] = np.random.randint(num_points)
min_distances = np.full(num_points, np.inf)
for i in range(1, num_samples):
current_point = points[sampled_indices[i - 1]]
dist_to_current_point = np.linalg.norm(points - current_point, axis=1)
min_distances = np.minimum(min_distances, dist_to_current_point)
sampled_indices[i] = np.argmax(min_distances)
downsampled_points = points[sampled_indices]
return downsampled_points, sampled_indices
@staticmethod
def voxel_downsample(points, voxel_size):
voxel_grid = defaultdict(list)
for i, point in enumerate(points):
voxel_index = tuple((point // voxel_size).astype(int))
voxel_grid[voxel_index].append(i)
downsampled_points = []
downsampled_indices = []
for indices in voxel_grid.values():
selected_index = indices[0]
downsampled_points.append(points[selected_index])
downsampled_indices.append(selected_index)
return np.array(downsampled_points), downsampled_indices
@staticmethod
def sample_view_data(mesh: trimesh.Trimesh, distance_range: tuple = (0.25, 0.5), voxel_size: float = 0.005, max_views: int = 1, pertube_repeat: int = 1) -> dict:
view_data = {
"look_at_points": [],
"cam_positions": [],
}
vertices = mesh.vertices
look_at_points = []
cam_positions = []
normals = []
vertex_normals = mesh.vertex_normals
for i, vertex in enumerate(vertices):
look_at_point = vertex
view_data["look_at_points"].append(look_at_point)
normal = vertex_normals[i]
if np.isnan(normal).any():
continue
if np.dot(normal, look_at_point) < 0:
normal = -normal
normals.append(normal)
for _ in range(pertube_repeat):
perturb_angle = np.radians(np.random.uniform(0, 30))
perturb_axis = np.random.normal(size=3)
perturb_axis /= np.linalg.norm(perturb_axis)
rotation_matrix = R.from_rotvec(perturb_angle * perturb_axis).as_matrix()
perturbed_normal = np.dot(rotation_matrix, normal)
distance = np.random.uniform(*distance_range)
cam_position = look_at_point + distance * perturbed_normal
look_at_points.append(look_at_point)
cam_positions.append(cam_position)
look_at_points = np.array(look_at_points)
cam_positions = np.array(cam_positions)
voxel_downsampled_look_at_points, selected_indices = ViewSampleUtil.voxel_downsample(look_at_points, voxel_size)
voxel_downsampled_cam_positions = cam_positions[selected_indices]
voxel_downsampled_normals = np.array(normals)[selected_indices]
fps_downsampled_look_at_points, selected_indices = ViewSampleUtil.farthest_point_sampling(voxel_downsampled_look_at_points, max_views * 2)
fps_downsampled_cam_positions = voxel_downsampled_cam_positions[selected_indices]
view_data["look_at_points"] = fps_downsampled_look_at_points.tolist()
view_data["cam_positions"] = fps_downsampled_cam_positions.tolist()
view_data["normals"] = voxel_downsampled_normals.tolist()
view_data["voxel_down_sampled_points"] = voxel_downsampled_look_at_points
return view_data
@staticmethod
def get_world_points_and_normals(view_data: dict, obj_world_pose: np.ndarray) -> tuple:
world_points = []
world_normals = []
for voxel_down_sampled_points, normal in zip(view_data["voxel_down_sampled_points"], view_data["normals"]):
voxel_down_sampled_points_world = obj_world_pose @ np.append(voxel_down_sampled_points, 1.0)
normal_world = obj_world_pose[:3, :3] @ normal
world_points.append(voxel_down_sampled_points_world[:3])
world_normals.append(normal_world)
return np.array(world_points), np.array(world_normals)
@staticmethod
def get_cam_pose(view_data: dict, obj_world_pose: np.ndarray, max_views: int, min_cam_table_included_degree: int, random_view_ratio: float) -> np.ndarray:
cam_poses = []
min_height_z = 1000
for look_at_point, cam_position in zip(view_data["look_at_points"], view_data["cam_positions"]):
look_at_point_world = obj_world_pose @ np.append(look_at_point, 1.0)
cam_position_world = obj_world_pose @ np.append(cam_position, 1.0)
if look_at_point_world[2] < min_height_z:
min_height_z = look_at_point_world[2]
look_at_point_world = look_at_point_world[:3]
cam_position_world = cam_position_world[:3]
forward_vector = cam_position_world - look_at_point_world
forward_vector /= np.linalg.norm(forward_vector)
up_vector = np.array([0, 0, 1])
right_vector = np.cross(up_vector, forward_vector)
right_vector /= np.linalg.norm(right_vector)
corrected_up_vector = np.cross(forward_vector, right_vector)
rotation_matrix = np.array([right_vector, corrected_up_vector, forward_vector]).T
cam_pose = np.eye(4)
cam_pose[:3, :3] = rotation_matrix
cam_pose[:3, 3] = cam_position_world
cam_poses.append(cam_pose)
filtered_cam_poses = []
for cam_pose in cam_poses:
if cam_pose[2, 3] > min_height_z:
direction_vector = cam_pose[:3, 2]
horizontal_normal = np.array([0, 0, 1])
cos_angle = np.dot(direction_vector, horizontal_normal) / (np.linalg.norm(direction_vector) * np.linalg.norm(horizontal_normal))
angle = np.arccos(np.clip(cos_angle, -1.0, 1.0))
angle_degree = np.degrees(angle)
if angle_degree < 90 - min_cam_table_included_degree:
filtered_cam_poses.append(cam_pose)
if random.random() < random_view_ratio:
pertube_pose = PoseUtil.get_uniform_pose([0.1, 0.1, 0.1], [3, 3, 3], 0, 180, "cm")
filtered_cam_poses.append(pertube_pose @ cam_pose)
if len(filtered_cam_poses) > max_views:
indices = np.random.choice(len(filtered_cam_poses), max_views, replace=False)
filtered_cam_poses = [filtered_cam_poses[i] for i in indices]
return np.array(filtered_cam_poses)
@staticmethod
def sample_view_data_world_space(mesh: trimesh.Trimesh, cad_to_world: np.ndarray, distance_range:tuple = (0.25,0.5), voxel_size:float = 0.005, max_views: int=1, min_cam_table_included_degree:int=20, random_view_ratio:float = 0.2) -> dict:
view_data = ViewSampleUtil.sample_view_data(mesh, distance_range, voxel_size, max_views)
view_data["cam_to_world_poses"] = ViewSampleUtil.get_cam_pose(view_data, cad_to_world, max_views, min_cam_table_included_degree, random_view_ratio)
view_data["voxel_down_sampled_points"], view_data["normals"] = ViewSampleUtil.get_world_points_and_normals(view_data, cad_to_world)
return view_data