127 lines
5.0 KiB
Python
127 lines
5.0 KiB
Python
|
import os
|
||
|
import trimesh
|
||
|
import numpy as np
|
||
|
from PytorchBoot.runners.runner import Runner
|
||
|
from PytorchBoot.config import ConfigManager
|
||
|
import PytorchBoot.stereotype as stereotype
|
||
|
from PytorchBoot.utils.log_util import Log
|
||
|
from PytorchBoot.status import status_manager
|
||
|
|
||
|
#from utils.control_util import ControlUtil
|
||
|
from utils.communicate_util import CommunicateUtil
|
||
|
from utils.pts_util import PtsUtil
|
||
|
from utils.view_sample_util import ViewSampleUtil
|
||
|
from utils.reconstruction_util import ReconstructionUtil
|
||
|
|
||
|
|
||
|
@stereotype.runner("online_renderer")
|
||
|
class OnlineRenderer(Runner):
|
||
|
|
||
|
def __init__(self, config_path: str):
|
||
|
super().__init__(config_path)
|
||
|
self.load_experiment("cad_strategy")
|
||
|
self.host = ConfigManager.get("runner", "web", "host")
|
||
|
self.port = ConfigManager.get("runner", "web", "port")
|
||
|
|
||
|
def create_experiment(self, backup_name=None):
|
||
|
super().create_experiment(backup_name)
|
||
|
|
||
|
def load_experiment(self, backup_name=None):
|
||
|
super().load_experiment(backup_name)
|
||
|
|
||
|
def run_one_model(self, model_name):
|
||
|
|
||
|
''' init robot '''
|
||
|
ControlUtil.init()
|
||
|
''' load CAD model '''
|
||
|
model_path = os.path.join(self.model_dir, model_name)
|
||
|
cad_model = trimesh.load(model_path)
|
||
|
''' take first view '''
|
||
|
view_data = CommunicateUtil.get_view_data()
|
||
|
first_cam_pts = None
|
||
|
''' register '''
|
||
|
cad_to_cam = PtsUtil.register(first_cam_pts, cad_model)
|
||
|
cam_to_world = ControlUtil.get_pose()
|
||
|
cad_to_world = cam_to_world @ cad_to_cam
|
||
|
cad_model:trimesh.Trimesh = cad_model.apply_transform(cad_to_world)
|
||
|
''' sample view '''
|
||
|
min_corner = cad_model.bounds[0]
|
||
|
max_corner = cad_model.bounds[1]
|
||
|
diag = np.linalg.norm(max_corner - min_corner)
|
||
|
view_num = int(self.min_view + (diag - self.min_diag)/(self.max_diag - self.min_diag) * (self.max_view - self.min_view))
|
||
|
sampled_view_data = ViewSampleUtil.sample_view_data_world_space(
|
||
|
cad_model, cad_to_world,
|
||
|
voxel_size = self.voxel_size,
|
||
|
max_views = view_num,
|
||
|
min_cam_table_included_degree= self.min_cam_table_included_degree,
|
||
|
random_view_ratio = self.random_view_ratio
|
||
|
)
|
||
|
cam_to_world_poses = sampled_view_data["cam_to_world_poses"]
|
||
|
world_model_points = sampled_view_data["voxel_down_sampled_points"]
|
||
|
|
||
|
''' take sample view '''
|
||
|
scan_points_idx_list = []
|
||
|
sample_view_pts_list = []
|
||
|
for cam_to_world in cam_to_world_poses:
|
||
|
ControlUtil.move_to(cam_to_world)
|
||
|
''' get world pts '''
|
||
|
view_data = CommunicateUtil.get_view_data()
|
||
|
cam_pts = None
|
||
|
scan_points_idx = None
|
||
|
world_pts = PtsUtil.transform_point_cloud(cam_pts, cam_to_world)
|
||
|
sample_view_pts_list.append(world_pts)
|
||
|
scan_points_idx_list.append(scan_points_idx)
|
||
|
|
||
|
''' generate strategy '''
|
||
|
scan_points = ReconstructionUtil.generate_scan_points(display_table_top=0, display_table_radius=0.25)
|
||
|
|
||
|
limited_useful_view, _, _ = ReconstructionUtil.compute_next_best_view_sequence_with_overlap(
|
||
|
world_model_points, sample_view_pts_list,
|
||
|
scan_points_indices_list = scan_points_idx_list,
|
||
|
init_view=0,
|
||
|
threshold=self.voxel_size,
|
||
|
soft_overlap_threshold = self.soft_overlap_threshold,
|
||
|
hard_overlap_threshold = self.hard_overlap_threshold,
|
||
|
scan_points_threshold = self.scan_points_threshold,
|
||
|
status_info=self.status_info
|
||
|
)
|
||
|
|
||
|
''' extract cam_to_world sequence '''
|
||
|
cam_to_world_seq = []
|
||
|
coveraget_rate_seq = []
|
||
|
|
||
|
for idx, coverage_rate in limited_useful_view:
|
||
|
cam_to_world_seq.append(cam_to_world_poses[idx])
|
||
|
coveraget_rate_seq.append(coverage_rate)
|
||
|
|
||
|
''' take best seq view '''
|
||
|
for cam_to_world in cam_to_world_seq:
|
||
|
ControlUtil.move_to(cam_to_world)
|
||
|
''' get world pts '''
|
||
|
view_data = CommunicateUtil.get_view_data()
|
||
|
cam_pts = None
|
||
|
scan_points_idx = None
|
||
|
world_pts = PtsUtil.transform_point_cloud(cam_pts, cam_to_world)
|
||
|
sample_view_pts_list.append(world_pts)
|
||
|
scan_points_idx_list.append(scan_points_idx)
|
||
|
|
||
|
|
||
|
def run(self):
|
||
|
total = len(os.listdir(self.model_dir))
|
||
|
model_start_idx = self.generate_config["model_start_idx"]
|
||
|
count_object = model_start_idx
|
||
|
for model_name in os.listdir(self.model_dir[model_start_idx:]):
|
||
|
Log.info(f"[{count_object}/{total}]Processing {model_name}")
|
||
|
self.run_one_model(model_name)
|
||
|
Log.success(f"[{count_object}/{total}]Finished processing {model_name}")
|
||
|
|
||
|
|
||
|
# ---------------------------- test ---------------------------- #
|
||
|
if __name__ == "__main__":
|
||
|
|
||
|
model_path = r"C:\Users\hofee\Downloads\mesh.obj"
|
||
|
model = trimesh.load(model_path)
|
||
|
|
||
|
|
||
|
|
||
|
|