add min_cam_table_included_degree and random_view

This commit is contained in:
hofee 2024-09-28 22:03:19 +08:00
parent 70280a7b92
commit f94cb2c0d6
3 changed files with 170 additions and 6 deletions

View File

@ -21,6 +21,8 @@ class DataGenerator:
self.min_views = config["runner"]["generate"]["min_views"]
self.min_diag = config["runner"]["generate"]["min_diag"]
self.max_diag = config["runner"]["generate"]["max_diag"]
self.min_cam_table_included_degree = config["runner"]["generate"]["min_cam_table_included_degree"]
self.random_view_ratio = config["runner"]["generate"]["random_view_ratio"]
self.binocular_vision = config["runner"]["generate"]["binocular_vision"]
self.set_status_path = "http://localhost:5000/project/set_status"
self.log_path = "http://localhost:5000/project/add_log"
@ -240,7 +242,7 @@ class DataGenerator:
if not os.path.exists(scene_dir):
os.makedirs(scene_dir)
view_num = int(self.min_views + (diag - self.min_diag)/(self.max_diag - self.min_diag) * (self.max_views - self.min_views))
view_data = ViewSampleUtil.sample_view_data_world_space(self.target_obj, distance_range=(0.2,0.4), voxel_size=0.005, max_views=view_num)
view_data = ViewSampleUtil.sample_view_data_world_space(self.target_obj, distance_range=(0.2,0.4), voxel_size=0.005, max_views=view_num, min_cam_table_included_degree = self.min_cam_table_included_degree, random_view_ratio = self.random_view_ratio )
object_points = np.array(view_data["voxel_down_sampled_points"])
normals = np.array(view_data["normals"])
points_normals = np.concatenate((object_points, normals), axis=1)

151
pose.py Normal file
View File

@ -0,0 +1,151 @@
import numpy as np
class PoseUtil:
ROTATION = 1
TRANSLATION = 2
SCALE = 3
@staticmethod
def get_uniform_translation(trans_m_min, trans_m_max, trans_unit, debug=False):
if isinstance(trans_m_min, list):
x_min, y_min, z_min = trans_m_min
x_max, y_max, z_max = trans_m_max
else:
x_min, y_min, z_min = trans_m_min, trans_m_min, trans_m_min
x_max, y_max, z_max = trans_m_max, trans_m_max, trans_m_max
x = np.random.uniform(x_min, x_max)
y = np.random.uniform(y_min, y_max)
z = np.random.uniform(z_min, z_max)
translation = np.array([x, y, z])
if trans_unit == "cm":
translation = translation / 100
if debug:
print("uniform translation:", translation)
return translation
@staticmethod
def get_uniform_rotation(rot_degree_min=0, rot_degree_max=180, debug=False):
axis = np.random.randn(3)
axis /= np.linalg.norm(axis)
theta = np.random.uniform(
rot_degree_min / 180 * np.pi, rot_degree_max / 180 * np.pi
)
K = np.array(
[[0, -axis[2], axis[1]], [axis[2], 0, -axis[0]], [-axis[1], axis[0], 0]]
)
R = np.eye(3) + np.sin(theta) * K + (1 - np.cos(theta)) * (K @ K)
if debug:
print("uniform rotation:", theta * 180 / np.pi)
return R
@staticmethod
def get_uniform_pose(
trans_min, trans_max, rot_min=0, rot_max=180, trans_unit="cm", debug=False
):
translation = PoseUtil.get_uniform_translation(
trans_min, trans_max, trans_unit, debug
)
rotation = PoseUtil.get_uniform_rotation(rot_min, rot_max, debug)
pose = np.eye(4)
pose[:3, :3] = rotation
pose[:3, 3] = translation
return pose
@staticmethod
def get_n_uniform_pose(
trans_min,
trans_max,
rot_min=0,
rot_max=180,
n=1,
trans_unit="cm",
fix=None,
contain_canonical=True,
debug=False,
):
if fix == PoseUtil.ROTATION:
translations = np.zeros((n, 3))
for i in range(n):
translations[i] = PoseUtil.get_uniform_translation(
trans_min, trans_max, trans_unit, debug
)
if contain_canonical:
translations[0] = np.zeros(3)
rotations = PoseUtil.get_uniform_rotation(rot_min, rot_max, debug)
elif fix == PoseUtil.TRANSLATION:
rotations = np.zeros((n, 3, 3))
for i in range(n):
rotations[i] = PoseUtil.get_uniform_rotation(rot_min, rot_max, debug)
if contain_canonical:
rotations[0] = np.eye(3)
translations = PoseUtil.get_uniform_translation(
trans_min, trans_max, trans_unit, debug
)
else:
translations = np.zeros((n, 3))
rotations = np.zeros((n, 3, 3))
for i in range(n):
translations[i] = PoseUtil.get_uniform_translation(
trans_min, trans_max, trans_unit, debug
)
for i in range(n):
rotations[i] = PoseUtil.get_uniform_rotation(rot_min, rot_max, debug)
if contain_canonical:
translations[0] = np.zeros(3)
rotations[0] = np.eye(3)
pose = np.eye(4, 4, k=0)[np.newaxis, :].repeat(n, axis=0)
pose[:, :3, :3] = rotations
pose[:, :3, 3] = translations
return pose
@staticmethod
def get_n_uniform_pose_batch(
trans_min,
trans_max,
rot_min=0,
rot_max=180,
n=1,
batch_size=1,
trans_unit="cm",
fix=None,
contain_canonical=False,
debug=False,
):
batch_poses = []
for i in range(batch_size):
pose = PoseUtil.get_n_uniform_pose(
trans_min,
trans_max,
rot_min,
rot_max,
n,
trans_unit,
fix,
contain_canonical,
debug,
)
batch_poses.append(pose)
pose_batch = np.stack(batch_poses, axis=0)
return pose_batch
@staticmethod
def get_uniform_scale(scale_min, scale_max, debug=False):
if isinstance(scale_min, list):
x_min, y_min, z_min = scale_min
x_max, y_max, z_max = scale_max
else:
x_min, y_min, z_min = scale_min, scale_min, scale_min
x_max, y_max, z_max = scale_max, scale_max, scale_max
x = np.random.uniform(x_min, x_max)
y = np.random.uniform(y_min, y_max)
z = np.random.uniform(z_min, z_max)
scale = np.array([x, y, z])
if debug:
print("uniform scale:", scale)
return scale

View File

@ -3,6 +3,8 @@ import numpy as np
import bmesh
from collections import defaultdict
from scipy.spatial.transform import Rotation as R
from blender.pose import PoseUtil
import random
class ViewSampleUtil:
@staticmethod
@ -101,7 +103,7 @@ class ViewSampleUtil:
return np.array(world_points), np.array(world_normals)
@staticmethod
def get_cam_pose(view_data: dict, obj_world_pose: np.ndarray, max_views: int) -> np.ndarray:
def get_cam_pose(view_data: dict, obj_world_pose: np.ndarray, max_views: int, min_cam_table_included_degree: int, random_view_ratio: float) -> np.ndarray:
cam_poses = []
min_height_z = 1000
for look_at_point, cam_position in zip(view_data["look_at_points"], view_data["cam_positions"]):
@ -134,7 +136,16 @@ class ViewSampleUtil:
filtered_cam_poses = []
for cam_pose in cam_poses:
if cam_pose[2, 3] > min_height_z:
direction_vector = cam_pose[:3, 2]
horizontal_normal = np.array([0, 0, 1])
cos_angle = np.dot(direction_vector, horizontal_normal) / (np.linalg.norm(direction_vector) * np.linalg.norm(horizontal_normal))
angle = np.arccos(np.clip(cos_angle, -1.0, 1.0))
angle_degree = np.degrees(angle)
if angle_degree < 90 - min_cam_table_included_degree:
filtered_cam_poses.append(cam_pose)
if random.random() < random_view_ratio:
pertube_pose = PoseUtil.get_uniform_pose([0.1, 0.1, 0.1], [3, 3, 3], 0, 180, "cm")
filtered_cam_poses.append(pertube_pose @ cam_pose)
if len(filtered_cam_poses) > max_views:
indices = np.random.choice(len(filtered_cam_poses), max_views, replace=False)
@ -143,10 +154,10 @@ class ViewSampleUtil:
return np.array(filtered_cam_poses)
@staticmethod
def sample_view_data_world_space(obj, distance_range:tuple = (0.3,0.5), voxel_size:float = 0.005, max_views: int=1) -> dict:
def sample_view_data_world_space(obj, distance_range:tuple = (0.3,0.5), voxel_size:float = 0.005, max_views: int=1, min_cam_table_included_degree:int=20, random_view_ratio:float = 0.2) -> dict:
obj_world_pose = np.asarray(obj.matrix_world)
view_data = ViewSampleUtil.sample_view_data(obj, distance_range, voxel_size, max_views)
view_data["cam_poses"] = ViewSampleUtil.get_cam_pose(view_data, obj_world_pose, max_views)
view_data["cam_poses"] = ViewSampleUtil.get_cam_pose(view_data, obj_world_pose, max_views, min_cam_table_included_degree)
view_data["voxel_down_sampled_points"], view_data["normals"] = ViewSampleUtil.get_world_points_and_normals(view_data, obj_world_pose)
return view_data