optimize code structure

This commit is contained in:
hofee 2024-10-18 20:46:31 +08:00
parent dd01b4903d
commit 1f8c017a01
10 changed files with 816 additions and 1363 deletions

View File

@ -6,8 +6,9 @@ import bpy
import numpy as np
import mathutils
import requests
from blender.blender_util import BlenderUtils
from blender.view_sample_util import ViewSampleUtil
from utils.blender_util import BlenderUtils
from utils.view_sample_util import ViewSampleUtil
from utils.material_util import MaterialUtil
class DataGenerator:
def __init__(self, config):
@ -103,29 +104,7 @@ class DataGenerator:
bpy.context.object.rigid_body.type = 'PASSIVE'
bpy.ops.object.shade_auto_smooth()
# 创建不受光照影响的材质
mat = bpy.data.materials.new(name="RedMaterial")
mat.use_nodes = True
# 清除默认节点
nodes = mat.node_tree.nodes
for node in nodes:
nodes.remove(node)
# 添加 Emission 节点
emission_node = nodes.new(type='ShaderNodeEmission')
emission_node.inputs['Color'].default_value = (1.0, 0.0, 0.0, 1.0) # 红色
# 添加 Material Output 节点
output_node = nodes.new(type='ShaderNodeOutputMaterial')
# 连接节点
links = mat.node_tree.links
links.new(emission_node.outputs['Emission'], output_node.inputs['Surface'])
# 将材质赋给对象
platform.data.materials.clear()
platform.data.materials.append(mat)
MaterialUtil.change_object_material(platform, MaterialUtil.create_mask_material(color=(1.0, 0, 0)))
self.display_table_config = {
"height": height,
@ -166,31 +145,7 @@ class DataGenerator:
bpy.ops.rigidbody.object_add()
bpy.context.object.rigid_body.type = 'ACTIVE'
# 创建不受光照影响的材质
mat = bpy.data.materials.new(name="GreenMaterial")
mat.use_nodes = True
# 清除默认节点
nodes = mat.node_tree.nodes
for node in nodes:
nodes.remove(node)
# 添加 Emission 节点
emission_node = nodes.new(type='ShaderNodeEmission')
emission_node.inputs['Color'].default_value = (0.0, 1.0, 0.0, 1.0) # 绿色
# 添加 Material Output 节点
output_node = nodes.new(type='ShaderNodeOutputMaterial')
# 连接节点
links = mat.node_tree.links
links.new(emission_node.outputs['Emission'], output_node.inputs['Surface'])
# 将材质赋给对象
obj.data.materials.clear()
obj.data.materials.append(mat)
MaterialUtil.change_object_material(obj, MaterialUtil.create_mask_material(color=(0, 1.0, 0)))
self.target_obj = obj
@ -249,9 +204,7 @@ class DataGenerator:
self.set_progress("render frame", len(view_data["cam_poses"]), len(view_data["cam_poses"]))
BlenderUtils.save_scene_info(scene_dir, self.display_table_config, object_name)
self.change_target_obj_material_to_normal()
MaterialUtil.change_object_material(self.target_obj, MaterialUtil.create_normal_material())
for i, cam_pose in enumerate(view_data["cam_poses"]):
BlenderUtils.set_camera_at(cam_pose)
BlenderUtils.render_normal_and_depth(scene_dir, f"{i}", binocular_vision=self.binocular_vision, target_object = self.target_obj)
@ -269,196 +222,6 @@ class DataGenerator:
return True
def change_target_obj_material_to_normal(self):
material_name = "normal"
mat = bpy.data.materials.get(material_name) or bpy.data.materials.new(
material_name
)
mat.use_nodes = True
node_tree = mat.node_tree
nodes = node_tree.nodes
nodes.clear()
links = node_tree.links
links.clear()
# Nodes:
new_node = nodes.new(type="ShaderNodeMath")
# new_node.active_preview = False
new_node.color = (0.6079999804496765, 0.6079999804496765, 0.6079999804496765)
new_node.location = (151.59744262695312, 854.5482177734375)
new_node.name = "Math"
new_node.operation = "MULTIPLY"
new_node.select = False
new_node.use_clamp = False
new_node.width = 140.0
new_node.inputs[0].default_value = 0.5
new_node.inputs[1].default_value = 1.0
new_node.inputs[2].default_value = 0.0
new_node.outputs[0].default_value = 0.0
new_node = nodes.new(type="ShaderNodeLightPath")
# new_node.active_preview = False
new_node.color = (0.6079999804496765, 0.6079999804496765, 0.6079999804496765)
new_node.location = (602.9912719726562, 1046.660888671875)
new_node.name = "Light Path"
new_node.select = False
new_node.width = 140.0
new_node.outputs[0].default_value = 0.0
new_node.outputs[1].default_value = 0.0
new_node.outputs[2].default_value = 0.0
new_node.outputs[3].default_value = 0.0
new_node.outputs[4].default_value = 0.0
new_node.outputs[5].default_value = 0.0
new_node.outputs[6].default_value = 0.0
new_node.outputs[7].default_value = 0.0
new_node.outputs[8].default_value = 0.0
new_node.outputs[9].default_value = 0.0
new_node.outputs[10].default_value = 0.0
new_node.outputs[11].default_value = 0.0
new_node.outputs[12].default_value = 0.0
new_node = nodes.new(type="ShaderNodeOutputMaterial")
# new_node.active_preview = False
new_node.color = (0.6079999804496765, 0.6079999804496765, 0.6079999804496765)
new_node.is_active_output = True
new_node.location = (1168.93017578125, 701.84033203125)
new_node.name = "Material Output"
new_node.select = False
new_node.target = "ALL"
new_node.width = 140.0
new_node.inputs[2].default_value = [0.0, 0.0, 0.0]
new_node = nodes.new(type="ShaderNodeBsdfTransparent")
# new_node.active_preview = False
new_node.color = (0.6079999804496765, 0.6079999804496765, 0.6079999804496765)
new_node.location = (731.72900390625, 721.4832763671875)
new_node.name = "Transparent BSDF"
new_node.select = False
new_node.width = 140.0
new_node.inputs[0].default_value = [1.0, 1.0, 1.0, 1.0]
new_node = nodes.new(type="ShaderNodeCombineXYZ")
# new_node.active_preview = False
new_node.color = (0.6079999804496765, 0.6079999804496765, 0.6079999804496765)
new_node.location = (594.4229736328125, 602.9271240234375)
new_node.name = "Combine XYZ"
new_node.select = False
new_node.width = 140.0
new_node.inputs[0].default_value = 0.0
new_node.inputs[1].default_value = 0.0
new_node.inputs[2].default_value = 0.0
new_node.outputs[0].default_value = [0.0, 0.0, 0.0]
new_node = nodes.new(type="ShaderNodeMixShader")
# new_node.active_preview = False
new_node.color = (0.6079999804496765, 0.6079999804496765, 0.6079999804496765)
new_node.location = (992.7239990234375, 707.2142333984375)
new_node.name = "Mix Shader"
new_node.select = False
new_node.width = 140.0
new_node.inputs[0].default_value = 0.5
new_node = nodes.new(type="ShaderNodeEmission")
# new_node.active_preview = False
new_node.color = (0.6079999804496765, 0.6079999804496765, 0.6079999804496765)
new_node.location = (774.0802612304688, 608.2547607421875)
new_node.name = "Emission"
new_node.select = False
new_node.width = 140.0
new_node.inputs[0].default_value = [1.0, 1.0, 1.0, 1.0]
new_node.inputs[1].default_value = 1.0
new_node = nodes.new(type="ShaderNodeSeparateXYZ")
# new_node.active_preview = False
new_node.color = (0.6079999804496765, 0.6079999804496765, 0.6079999804496765)
new_node.location = (-130.12167358398438, 558.1497802734375)
new_node.name = "Separate XYZ"
new_node.select = False
new_node.width = 140.0
new_node.inputs[0].default_value = [0.0, 0.0, 0.0]
new_node.outputs[0].default_value = 0.0
new_node.outputs[1].default_value = 0.0
new_node.outputs[2].default_value = 0.0
new_node = nodes.new(type="ShaderNodeMath")
# new_node.active_preview = False
new_node.color = (0.6079999804496765, 0.6079999804496765, 0.6079999804496765)
new_node.location = (162.43240356445312, 618.8094482421875)
new_node.name = "Math.002"
new_node.operation = "MULTIPLY"
new_node.select = False
new_node.use_clamp = False
new_node.width = 140.0
new_node.inputs[0].default_value = 0.5
new_node.inputs[1].default_value = 1.0
new_node.inputs[2].default_value = 0.0
new_node.outputs[0].default_value = 0.0
new_node = nodes.new(type="ShaderNodeMath")
# new_node.active_preview = False
new_node.color = (0.6079999804496765, 0.6079999804496765, 0.6079999804496765)
new_node.location = (126.8158187866211, 364.5539855957031)
new_node.name = "Math.001"
new_node.operation = "MULTIPLY"
new_node.select = False
new_node.use_clamp = False
new_node.width = 140.0
new_node.inputs[0].default_value = 0.5
new_node.inputs[1].default_value = -1.0
new_node.inputs[2].default_value = 0.0
new_node.outputs[0].default_value = 0.0
new_node = nodes.new(type="ShaderNodeVectorTransform")
# new_node.active_preview = False
new_node.color = (0.6079999804496765, 0.6079999804496765, 0.6079999804496765)
new_node.convert_from = "WORLD"
new_node.convert_to = "CAMERA"
new_node.location = (-397.0209045410156, 594.7037353515625)
new_node.name = "Vector Transform"
new_node.select = False
new_node.vector_type = "VECTOR"
new_node.width = 140.0
new_node.inputs[0].default_value = [0.5, 0.5, 0.5]
new_node.outputs[0].default_value = [0.0, 0.0, 0.0]
new_node = nodes.new(type="ShaderNodeNewGeometry")
# new_node.active_preview = False
new_node.color = (0.6079999804496765, 0.6079999804496765, 0.6079999804496765)
new_node.location = (-651.8067016601562, 593.0455932617188)
new_node.name = "Geometry"
new_node.width = 140.0
new_node.outputs[0].default_value = [0.0, 0.0, 0.0]
new_node.outputs[1].default_value = [0.0, 0.0, 0.0]
new_node.outputs[2].default_value = [0.0, 0.0, 0.0]
new_node.outputs[3].default_value = [0.0, 0.0, 0.0]
new_node.outputs[4].default_value = [0.0, 0.0, 0.0]
new_node.outputs[5].default_value = [0.0, 0.0, 0.0]
new_node.outputs[6].default_value = 0.0
new_node.outputs[7].default_value = 0.0
new_node.outputs[8].default_value = 0.0
# Links :
links.new(nodes["Light Path"].outputs[0], nodes["Mix Shader"].inputs[0])
links.new(nodes["Separate XYZ"].outputs[0], nodes["Math"].inputs[0])
links.new(nodes["Separate XYZ"].outputs[1], nodes["Math.002"].inputs[0])
links.new(nodes["Separate XYZ"].outputs[2], nodes["Math.001"].inputs[0])
links.new(nodes["Vector Transform"].outputs[0], nodes["Separate XYZ"].inputs[0])
links.new(nodes["Combine XYZ"].outputs[0], nodes["Emission"].inputs[0])
links.new(nodes["Math"].outputs[0], nodes["Combine XYZ"].inputs[0])
links.new(nodes["Math.002"].outputs[0], nodes["Combine XYZ"].inputs[1])
links.new(nodes["Math.001"].outputs[0], nodes["Combine XYZ"].inputs[2])
links.new(nodes["Transparent BSDF"].outputs[0], nodes["Mix Shader"].inputs[1])
links.new(nodes["Emission"].outputs[0], nodes["Mix Shader"].inputs[2])
links.new(nodes["Mix Shader"].outputs[0], nodes["Material Output"].inputs[0])
links.new(nodes["Geometry"].outputs[1], nodes["Vector Transform"].inputs[0])
self.target_obj.data.materials.clear()
self.target_obj.data.materials.append(mat)
def simulate_scene(self, frame_limit=120, depth = 0, diag = 0):
bpy.context.view_layer.update()

View File

@ -1,265 +0,0 @@
import os
import numpy as np
import json
import cv2
import trimesh
from pts import PtsUtil
class DataLoadUtil:
@staticmethod
def get_path(root, scene_name, frame_idx):
path = os.path.join(root, scene_name, f"{frame_idx}")
return path
@staticmethod
def get_label_path(root, scene_name):
path = os.path.join(root,scene_name, f"label.json")
return path
@staticmethod
def get_sampled_model_points_path(root, scene_name):
path = os.path.join(root,scene_name, f"sampled_model_points.txt")
return path
@staticmethod
def get_scene_seq_length(root, scene_name):
camera_params_path = os.path.join(root, scene_name, "camera_params")
return len(os.listdir(camera_params_path))
@staticmethod
def load_downsampled_world_model_points(root, scene_name):
model_path = DataLoadUtil.get_sampled_model_points_path(root, scene_name)
model_points = np.loadtxt(model_path)
return model_points
@staticmethod
def save_downsampled_world_model_points(root, scene_name, model_points):
model_path = DataLoadUtil.get_sampled_model_points_path(root, scene_name)
np.savetxt(model_path, model_points)
@staticmethod
def load_mesh_at(model_dir, object_name, world_object_pose):
model_path = os.path.join(model_dir, object_name, "mesh.obj")
mesh = trimesh.load(model_path)
mesh.apply_transform(world_object_pose)
return mesh
@staticmethod
def get_bbox_diag(model_dir, object_name):
model_path = os.path.join(model_dir, object_name, "mesh.obj")
mesh = trimesh.load(model_path)
bbox = mesh.bounding_box.extents
diagonal_length = np.linalg.norm(bbox)
return diagonal_length
@staticmethod
def save_mesh_at(model_dir, output_dir, object_name, scene_name, world_object_pose):
mesh = DataLoadUtil.load_mesh_at(model_dir, object_name, world_object_pose)
model_path = os.path.join(output_dir, scene_name, "world_mesh.obj")
mesh.export(model_path)
@staticmethod
def save_target_mesh_at_world_space(root, model_dir, scene_name):
scene_info = DataLoadUtil.load_scene_info(root, scene_name)
target_name = scene_info["target_name"]
transformation = scene_info[target_name]
location = transformation["location"]
rotation_euler = transformation["rotation_euler"]
pose_mat = trimesh.transformations.euler_matrix(*rotation_euler)
pose_mat[:3, 3] = location
mesh = DataLoadUtil.load_mesh_at(model_dir, target_name, pose_mat)
mesh_dir = os.path.join(root, scene_name, "mesh")
if not os.path.exists(mesh_dir):
os.makedirs(mesh_dir)
model_path = os.path.join(mesh_dir, "world_target_mesh.obj")
mesh.export(model_path)
@staticmethod
def load_scene_info(root, scene_name):
scene_info_path = os.path.join(root, scene_name, "scene_info.json")
with open(scene_info_path, "r") as f:
scene_info = json.load(f)
return scene_info
@staticmethod
def load_target_object_pose(root, scene_name):
scene_info = DataLoadUtil.load_scene_info(root, scene_name)
target_name = scene_info["target_name"]
transformation = scene_info[target_name]
location = transformation["location"]
rotation_euler = transformation["rotation_euler"]
pose_mat = trimesh.transformations.euler_matrix(*rotation_euler)
pose_mat[:3, 3] = location
return pose_mat
@staticmethod
def load_depth(path, min_depth=0.01,max_depth=5.0,binocular=False):
def load_depth_from_real_path(real_path, min_depth, max_depth):
depth = cv2.imread(real_path, cv2.IMREAD_UNCHANGED)
depth = depth.astype(np.float32) / 65535.0
min_depth = min_depth
max_depth = max_depth
depth_meters = min_depth + (max_depth - min_depth) * depth
return depth_meters
if binocular:
depth_path_L = os.path.join(os.path.dirname(path), "depth", os.path.basename(path) + "_L.png")
depth_path_R = os.path.join(os.path.dirname(path), "depth", os.path.basename(path) + "_R.png")
depth_meters_L = load_depth_from_real_path(depth_path_L, min_depth, max_depth)
depth_meters_R = load_depth_from_real_path(depth_path_R, min_depth, max_depth)
return depth_meters_L, depth_meters_R
else:
depth_path = os.path.join(os.path.dirname(path), "depth", os.path.basename(path) + ".png")
depth_meters = load_depth_from_real_path(depth_path, min_depth, max_depth)
return depth_meters
@staticmethod
def load_seg(path, binocular=False):
if binocular:
def clean_mask(mask_image):
green = [0, 255, 0, 255]
red = [255, 0, 0, 255]
threshold = 2
mask_image = np.where(np.abs(mask_image - green) <= threshold, green, mask_image)
mask_image = np.where(np.abs(mask_image - red) <= threshold, red, mask_image)
return mask_image
mask_path_L = os.path.join(os.path.dirname(path), "mask", os.path.basename(path) + "_L.png")
mask_image_L = clean_mask(cv2.imread(mask_path_L, cv2.IMREAD_UNCHANGED))
mask_path_R = os.path.join(os.path.dirname(path), "mask", os.path.basename(path) + "_R.png")
mask_image_R = clean_mask(cv2.imread(mask_path_R, cv2.IMREAD_UNCHANGED))
return mask_image_L, mask_image_R
else:
mask_path = os.path.join(os.path.dirname(path), "mask", os.path.basename(path) + ".png")
mask_image = cv2.imread(mask_path, cv2.IMREAD_GRAYSCALE)
return mask_image
@staticmethod
def load_label(path):
with open(path, 'r') as f:
label_data = json.load(f)
return label_data
@staticmethod
def load_rgb(path):
rgb_path = os.path.join(os.path.dirname(path), "rgb", os.path.basename(path) + ".png")
rgb_image = cv2.imread(rgb_path, cv2.IMREAD_COLOR)
return rgb_image
@staticmethod
def cam_pose_transformation(cam_pose_before):
offset = np.asarray([
[1, 0, 0, 0],
[0, -1, 0, 0],
[0, 0, -1, 0],
[0, 0, 0, 1]])
cam_pose_after = cam_pose_before @ offset
return cam_pose_after
@staticmethod
def load_cam_info(path, binocular=False):
camera_params_path = os.path.join(os.path.dirname(path), "camera_params", os.path.basename(path) + ".json")
with open(camera_params_path, 'r') as f:
label_data = json.load(f)
cam_to_world = np.asarray(label_data["extrinsic"])
cam_to_world = DataLoadUtil.cam_pose_transformation(cam_to_world)
cam_intrinsic = np.asarray(label_data["intrinsic"])
cam_info = {
"cam_to_world": cam_to_world,
"cam_intrinsic": cam_intrinsic,
"far_plane": label_data["far_plane"],
"near_plane": label_data["near_plane"]
}
if binocular:
cam_to_world_R = np.asarray(label_data["extrinsic_R"])
cam_to_world_R = DataLoadUtil.cam_pose_transformation(cam_to_world_R)
cam_info["cam_to_world_R"] = cam_to_world_R
return cam_info
@staticmethod
def get_target_point_cloud(depth, cam_intrinsic, cam_extrinsic, mask, target_mask_label=(0,255,0,255)):
h, w = depth.shape
i, j = np.meshgrid(np.arange(w), np.arange(h), indexing='xy')
z = depth
x = (i - cam_intrinsic[0, 2]) * z / cam_intrinsic[0, 0]
y = (j - cam_intrinsic[1, 2]) * z / cam_intrinsic[1, 1]
points_camera = np.stack((x, y, z), axis=-1).reshape(-1, 3)
mask = mask.reshape(-1,4)
target_mask = (mask == target_mask_label).all(axis=-1)
target_points_camera = points_camera[target_mask]
target_points_camera_aug = np.concatenate([target_points_camera, np.ones((target_points_camera.shape[0], 1))], axis=-1)
target_points_world = np.dot(cam_extrinsic, target_points_camera_aug.T).T[:, :3]
return {
"points_world": target_points_world,
"points_camera": target_points_camera
}
@staticmethod
def get_point_cloud(depth, cam_intrinsic, cam_extrinsic):
h, w = depth.shape
i, j = np.meshgrid(np.arange(w), np.arange(h), indexing='xy')
z = depth
x = (i - cam_intrinsic[0, 2]) * z / cam_intrinsic[0, 0]
y = (j - cam_intrinsic[1, 2]) * z / cam_intrinsic[1, 1]
points_camera = np.stack((x, y, z), axis=-1).reshape(-1, 3)
points_camera_aug = np.concatenate([points_camera, np.ones((points_camera.shape[0], 1))], axis=-1)
points_world = np.dot(cam_extrinsic, points_camera_aug.T).T[:, :3]
return {
"points_world": points_world,
"points_camera": points_camera
}
@staticmethod
def get_target_point_cloud_world_from_path(path, binocular=False, random_downsample_N=65536, voxel_size = 0.005, target_mask_label=(0,255,0,255)):
cam_info = DataLoadUtil.load_cam_info(path, binocular=binocular)
if binocular:
depth_L, depth_R = DataLoadUtil.load_depth(path, cam_info['near_plane'], cam_info['far_plane'], binocular=True)
mask_L, mask_R = DataLoadUtil.load_seg(path, binocular=True)
point_cloud_L = DataLoadUtil.get_target_point_cloud(depth_L, cam_info['cam_intrinsic'], cam_info['cam_to_world'], mask_L, target_mask_label)['points_world']
point_cloud_R = DataLoadUtil.get_target_point_cloud(depth_R, cam_info['cam_intrinsic'], cam_info['cam_to_world_R'], mask_R, target_mask_label)['points_world']
point_cloud_L = PtsUtil.random_downsample_point_cloud(point_cloud_L, random_downsample_N)
point_cloud_R = PtsUtil.random_downsample_point_cloud(point_cloud_R, random_downsample_N)
overlap_points = DataLoadUtil.get_overlapping_points(point_cloud_L, point_cloud_R, voxel_size)
return overlap_points
else:
depth = DataLoadUtil.load_depth(path, cam_info['near_plane'], cam_info['far_plane'])
mask = DataLoadUtil.load_seg(path)
point_cloud = DataLoadUtil.get_target_point_cloud(depth, cam_info['cam_intrinsic'], cam_info['cam_to_world'], mask)['points_world']
return point_cloud
@staticmethod
def voxelize_points(points, voxel_size):
voxel_indices = np.floor(points / voxel_size).astype(np.int32)
unique_voxels = np.unique(voxel_indices, axis=0, return_inverse=True)
return unique_voxels
@staticmethod
def get_overlapping_points(point_cloud_L, point_cloud_R, voxel_size=0.005):
voxels_L, indices_L = DataLoadUtil.voxelize_points(point_cloud_L, voxel_size)
voxels_R, _ = DataLoadUtil.voxelize_points(point_cloud_R, voxel_size)
voxel_indices_L = voxels_L.view([('', voxels_L.dtype)]*3)
voxel_indices_R = voxels_R.view([('', voxels_R.dtype)]*3)
overlapping_voxels = np.intersect1d(voxel_indices_L, voxel_indices_R)
mask_L = np.isin(indices_L, np.where(np.isin(voxel_indices_L, overlapping_voxels))[0])
overlapping_points = point_cloud_L[mask_L]
return overlapping_points
@staticmethod
def load_points_normals(root, scene_name):
points_path = os.path.join(root, scene_name, "points_and_normals.txt")
points_normals = np.loadtxt(points_path)
return points_normals

View File

@ -5,7 +5,7 @@ import json
import mathutils
import numpy as np
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
from blender_util import BlenderUtils
from utils.blender_util import BlenderUtils
class DataRenderer:

22
pts.py
View File

@ -1,22 +0,0 @@
import numpy as np
import open3d as o3d
class PtsUtil:
@staticmethod
def voxel_downsample_point_cloud(point_cloud, voxel_size=0.005):
o3d_pc = o3d.geometry.PointCloud()
o3d_pc.points = o3d.utility.Vector3dVector(point_cloud)
downsampled_pc = o3d_pc.voxel_down_sample(voxel_size)
return np.asarray(downsampled_pc.points)
@staticmethod
def transform_point_cloud(points, pose_mat):
points_h = np.concatenate([points, np.ones((points.shape[0], 1))], axis=1)
points_h = np.dot(pose_mat, points_h.T).T
return points_h[:, :3]
@staticmethod
def random_downsample_point_cloud(point_cloud, num_points):
idx = np.random.choice(len(point_cloud), num_points, replace=True)
return point_cloud[idx]

View File

@ -1,119 +0,0 @@
import numpy as np
from scipy.spatial import cKDTree
from pts import PtsUtil
class ReconstructionUtil:
@staticmethod
def compute_coverage_rate(target_point_cloud, combined_point_cloud, threshold=0.01):
kdtree = cKDTree(combined_point_cloud)
distances, _ = kdtree.query(target_point_cloud)
covered_points = np.sum(distances < threshold)
coverage_rate = covered_points / target_point_cloud.shape[0]
return coverage_rate
@staticmethod
def compute_overlap_rate(new_point_cloud, combined_point_cloud, threshold=0.01):
kdtree = cKDTree(combined_point_cloud)
distances, _ = kdtree.query(new_point_cloud)
overlapping_points = np.sum(distances < threshold)
overlap_rate = overlapping_points / new_point_cloud.shape[0]
return overlap_rate
@staticmethod
def combine_point_with_view_sequence(point_list, view_sequence):
selected_views = []
for view_index, _ in view_sequence:
selected_views.append(point_list[view_index])
return np.vstack(selected_views)
@staticmethod
def compute_next_view_coverage_list(views, combined_point_cloud, target_point_cloud, threshold=0.01):
best_view = None
best_coverage_increase = -1
current_coverage = ReconstructionUtil.compute_coverage_rate(target_point_cloud, combined_point_cloud, threshold)
for view_index, view in enumerate(views):
candidate_views = combined_point_cloud + [view]
down_sampled_combined_point_cloud = PtsUtil.voxel_downsample_point_cloud(candidate_views, threshold)
new_coverage = ReconstructionUtil.compute_coverage_rate(target_point_cloud, down_sampled_combined_point_cloud, threshold)
coverage_increase = new_coverage - current_coverage
if coverage_increase > best_coverage_increase:
best_coverage_increase = coverage_increase
best_view = view_index
return best_view, best_coverage_increase
@staticmethod
def compute_next_best_view_sequence_with_overlap(target_point_cloud, point_cloud_list, display_table_point_cloud_list = None,threshold=0.01, overlap_threshold=0.3, status_info=None):
selected_views = []
current_coverage = 0.0
remaining_views = list(range(len(point_cloud_list)))
view_sequence = []
cnt_processed_view = 0
while remaining_views:
best_view = None
best_coverage_increase = -1
for view_index in remaining_views:
if selected_views:
combined_old_point_cloud = np.vstack(selected_views)
down_sampled_old_point_cloud = PtsUtil.voxel_downsample_point_cloud(combined_old_point_cloud,threshold)
down_sampled_new_view_point_cloud = PtsUtil.voxel_downsample_point_cloud(point_cloud_list[view_index],threshold)
overlap_rate = ReconstructionUtil.compute_overlap_rate(down_sampled_new_view_point_cloud,down_sampled_old_point_cloud, threshold)
if overlap_rate < overlap_threshold:
continue
candidate_views = selected_views + [point_cloud_list[view_index]]
combined_point_cloud = np.vstack(candidate_views)
down_sampled_combined_point_cloud = PtsUtil.voxel_downsample_point_cloud(combined_point_cloud,threshold)
new_coverage = ReconstructionUtil.compute_coverage_rate(target_point_cloud, down_sampled_combined_point_cloud, threshold)
coverage_increase = new_coverage - current_coverage
#print(f"view_index: {view_index}, coverage_increase: {coverage_increase}")
if coverage_increase > best_coverage_increase:
best_coverage_increase = coverage_increase
best_view = view_index
if best_view is not None:
if best_coverage_increase <=1e-3:
break
selected_views.append(point_cloud_list[best_view])
remaining_views.remove(best_view)
current_coverage += best_coverage_increase
cnt_processed_view += 1
if status_info is not None:
sm = status_info["status_manager"]
app_name = status_info["app_name"]
runner_name = status_info["runner_name"]
sm.set_status(app_name, runner_name, "current coverage", current_coverage)
sm.set_progress(app_name, runner_name, "processed view", cnt_processed_view, len(point_cloud_list))
view_sequence.append((best_view, current_coverage))
else:
break
if status_info is not None:
sm = status_info["status_manager"]
app_name = status_info["app_name"]
runner_name = status_info["runner_name"]
sm.set_progress(app_name, runner_name, "processed view", len(point_cloud_list), len(point_cloud_list))
return view_sequence, remaining_views, down_sampled_combined_point_cloud
@staticmethod
def filter_points(points, points_normals, cam_pose, voxel_size=0.005, theta=45):
sampled_points = PtsUtil.voxel_downsample_point_cloud(points, voxel_size)
kdtree = cKDTree(points_normals[:,:3])
_, indices = kdtree.query(sampled_points)
nearest_points = points_normals[indices]
normals = nearest_points[:, 3:]
camera_axis = -cam_pose[:3, 2]
normals_normalized = normals / np.linalg.norm(normals, axis=1, keepdims=True)
cos_theta = np.dot(normals_normalized, camera_axis)
theta_rad = np.deg2rad(theta)
filtered_sampled_points= sampled_points[cos_theta > np.cos(theta_rad)]
return filtered_sampled_points[:, :3]

View File

@ -1,10 +1,10 @@
import os
import sys
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
sys.path.append("/home/hofee/.local/lib/python3.11/site-packages")
import yaml
from blender.data_generator import DataGenerator
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
from data_generator import DataGenerator
if __name__ == "__main__":
config_path = sys.argv[sys.argv.index('--') + 1]

View File

@ -1,391 +1,391 @@
import os
import json
import bpy
import time
import gc
import numpy as np
import mathutils
class BlenderUtils:
TABLE_NAME: str = "table"
CAMERA_NAME: str = "Camera"
CAMERA_RIGHT_NAME: str = "CameraRight"
CAMERA_OBJECT_NAME: str = "CameraObject"
DISPLAY_TABLE_NAME: str = "display_table"
MESH_FILE_NAME: str = "mesh.obj"
@staticmethod
def get_obj_path(obj_dir, name):
return os.path.join(obj_dir, name, BlenderUtils.MESH_FILE_NAME)
@staticmethod
def load_obj(name, mesh_path, scale=1):
print(mesh_path)
bpy.ops.wm.obj_import(filepath=mesh_path)
loaded_object = bpy.context.selected_objects[-1]
loaded_object.name = name
loaded_object.data.name = name
loaded_object.scale = (scale, scale, scale)
bpy.ops.rigidbody.object_add()
return loaded_object
@staticmethod
def get_obj(name):
return bpy.data.objects.get(name)
@staticmethod
def get_obj_pose(name):
obj = BlenderUtils.get_obj(name)
return np.asarray(obj.matrix_world)
@staticmethod
def add_plane(name, location, orientation, size=10):
bpy.ops.mesh.primitive_plane_add(size=size, location=location)
plane = bpy.context.selected_objects[-1]
plane.name = name
plane.rotation_euler = orientation
bpy.ops.rigidbody.object_add()
bpy.context.object.rigid_body.type = "PASSIVE"
@staticmethod
def add_table(table_model_path):
table = BlenderUtils.load_obj(
BlenderUtils.TABLE_NAME, table_model_path, scale=0.01
)
bpy.ops.rigidbody.object_add()
bpy.context.object.rigid_body.type = "PASSIVE"
mat = bpy.data.materials.new(name="TableYellowMaterial")
mat.diffuse_color = (1.0, 1.0, 0.0, 1.0)
if len(table.data.materials) > 0:
table.data.materials[0] = mat
else:
table.data.materials.append(mat)
@staticmethod
def setup_scene(init_light_and_camera_config, table_model_path, binocular_vision):
bpy.context.scene.render.engine = "BLENDER_EEVEE_NEXT"
bpy.context.scene.display.shading.show_xray = False
bpy.context.scene.display.shading.use_dof = False
bpy.context.scene.display.render_aa = "OFF"
bpy.context.scene.view_settings.view_transform = "Standard"
bpy.context.scene.eevee.use_ssr = False # 关闭屏幕空间反射
bpy.context.scene.eevee.use_bloom = False # 关闭辉光
bpy.context.scene.eevee.use_gtao = False # 关闭环境光遮蔽
bpy.context.scene.eevee.use_soft_shadows = False # 关闭软阴影
bpy.context.scene.eevee.use_shadows = False # 关闭所有阴影
bpy.context.scene.world.use_nodes = False # 如果你不需要环境光,关闭环境节点
# bpy.context.scene.eevee.use_sss = False # 关闭次表面散射
# 2. 设置最低的采样数
bpy.context.scene.eevee.taa_render_samples = 1
bpy.context.scene.eevee.taa_samples = 1
BlenderUtils.init_light_and_camera(
init_light_and_camera_config, binocular_vision
)
BlenderUtils.add_plane("plane_floor", location=(0, 0, 0), orientation=(0, 0, 0))
BlenderUtils.add_plane("plane_ceil", location=(0, 0, 10), orientation=(0, 0, 0))
BlenderUtils.add_plane(
"plane_wall_1", location=(5, 0, 5), orientation=(0, np.pi / 2, 0)
)
BlenderUtils.add_plane(
"plane_wall_2", location=(-5, 0, 5), orientation=(0, np.pi / 2, 0)
)
BlenderUtils.add_plane(
"plane_wall_3", location=(0, 5, 5), orientation=(np.pi / 2, 0, 0)
)
BlenderUtils.add_plane(
"plane_wall_4", location=(0, -5, 5), orientation=(np.pi / 2, 0, 0)
)
BlenderUtils.add_table(table_model_path)
@staticmethod
def set_light_params(light, config):
light.location = config["location"]
light.rotation_euler = config["orientation"]
if light.type == "SUN":
light.data.energy = config["power"]
elif light.type == "POINT":
light.data.energy = config["power"]
@staticmethod
def set_camera_params(camera, config, binocular_vision):
camera_object = bpy.data.objects.new(BlenderUtils.CAMERA_OBJECT_NAME, None)
bpy.context.collection.objects.link(camera_object)
cameras = [bpy.data.objects.get("Camera")]
camera.location = [0, 0, 0]
camera.rotation_euler = [0, 0, 0]
camera.parent = camera_object
if binocular_vision:
left_camera = cameras[0]
right_camera = left_camera.copy()
right_camera.name = BlenderUtils.CAMERA_RIGHT_NAME
right_camera.data = left_camera.data.copy()
right_camera.data.name = BlenderUtils.CAMERA_RIGHT_NAME
bpy.context.collection.objects.link(right_camera)
right_camera.parent = camera_object
right_camera.location = [config["eye_distance"] / 2, 0, 0]
left_camera.location = [-config["eye_distance"] / 2, 0, 0]
binocular_angle = config["eye_angle"]
half_angle = np.radians(binocular_angle / 2)
left_camera.rotation_euler[1] = -half_angle
right_camera.rotation_euler[1] = half_angle
cameras.append(right_camera)
for camera in cameras:
camera.data.clip_start = config["near_plane"]
camera.data.clip_end = config["far_plane"]
bpy.context.scene.render.resolution_x = config["resolution"][0]
bpy.context.scene.render.resolution_y = config["resolution"][1]
sensor_height = 24.0
focal_length = sensor_height / (
2 * np.tan(np.radians(config["fov_vertical"]) / 2)
)
camera.data.lens = focal_length
camera.data.sensor_width = (
sensor_height * config["resolution"][0] / config["resolution"][1]
)
camera.data.sensor_height = sensor_height
@staticmethod
def init_light_and_camera(init_light_and_camera_config, binocular_vision):
camera = BlenderUtils.get_obj(BlenderUtils.CAMERA_NAME)
BlenderUtils.set_camera_params(
camera,
init_light_and_camera_config[BlenderUtils.CAMERA_NAME],
binocular_vision,
)
@staticmethod
def get_obj_diag(name):
obj = BlenderUtils.get_obj(name)
return np.linalg.norm(obj.dimensions)
@staticmethod
def matrix_to_blender_pose(matrix):
location = matrix[:3, 3]
rotation_matrix = matrix[:3, :3]
rotation_matrix_blender = mathutils.Matrix(rotation_matrix.tolist())
rotation_euler = rotation_matrix_blender.to_euler()
return location, rotation_euler
@staticmethod
def set_camera_at(pose):
camera = BlenderUtils.get_obj(BlenderUtils.CAMERA_OBJECT_NAME)
location, rotation_euler = BlenderUtils.matrix_to_blender_pose(pose)
camera.location = location
camera.rotation_euler = rotation_euler
@staticmethod
def get_object_bottom_z(obj):
vertices = [v.co for v in obj.data.vertices]
vertices_world = [obj.matrix_world @ v for v in vertices]
min_z = min([v.z for v in vertices_world])
return min_z
@staticmethod
def render_normal_and_depth(
output_dir, file_name, binocular_vision=False, target_object=None
):
target_cameras = [BlenderUtils.CAMERA_NAME]
if binocular_vision:
target_cameras.append(BlenderUtils.CAMERA_RIGHT_NAME)
for cam_name in target_cameras:
bpy.context.scene.camera = BlenderUtils.get_obj(cam_name)
cam_suffix = "L" if cam_name == BlenderUtils.CAMERA_NAME else "R"
scene = bpy.context.scene
scene.render.filepath = ""
mask_dir = os.path.join(output_dir, "normal")
if not os.path.exists(mask_dir):
os.makedirs(mask_dir)
scene.render.filepath = os.path.join(
output_dir, mask_dir, f"{file_name}_{cam_suffix}.png"
)
scene.render.image_settings.color_depth = "8"
scene.render.resolution_percentage = 100
scene.render.use_overwrite = False
scene.render.use_file_extension = False
scene.render.use_placeholder = False
scene.use_nodes = True
tree = scene.node_tree
for node in tree.nodes:
tree.nodes.remove(node)
rl = tree.nodes.new("CompositorNodeRLayers")
map_range = tree.nodes.new("CompositorNodeMapRange")
map_range.inputs["From Min"].default_value = 0.01
map_range.inputs["From Max"].default_value = 5
map_range.inputs["To Min"].default_value = 0
map_range.inputs["To Max"].default_value = 1
tree.links.new(rl.outputs["Depth"], map_range.inputs[0])
output_depth = tree.nodes.new("CompositorNodeOutputFile")
depth_dir = os.path.join(output_dir, "depth")
if not os.path.exists(depth_dir):
os.makedirs(depth_dir)
output_depth.base_path = depth_dir
output_depth.file_slots[0].path = f"{file_name}_{cam_suffix}.####"
output_depth.format.file_format = "PNG"
output_depth.format.color_mode = "BW"
output_depth.format.color_depth = "16"
tree.links.new(map_range.outputs[0], output_depth.inputs[0])
bpy.ops.render.render(write_still=True)
msg = "success"
return msg
@staticmethod
def render_mask(
output_dir, file_name, binocular_vision=False, target_object=None
):
target_cameras = [BlenderUtils.CAMERA_NAME]
if binocular_vision:
target_cameras.append(BlenderUtils.CAMERA_RIGHT_NAME)
# use pass z
bpy.context.scene.view_layers["ViewLayer"].use_pass_z = True
for cam_name in target_cameras:
bpy.context.scene.camera = BlenderUtils.get_obj(cam_name)
cam_suffix = "L" if cam_name == BlenderUtils.CAMERA_NAME else "R"
scene = bpy.context.scene
scene.render.filepath = ""
mask_dir = os.path.join(output_dir, "mask")
if not os.path.exists(mask_dir):
os.makedirs(mask_dir)
scene.render.filepath = os.path.join(
output_dir, mask_dir, f"{file_name}_{cam_suffix}.png"
)
scene.render.image_settings.color_depth = "8"
scene.render.resolution_percentage = 100
scene.render.use_overwrite = False
scene.render.use_file_extension = False
scene.render.use_placeholder = False
bpy.ops.render.render(write_still=True)
msg = "success"
return msg
@staticmethod
def save_cam_params(scene_dir, idx, binocular_vision=False):
camera = BlenderUtils.get_obj(BlenderUtils.CAMERA_NAME)
extrinsic = np.array(camera.matrix_world)
cam_data = camera.data
focal_length = cam_data.lens
sensor_width = cam_data.sensor_width
sensor_height = cam_data.sensor_height
resolution_x = bpy.context.scene.render.resolution_x
resolution_y = bpy.context.scene.render.resolution_y
intrinsic = np.zeros((3, 3))
intrinsic[0, 0] = focal_length * resolution_x / sensor_width # fx
intrinsic[1, 1] = focal_length * resolution_y / sensor_height # fy
intrinsic[0, 2] = resolution_x / 2.0 # cx
intrinsic[1, 2] = resolution_y / 2.0 # cy
intrinsic[2, 2] = 1.0
cam_object = BlenderUtils.get_obj(BlenderUtils.CAMERA_OBJECT_NAME)
extrinsic_cam_object = np.array(cam_object.matrix_world)
data = {
"extrinsic": extrinsic.tolist(),
"extrinsic_cam_object": extrinsic_cam_object.tolist(),
"intrinsic": intrinsic.tolist(),
"far_plane": camera.data.clip_end,
"near_plane": camera.data.clip_start,
}
if binocular_vision:
right_camera = BlenderUtils.get_obj(BlenderUtils.CAMERA_RIGHT_NAME)
extrinsic_right = np.array(right_camera.matrix_world)
print("result:", extrinsic_right)
data["extrinsic_R"] = extrinsic_right.tolist()
cam_params_dir = os.path.join(scene_dir, "camera_params")
if not os.path.exists(cam_params_dir):
os.makedirs(cam_params_dir)
cam_params_path = os.path.join(cam_params_dir, f"{idx}.json")
with open(cam_params_path, "w") as f:
json.dump(data, f, indent=4)
@staticmethod
def reset_objects_and_platform():
all_objects = bpy.data.objects
keep_objects = {
"plane_floor",
"plane_ceil",
"plane_wall_1",
"plane_wall_2",
"plane_wall_3",
"plane_wall_4",
}
keep_objects.add(BlenderUtils.CAMERA_OBJECT_NAME)
keep_objects.add(BlenderUtils.CAMERA_NAME)
keep_objects.add(BlenderUtils.CAMERA_RIGHT_NAME)
keep_objects.add(BlenderUtils.TABLE_NAME)
for obj in all_objects:
if obj.name not in keep_objects:
bpy.data.objects.remove(obj, do_unlink=True)
for block in bpy.data.meshes:
if block.users == 0:
bpy.data.meshes.remove(block)
for block in bpy.data.materials:
if block.users == 0:
bpy.data.materials.remove(block)
for block in bpy.data.images:
if block.users == 0:
bpy.data.images.remove(block)
gc.collect()
bpy.context.scene.frame_set(0)
@staticmethod
def save_scene_info(scene_root_dir, display_table_config, target_name):
all_objects = bpy.data.objects
no_save_objects = {
"plane_floor",
"plane_ceil",
"plane_wall_1",
"plane_wall_2",
"plane_wall_3",
"plane_wall_4",
}
no_save_objects.add(BlenderUtils.CAMERA_OBJECT_NAME)
no_save_objects.add(BlenderUtils.CAMERA_NAME)
no_save_objects.add(BlenderUtils.CAMERA_RIGHT_NAME)
no_save_objects.add(BlenderUtils.TABLE_NAME)
scene_info = {}
for obj in all_objects:
if (
obj.name not in no_save_objects
and obj.name != BlenderUtils.DISPLAY_TABLE_NAME
):
obj_info = {
"location": list(obj.location),
"rotation_euler": list(obj.rotation_euler),
"scale": list(obj.scale),
}
scene_info[obj.name] = obj_info
scene_info[BlenderUtils.DISPLAY_TABLE_NAME] = display_table_config
scene_info["target_name"] = target_name
scene_info_path = os.path.join(scene_root_dir, "scene_info.json")
with open(scene_info_path, "w") as outfile:
json.dump(scene_info, outfile)
import os
import json
import bpy
import time
import gc
import numpy as np
import mathutils
class BlenderUtils:
TABLE_NAME: str = "table"
CAMERA_NAME: str = "Camera"
CAMERA_RIGHT_NAME: str = "CameraRight"
CAMERA_OBJECT_NAME: str = "CameraObject"
DISPLAY_TABLE_NAME: str = "display_table"
MESH_FILE_NAME: str = "mesh.obj"
@staticmethod
def get_obj_path(obj_dir, name):
return os.path.join(obj_dir, name, BlenderUtils.MESH_FILE_NAME)
@staticmethod
def load_obj(name, mesh_path, scale=1):
print(mesh_path)
bpy.ops.wm.obj_import(filepath=mesh_path)
loaded_object = bpy.context.selected_objects[-1]
loaded_object.name = name
loaded_object.data.name = name
loaded_object.scale = (scale, scale, scale)
bpy.ops.rigidbody.object_add()
return loaded_object
@staticmethod
def get_obj(name):
return bpy.data.objects.get(name)
@staticmethod
def get_obj_pose(name):
obj = BlenderUtils.get_obj(name)
return np.asarray(obj.matrix_world)
@staticmethod
def add_plane(name, location, orientation, size=10):
bpy.ops.mesh.primitive_plane_add(size=size, location=location)
plane = bpy.context.selected_objects[-1]
plane.name = name
plane.rotation_euler = orientation
bpy.ops.rigidbody.object_add()
bpy.context.object.rigid_body.type = "PASSIVE"
@staticmethod
def add_table(table_model_path):
table = BlenderUtils.load_obj(
BlenderUtils.TABLE_NAME, table_model_path, scale=0.01
)
bpy.ops.rigidbody.object_add()
bpy.context.object.rigid_body.type = "PASSIVE"
mat = bpy.data.materials.new(name="TableYellowMaterial")
mat.diffuse_color = (1.0, 1.0, 0.0, 1.0)
if len(table.data.materials) > 0:
table.data.materials[0] = mat
else:
table.data.materials.append(mat)
@staticmethod
def setup_scene(init_light_and_camera_config, table_model_path, binocular_vision):
bpy.context.scene.render.engine = "BLENDER_EEVEE_NEXT"
bpy.context.scene.display.shading.show_xray = False
bpy.context.scene.display.shading.use_dof = False
bpy.context.scene.display.render_aa = "OFF"
bpy.context.scene.view_settings.view_transform = "Standard"
bpy.context.scene.eevee.use_ssr = False # 关闭屏幕空间反射
bpy.context.scene.eevee.use_bloom = False # 关闭辉光
bpy.context.scene.eevee.use_gtao = False # 关闭环境光遮蔽
bpy.context.scene.eevee.use_soft_shadows = False # 关闭软阴影
bpy.context.scene.eevee.use_shadows = False # 关闭所有阴影
bpy.context.scene.world.use_nodes = False # 如果你不需要环境光,关闭环境节点
# bpy.context.scene.eevee.use_sss = False # 关闭次表面散射
# 2. 设置最低的采样数
bpy.context.scene.eevee.taa_render_samples = 1
bpy.context.scene.eevee.taa_samples = 1
BlenderUtils.init_light_and_camera(
init_light_and_camera_config, binocular_vision
)
BlenderUtils.add_plane("plane_floor", location=(0, 0, 0), orientation=(0, 0, 0))
BlenderUtils.add_plane("plane_ceil", location=(0, 0, 10), orientation=(0, 0, 0))
BlenderUtils.add_plane(
"plane_wall_1", location=(5, 0, 5), orientation=(0, np.pi / 2, 0)
)
BlenderUtils.add_plane(
"plane_wall_2", location=(-5, 0, 5), orientation=(0, np.pi / 2, 0)
)
BlenderUtils.add_plane(
"plane_wall_3", location=(0, 5, 5), orientation=(np.pi / 2, 0, 0)
)
BlenderUtils.add_plane(
"plane_wall_4", location=(0, -5, 5), orientation=(np.pi / 2, 0, 0)
)
BlenderUtils.add_table(table_model_path)
@staticmethod
def set_light_params(light, config):
light.location = config["location"]
light.rotation_euler = config["orientation"]
if light.type == "SUN":
light.data.energy = config["power"]
elif light.type == "POINT":
light.data.energy = config["power"]
@staticmethod
def set_camera_params(camera, config, binocular_vision):
camera_object = bpy.data.objects.new(BlenderUtils.CAMERA_OBJECT_NAME, None)
bpy.context.collection.objects.link(camera_object)
cameras = [bpy.data.objects.get("Camera")]
camera.location = [0, 0, 0]
camera.rotation_euler = [0, 0, 0]
camera.parent = camera_object
if binocular_vision:
left_camera = cameras[0]
right_camera = left_camera.copy()
right_camera.name = BlenderUtils.CAMERA_RIGHT_NAME
right_camera.data = left_camera.data.copy()
right_camera.data.name = BlenderUtils.CAMERA_RIGHT_NAME
bpy.context.collection.objects.link(right_camera)
right_camera.parent = camera_object
right_camera.location = [config["eye_distance"] / 2, 0, 0]
left_camera.location = [-config["eye_distance"] / 2, 0, 0]
binocular_angle = config["eye_angle"]
half_angle = np.radians(binocular_angle / 2)
left_camera.rotation_euler[1] = -half_angle
right_camera.rotation_euler[1] = half_angle
cameras.append(right_camera)
for camera in cameras:
camera.data.clip_start = config["near_plane"]
camera.data.clip_end = config["far_plane"]
bpy.context.scene.render.resolution_x = config["resolution"][0]
bpy.context.scene.render.resolution_y = config["resolution"][1]
sensor_height = 24.0
focal_length = sensor_height / (
2 * np.tan(np.radians(config["fov_vertical"]) / 2)
)
camera.data.lens = focal_length
camera.data.sensor_width = (
sensor_height * config["resolution"][0] / config["resolution"][1]
)
camera.data.sensor_height = sensor_height
@staticmethod
def init_light_and_camera(init_light_and_camera_config, binocular_vision):
camera = BlenderUtils.get_obj(BlenderUtils.CAMERA_NAME)
BlenderUtils.set_camera_params(
camera,
init_light_and_camera_config[BlenderUtils.CAMERA_NAME],
binocular_vision,
)
@staticmethod
def get_obj_diag(name):
obj = BlenderUtils.get_obj(name)
return np.linalg.norm(obj.dimensions)
@staticmethod
def matrix_to_blender_pose(matrix):
location = matrix[:3, 3]
rotation_matrix = matrix[:3, :3]
rotation_matrix_blender = mathutils.Matrix(rotation_matrix.tolist())
rotation_euler = rotation_matrix_blender.to_euler()
return location, rotation_euler
@staticmethod
def set_camera_at(pose):
camera = BlenderUtils.get_obj(BlenderUtils.CAMERA_OBJECT_NAME)
location, rotation_euler = BlenderUtils.matrix_to_blender_pose(pose)
camera.location = location
camera.rotation_euler = rotation_euler
@staticmethod
def get_object_bottom_z(obj):
vertices = [v.co for v in obj.data.vertices]
vertices_world = [obj.matrix_world @ v for v in vertices]
min_z = min([v.z for v in vertices_world])
return min_z
@staticmethod
def render_normal_and_depth(
output_dir, file_name, binocular_vision=False, target_object=None
):
target_cameras = [BlenderUtils.CAMERA_NAME]
if binocular_vision:
target_cameras.append(BlenderUtils.CAMERA_RIGHT_NAME)
for cam_name in target_cameras:
bpy.context.scene.camera = BlenderUtils.get_obj(cam_name)
cam_suffix = "L" if cam_name == BlenderUtils.CAMERA_NAME else "R"
scene = bpy.context.scene
scene.render.filepath = ""
mask_dir = os.path.join(output_dir, "normal")
if not os.path.exists(mask_dir):
os.makedirs(mask_dir)
scene.render.filepath = os.path.join(
output_dir, mask_dir, f"{file_name}_{cam_suffix}.png"
)
scene.render.image_settings.color_depth = "8"
scene.render.resolution_percentage = 100
scene.render.use_overwrite = False
scene.render.use_file_extension = False
scene.render.use_placeholder = False
scene.use_nodes = True
tree = scene.node_tree
for node in tree.nodes:
tree.nodes.remove(node)
rl = tree.nodes.new("CompositorNodeRLayers")
map_range = tree.nodes.new("CompositorNodeMapRange")
map_range.inputs["From Min"].default_value = 0.01
map_range.inputs["From Max"].default_value = 5
map_range.inputs["To Min"].default_value = 0
map_range.inputs["To Max"].default_value = 1
tree.links.new(rl.outputs["Depth"], map_range.inputs[0])
output_depth = tree.nodes.new("CompositorNodeOutputFile")
depth_dir = os.path.join(output_dir, "depth")
if not os.path.exists(depth_dir):
os.makedirs(depth_dir)
output_depth.base_path = depth_dir
output_depth.file_slots[0].path = f"{file_name}_{cam_suffix}.####"
output_depth.format.file_format = "PNG"
output_depth.format.color_mode = "BW"
output_depth.format.color_depth = "16"
tree.links.new(map_range.outputs[0], output_depth.inputs[0])
bpy.ops.render.render(write_still=True)
msg = "success"
return msg
@staticmethod
def render_mask(
output_dir, file_name, binocular_vision=False, target_object=None
):
target_cameras = [BlenderUtils.CAMERA_NAME]
if binocular_vision:
target_cameras.append(BlenderUtils.CAMERA_RIGHT_NAME)
# use pass z
bpy.context.scene.view_layers["ViewLayer"].use_pass_z = True
for cam_name in target_cameras:
bpy.context.scene.camera = BlenderUtils.get_obj(cam_name)
cam_suffix = "L" if cam_name == BlenderUtils.CAMERA_NAME else "R"
scene = bpy.context.scene
scene.render.filepath = ""
mask_dir = os.path.join(output_dir, "mask")
if not os.path.exists(mask_dir):
os.makedirs(mask_dir)
scene.render.filepath = os.path.join(
output_dir, mask_dir, f"{file_name}_{cam_suffix}.png"
)
scene.render.image_settings.color_depth = "8"
scene.render.resolution_percentage = 100
scene.render.use_overwrite = False
scene.render.use_file_extension = False
scene.render.use_placeholder = False
bpy.ops.render.render(write_still=True)
msg = "success"
return msg
@staticmethod
def save_cam_params(scene_dir, idx, binocular_vision=False):
camera = BlenderUtils.get_obj(BlenderUtils.CAMERA_NAME)
extrinsic = np.array(camera.matrix_world)
cam_data = camera.data
focal_length = cam_data.lens
sensor_width = cam_data.sensor_width
sensor_height = cam_data.sensor_height
resolution_x = bpy.context.scene.render.resolution_x
resolution_y = bpy.context.scene.render.resolution_y
intrinsic = np.zeros((3, 3))
intrinsic[0, 0] = focal_length * resolution_x / sensor_width # fx
intrinsic[1, 1] = focal_length * resolution_y / sensor_height # fy
intrinsic[0, 2] = resolution_x / 2.0 # cx
intrinsic[1, 2] = resolution_y / 2.0 # cy
intrinsic[2, 2] = 1.0
cam_object = BlenderUtils.get_obj(BlenderUtils.CAMERA_OBJECT_NAME)
extrinsic_cam_object = np.array(cam_object.matrix_world)
data = {
"extrinsic": extrinsic.tolist(),
"extrinsic_cam_object": extrinsic_cam_object.tolist(),
"intrinsic": intrinsic.tolist(),
"far_plane": camera.data.clip_end,
"near_plane": camera.data.clip_start,
}
if binocular_vision:
right_camera = BlenderUtils.get_obj(BlenderUtils.CAMERA_RIGHT_NAME)
extrinsic_right = np.array(right_camera.matrix_world)
print("result:", extrinsic_right)
data["extrinsic_R"] = extrinsic_right.tolist()
cam_params_dir = os.path.join(scene_dir, "camera_params")
if not os.path.exists(cam_params_dir):
os.makedirs(cam_params_dir)
cam_params_path = os.path.join(cam_params_dir, f"{idx}.json")
with open(cam_params_path, "w") as f:
json.dump(data, f, indent=4)
@staticmethod
def reset_objects_and_platform():
all_objects = bpy.data.objects
keep_objects = {
"plane_floor",
"plane_ceil",
"plane_wall_1",
"plane_wall_2",
"plane_wall_3",
"plane_wall_4",
}
keep_objects.add(BlenderUtils.CAMERA_OBJECT_NAME)
keep_objects.add(BlenderUtils.CAMERA_NAME)
keep_objects.add(BlenderUtils.CAMERA_RIGHT_NAME)
keep_objects.add(BlenderUtils.TABLE_NAME)
for obj in all_objects:
if obj.name not in keep_objects:
bpy.data.objects.remove(obj, do_unlink=True)
for block in bpy.data.meshes:
if block.users == 0:
bpy.data.meshes.remove(block)
for block in bpy.data.materials:
if block.users == 0:
bpy.data.materials.remove(block)
for block in bpy.data.images:
if block.users == 0:
bpy.data.images.remove(block)
gc.collect()
bpy.context.scene.frame_set(0)
@staticmethod
def save_scene_info(scene_root_dir, display_table_config, target_name):
all_objects = bpy.data.objects
no_save_objects = {
"plane_floor",
"plane_ceil",
"plane_wall_1",
"plane_wall_2",
"plane_wall_3",
"plane_wall_4",
}
no_save_objects.add(BlenderUtils.CAMERA_OBJECT_NAME)
no_save_objects.add(BlenderUtils.CAMERA_NAME)
no_save_objects.add(BlenderUtils.CAMERA_RIGHT_NAME)
no_save_objects.add(BlenderUtils.TABLE_NAME)
scene_info = {}
for obj in all_objects:
if (
obj.name not in no_save_objects
and obj.name != BlenderUtils.DISPLAY_TABLE_NAME
):
obj_info = {
"location": list(obj.location),
"rotation_euler": list(obj.rotation_euler),
"scale": list(obj.scale),
}
scene_info[obj.name] = obj_info
scene_info[BlenderUtils.DISPLAY_TABLE_NAME] = display_table_config
scene_info["target_name"] = target_name
scene_info_path = os.path.join(scene_root_dir, "scene_info.json")
with open(scene_info_path, "w") as outfile:
json.dump(scene_info, outfile)

96
utils/material_util.py Normal file
View File

@ -0,0 +1,96 @@
import bpy
class MaterialUtil:
''' --------- Basic --------- '''
@staticmethod
def change_object_material(obj, mat):
if obj.data.materials:
obj.data.materials[0] = mat
else:
obj.data.materials.append(mat)
''' ------- Materials ------- '''
@staticmethod
def create_normal_material():
normal_mat = bpy.data.materials.new(name="NormalMaterial")
normal_mat.use_nodes = True
nodes = normal_mat.node_tree.nodes
links = normal_mat.node_tree.links
nodes.clear()
geometry_node = nodes.new(type="ShaderNodeNewGeometry")
vector_transform_node = nodes.new(type="ShaderNodeVectorTransform")
separate_xyz_node = nodes.new(type="ShaderNodeSeparateXYZ")
multiply_node_x = nodes.new(type="ShaderNodeMath")
multiply_node_y = nodes.new(type="ShaderNodeMath")
multiply_node_z = nodes.new(type="ShaderNodeMath")
combine_xyz_node = nodes.new(type="ShaderNodeCombineXYZ")
light_path_node = nodes.new(type="ShaderNodeLightPath")
emission_node_1 = nodes.new(type="ShaderNodeEmission")
emission_node_2 = nodes.new(type="ShaderNodeEmission")
mix_shader_node_1 = nodes.new(type="ShaderNodeMixShader")
mix_shader_node_2 = nodes.new(type="ShaderNodeMixShader")
material_output_node = nodes.new(type="ShaderNodeOutputMaterial")
vector_transform_node.vector_type = 'VECTOR'
vector_transform_node.convert_from = 'WORLD'
vector_transform_node.convert_to = 'CAMERA'
multiply_node_x.operation = 'MULTIPLY'
multiply_node_x.inputs[1].default_value = 1.0
multiply_node_y.operation = 'MULTIPLY'
multiply_node_y.inputs[1].default_value = 1.0
multiply_node_z.operation = 'MULTIPLY'
multiply_node_z.inputs[1].default_value = -1.0
emission_node_1.inputs['Strength'].default_value = 1.0
emission_node_2.inputs['Strength'].default_value = 1.0
mix_shader_node_2.inputs['Fac'].default_value = 0.5
links.new(geometry_node.outputs['Normal'], vector_transform_node.inputs['Vector'])
links.new(vector_transform_node.outputs['Vector'], separate_xyz_node.inputs['Vector'])
links.new(separate_xyz_node.outputs['X'], multiply_node_x.inputs[0])
links.new(separate_xyz_node.outputs['Y'], multiply_node_y.inputs[0])
links.new(separate_xyz_node.outputs['Z'], multiply_node_z.inputs[0])
links.new(multiply_node_x.outputs['Value'], combine_xyz_node.inputs['X'])
links.new(multiply_node_y.outputs['Value'], combine_xyz_node.inputs['Y'])
links.new(multiply_node_z.outputs['Value'], combine_xyz_node.inputs['Z'])
links.new(combine_xyz_node.outputs['Vector'], emission_node_1.inputs['Color'])
links.new(light_path_node.outputs['Is Camera Ray'], mix_shader_node_1.inputs['Fac'])
links.new(emission_node_1.outputs['Emission'], mix_shader_node_1.inputs[2])
links.new(mix_shader_node_1.outputs['Shader'], mix_shader_node_2.inputs[1])
links.new(emission_node_2.outputs['Emission'], mix_shader_node_2.inputs[2])
links.new(mix_shader_node_2.outputs['Shader'], material_output_node.inputs['Surface'])
return normal_mat
@staticmethod
def create_mask_material(color=(1.0, 1.0, 1.0)):
mask_mat = bpy.data.materials.new(name="MaskMaterial")
mask_mat.use_nodes = True
nodes = mask_mat.node_tree.nodes
links = mask_mat.node_tree.links
nodes.clear()
emission_node = nodes.new(type="ShaderNodeEmission")
emission_node.inputs['Color'].default_value = (*color, 1.0)
emission_node.inputs['Strength'].default_value = 1.0
material_output_node = nodes.new(type="ShaderNodeOutputMaterial")
links.new(emission_node.outputs['Emission'], material_output_node.inputs['Surface'])
return mask_mat
# -------- debug --------
if __name__ == "__main__":
cube = bpy.data.objects.get("Cube")
normal_mat = MaterialUtil.create_normal_material()
MaterialUtil.change_object_material(cube, normal_mat)

View File

@ -1,151 +1,151 @@
import numpy as np
class PoseUtil:
ROTATION = 1
TRANSLATION = 2
SCALE = 3
@staticmethod
def get_uniform_translation(trans_m_min, trans_m_max, trans_unit, debug=False):
if isinstance(trans_m_min, list):
x_min, y_min, z_min = trans_m_min
x_max, y_max, z_max = trans_m_max
else:
x_min, y_min, z_min = trans_m_min, trans_m_min, trans_m_min
x_max, y_max, z_max = trans_m_max, trans_m_max, trans_m_max
x = np.random.uniform(x_min, x_max)
y = np.random.uniform(y_min, y_max)
z = np.random.uniform(z_min, z_max)
translation = np.array([x, y, z])
if trans_unit == "cm":
translation = translation / 100
if debug:
print("uniform translation:", translation)
return translation
@staticmethod
def get_uniform_rotation(rot_degree_min=0, rot_degree_max=180, debug=False):
axis = np.random.randn(3)
axis /= np.linalg.norm(axis)
theta = np.random.uniform(
rot_degree_min / 180 * np.pi, rot_degree_max / 180 * np.pi
)
K = np.array(
[[0, -axis[2], axis[1]], [axis[2], 0, -axis[0]], [-axis[1], axis[0], 0]]
)
R = np.eye(3) + np.sin(theta) * K + (1 - np.cos(theta)) * (K @ K)
if debug:
print("uniform rotation:", theta * 180 / np.pi)
return R
@staticmethod
def get_uniform_pose(
trans_min, trans_max, rot_min=0, rot_max=180, trans_unit="cm", debug=False
):
translation = PoseUtil.get_uniform_translation(
trans_min, trans_max, trans_unit, debug
)
rotation = PoseUtil.get_uniform_rotation(rot_min, rot_max, debug)
pose = np.eye(4)
pose[:3, :3] = rotation
pose[:3, 3] = translation
return pose
@staticmethod
def get_n_uniform_pose(
trans_min,
trans_max,
rot_min=0,
rot_max=180,
n=1,
trans_unit="cm",
fix=None,
contain_canonical=True,
debug=False,
):
if fix == PoseUtil.ROTATION:
translations = np.zeros((n, 3))
for i in range(n):
translations[i] = PoseUtil.get_uniform_translation(
trans_min, trans_max, trans_unit, debug
)
if contain_canonical:
translations[0] = np.zeros(3)
rotations = PoseUtil.get_uniform_rotation(rot_min, rot_max, debug)
elif fix == PoseUtil.TRANSLATION:
rotations = np.zeros((n, 3, 3))
for i in range(n):
rotations[i] = PoseUtil.get_uniform_rotation(rot_min, rot_max, debug)
if contain_canonical:
rotations[0] = np.eye(3)
translations = PoseUtil.get_uniform_translation(
trans_min, trans_max, trans_unit, debug
)
else:
translations = np.zeros((n, 3))
rotations = np.zeros((n, 3, 3))
for i in range(n):
translations[i] = PoseUtil.get_uniform_translation(
trans_min, trans_max, trans_unit, debug
)
for i in range(n):
rotations[i] = PoseUtil.get_uniform_rotation(rot_min, rot_max, debug)
if contain_canonical:
translations[0] = np.zeros(3)
rotations[0] = np.eye(3)
pose = np.eye(4, 4, k=0)[np.newaxis, :].repeat(n, axis=0)
pose[:, :3, :3] = rotations
pose[:, :3, 3] = translations
return pose
@staticmethod
def get_n_uniform_pose_batch(
trans_min,
trans_max,
rot_min=0,
rot_max=180,
n=1,
batch_size=1,
trans_unit="cm",
fix=None,
contain_canonical=False,
debug=False,
):
batch_poses = []
for i in range(batch_size):
pose = PoseUtil.get_n_uniform_pose(
trans_min,
trans_max,
rot_min,
rot_max,
n,
trans_unit,
fix,
contain_canonical,
debug,
)
batch_poses.append(pose)
pose_batch = np.stack(batch_poses, axis=0)
return pose_batch
@staticmethod
def get_uniform_scale(scale_min, scale_max, debug=False):
if isinstance(scale_min, list):
x_min, y_min, z_min = scale_min
x_max, y_max, z_max = scale_max
else:
x_min, y_min, z_min = scale_min, scale_min, scale_min
x_max, y_max, z_max = scale_max, scale_max, scale_max
x = np.random.uniform(x_min, x_max)
y = np.random.uniform(y_min, y_max)
z = np.random.uniform(z_min, z_max)
scale = np.array([x, y, z])
if debug:
print("uniform scale:", scale)
return scale
import numpy as np
class PoseUtil:
ROTATION = 1
TRANSLATION = 2
SCALE = 3
@staticmethod
def get_uniform_translation(trans_m_min, trans_m_max, trans_unit, debug=False):
if isinstance(trans_m_min, list):
x_min, y_min, z_min = trans_m_min
x_max, y_max, z_max = trans_m_max
else:
x_min, y_min, z_min = trans_m_min, trans_m_min, trans_m_min
x_max, y_max, z_max = trans_m_max, trans_m_max, trans_m_max
x = np.random.uniform(x_min, x_max)
y = np.random.uniform(y_min, y_max)
z = np.random.uniform(z_min, z_max)
translation = np.array([x, y, z])
if trans_unit == "cm":
translation = translation / 100
if debug:
print("uniform translation:", translation)
return translation
@staticmethod
def get_uniform_rotation(rot_degree_min=0, rot_degree_max=180, debug=False):
axis = np.random.randn(3)
axis /= np.linalg.norm(axis)
theta = np.random.uniform(
rot_degree_min / 180 * np.pi, rot_degree_max / 180 * np.pi
)
K = np.array(
[[0, -axis[2], axis[1]], [axis[2], 0, -axis[0]], [-axis[1], axis[0], 0]]
)
R = np.eye(3) + np.sin(theta) * K + (1 - np.cos(theta)) * (K @ K)
if debug:
print("uniform rotation:", theta * 180 / np.pi)
return R
@staticmethod
def get_uniform_pose(
trans_min, trans_max, rot_min=0, rot_max=180, trans_unit="cm", debug=False
):
translation = PoseUtil.get_uniform_translation(
trans_min, trans_max, trans_unit, debug
)
rotation = PoseUtil.get_uniform_rotation(rot_min, rot_max, debug)
pose = np.eye(4)
pose[:3, :3] = rotation
pose[:3, 3] = translation
return pose
@staticmethod
def get_n_uniform_pose(
trans_min,
trans_max,
rot_min=0,
rot_max=180,
n=1,
trans_unit="cm",
fix=None,
contain_canonical=True,
debug=False,
):
if fix == PoseUtil.ROTATION:
translations = np.zeros((n, 3))
for i in range(n):
translations[i] = PoseUtil.get_uniform_translation(
trans_min, trans_max, trans_unit, debug
)
if contain_canonical:
translations[0] = np.zeros(3)
rotations = PoseUtil.get_uniform_rotation(rot_min, rot_max, debug)
elif fix == PoseUtil.TRANSLATION:
rotations = np.zeros((n, 3, 3))
for i in range(n):
rotations[i] = PoseUtil.get_uniform_rotation(rot_min, rot_max, debug)
if contain_canonical:
rotations[0] = np.eye(3)
translations = PoseUtil.get_uniform_translation(
trans_min, trans_max, trans_unit, debug
)
else:
translations = np.zeros((n, 3))
rotations = np.zeros((n, 3, 3))
for i in range(n):
translations[i] = PoseUtil.get_uniform_translation(
trans_min, trans_max, trans_unit, debug
)
for i in range(n):
rotations[i] = PoseUtil.get_uniform_rotation(rot_min, rot_max, debug)
if contain_canonical:
translations[0] = np.zeros(3)
rotations[0] = np.eye(3)
pose = np.eye(4, 4, k=0)[np.newaxis, :].repeat(n, axis=0)
pose[:, :3, :3] = rotations
pose[:, :3, 3] = translations
return pose
@staticmethod
def get_n_uniform_pose_batch(
trans_min,
trans_max,
rot_min=0,
rot_max=180,
n=1,
batch_size=1,
trans_unit="cm",
fix=None,
contain_canonical=False,
debug=False,
):
batch_poses = []
for i in range(batch_size):
pose = PoseUtil.get_n_uniform_pose(
trans_min,
trans_max,
rot_min,
rot_max,
n,
trans_unit,
fix,
contain_canonical,
debug,
)
batch_poses.append(pose)
pose_batch = np.stack(batch_poses, axis=0)
return pose_batch
@staticmethod
def get_uniform_scale(scale_min, scale_max, debug=False):
if isinstance(scale_min, list):
x_min, y_min, z_min = scale_min
x_max, y_max, z_max = scale_max
else:
x_min, y_min, z_min = scale_min, scale_min, scale_min
x_max, y_max, z_max = scale_max, scale_max, scale_max
x = np.random.uniform(x_min, x_max)
y = np.random.uniform(y_min, y_max)
z = np.random.uniform(z_min, z_max)
scale = np.array([x, y, z])
if debug:
print("uniform scale:", scale)
return scale

View File

@ -1,168 +1,168 @@
import numpy as np
import bmesh
from collections import defaultdict
from scipy.spatial.transform import Rotation as R
from blender.pose import PoseUtil
import random
class ViewSampleUtil:
@staticmethod
def farthest_point_sampling(points, num_samples):
num_points = points.shape[0]
if num_samples >= num_points:
return points, np.arange(num_points)
sampled_indices = np.zeros(num_samples, dtype=int)
sampled_indices[0] = np.random.randint(num_points)
min_distances = np.full(num_points, np.inf)
for i in range(1, num_samples):
current_point = points[sampled_indices[i - 1]]
dist_to_current_point = np.linalg.norm(points - current_point, axis=1)
min_distances = np.minimum(min_distances, dist_to_current_point)
sampled_indices[i] = np.argmax(min_distances)
downsampled_points = points[sampled_indices]
return downsampled_points, sampled_indices
@staticmethod
def voxel_downsample(points, voxel_size):
voxel_grid = defaultdict(list)
for i, point in enumerate(points):
voxel_index = tuple((point // voxel_size).astype(int))
voxel_grid[voxel_index].append(i)
downsampled_points = []
downsampled_indices = []
for indices in voxel_grid.values():
selected_index = indices[0]
downsampled_points.append(points[selected_index])
downsampled_indices.append(selected_index)
return np.array(downsampled_points), downsampled_indices
@staticmethod
def sample_view_data(obj, distance_range:tuple = (0.25,0.5), voxel_size:float = 0.005, max_views: int = 1, pertube_repeat:int = 1) -> dict:
view_data = {
"look_at_points": [],
"cam_positions": [],
}
mesh = obj.data
bm = bmesh.new()
bm.from_mesh(mesh)
bm.verts.ensure_lookup_table()
bm.faces.ensure_lookup_table()
bm.normal_update()
look_at_points = []
cam_positions = []
normals = []
for v in bm.verts:
look_at_point = np.array(v.co)
view_data["look_at_points"].append(look_at_point)
normal = np.zeros(3)
for loop in v.link_loops:
normal += np.array(loop.calc_normal())
normal /= len(v.link_loops)
normal = normal / np.linalg.norm(normal)
if np.isnan(normal).any():
continue
if np.dot(normal, look_at_point) < 0:
normal = -normal
normals.append(normal)
for _ in range(pertube_repeat):
perturb_angle = np.radians(np.random.uniform(0, 30))
perturb_axis = np.random.normal(size=3)
perturb_axis /= np.linalg.norm(perturb_axis)
rotation_matrix = R.from_rotvec(perturb_angle * perturb_axis).as_matrix()
perturbed_normal = np.dot(rotation_matrix, normal)
middle_distance = (distance_range[0] + distance_range[1]) / 2
perturbed_distance = random.uniform(middle_distance-0.05, middle_distance+0.05)
cam_position = look_at_point + perturbed_distance * perturbed_normal
look_at_points.append(look_at_point)
cam_positions.append(cam_position)
bm.free()
look_at_points = np.array(look_at_points)
cam_positions = np.array(cam_positions)
voxel_downsampled_look_at_points, selected_indices = ViewSampleUtil.voxel_downsample(look_at_points, voxel_size)
voxel_downsampled_cam_positions = cam_positions[selected_indices]
voxel_downsampled_normals = np.array(normals)[selected_indices]
fps_downsampled_look_at_points, selected_indices = ViewSampleUtil.farthest_point_sampling(voxel_downsampled_look_at_points, max_views*2)
fps_downsampled_cam_positions = voxel_downsampled_cam_positions[selected_indices]
view_data["look_at_points"] = fps_downsampled_look_at_points.tolist()
view_data["cam_positions"] = fps_downsampled_cam_positions.tolist()
view_data["normals"] = voxel_downsampled_normals
view_data["voxel_down_sampled_points"] = voxel_downsampled_look_at_points
return view_data
@staticmethod
def get_world_points_and_normals(view_data: dict, obj_world_pose: np.ndarray) -> tuple:
world_points = []
world_normals = []
for voxel_down_sampled_points, normal in zip(view_data["voxel_down_sampled_points"], view_data["normals"]):
voxel_down_sampled_points_world = obj_world_pose @ np.append(voxel_down_sampled_points, 1.0)
normal_world = obj_world_pose[:3, :3] @ normal
world_points.append(voxel_down_sampled_points_world[:3])
world_normals.append(normal_world)
return np.array(world_points), np.array(world_normals)
@staticmethod
def get_cam_pose(view_data: dict, obj_world_pose: np.ndarray, max_views: int, min_cam_table_included_degree: int, random_view_ratio: float) -> np.ndarray:
cam_poses = []
min_height_z = 1000
for look_at_point, cam_position in zip(view_data["look_at_points"], view_data["cam_positions"]):
look_at_point_world = obj_world_pose @ np.append(look_at_point, 1.0)
cam_position_world = obj_world_pose @ np.append(cam_position, 1.0)
if look_at_point_world[2] < min_height_z:
min_height_z = look_at_point_world[2]
look_at_point_world = look_at_point_world[:3]
cam_position_world = cam_position_world[:3]
forward_vector = cam_position_world - look_at_point_world
forward_vector /= np.linalg.norm(forward_vector)
up_vector = np.array([0, 0, 1])
right_vector = np.cross(up_vector, forward_vector)
right_vector /= np.linalg.norm(right_vector)
corrected_up_vector = np.cross(forward_vector, right_vector)
rotation_matrix = np.array([right_vector, corrected_up_vector, forward_vector]).T
cam_pose = np.eye(4)
cam_pose[:3, :3] = rotation_matrix
cam_pose[:3, 3] = cam_position_world
cam_poses.append(cam_pose)
filtered_cam_poses = []
for cam_pose in cam_poses:
if cam_pose[2, 3] > min_height_z:
direction_vector = cam_pose[:3, 2]
horizontal_normal = np.array([0, 0, 1])
cos_angle = np.dot(direction_vector, horizontal_normal) / (np.linalg.norm(direction_vector) * np.linalg.norm(horizontal_normal))
angle = np.arccos(np.clip(cos_angle, -1.0, 1.0))
angle_degree = np.degrees(angle)
if angle_degree < 90 - min_cam_table_included_degree:
filtered_cam_poses.append(cam_pose)
if random.random() < random_view_ratio:
pertube_pose = PoseUtil.get_uniform_pose([0.1, 0.1, 0.1], [3, 3, 3], 0, 180, "cm")
filtered_cam_poses.append(pertube_pose @ cam_pose)
if len(filtered_cam_poses) > max_views:
indices = np.random.choice(len(filtered_cam_poses), max_views, replace=False)
filtered_cam_poses = [filtered_cam_poses[i] for i in indices]
return np.array(filtered_cam_poses)
@staticmethod
def sample_view_data_world_space(obj, distance_range:tuple = (0.3,0.5), voxel_size:float = 0.005, max_views: int=1, min_cam_table_included_degree:int=20, random_view_ratio:float = 0.2) -> dict:
obj_world_pose = np.asarray(obj.matrix_world)
view_data = ViewSampleUtil.sample_view_data(obj, distance_range, voxel_size, max_views)
view_data["cam_poses"] = ViewSampleUtil.get_cam_pose(view_data, obj_world_pose, max_views, min_cam_table_included_degree, random_view_ratio)
view_data["voxel_down_sampled_points"], view_data["normals"] = ViewSampleUtil.get_world_points_and_normals(view_data, obj_world_pose)
return view_data
import numpy as np
import bmesh
from collections import defaultdict
from scipy.spatial.transform import Rotation as R
from utils.pose import PoseUtil
import random
class ViewSampleUtil:
@staticmethod
def farthest_point_sampling(points, num_samples):
num_points = points.shape[0]
if num_samples >= num_points:
return points, np.arange(num_points)
sampled_indices = np.zeros(num_samples, dtype=int)
sampled_indices[0] = np.random.randint(num_points)
min_distances = np.full(num_points, np.inf)
for i in range(1, num_samples):
current_point = points[sampled_indices[i - 1]]
dist_to_current_point = np.linalg.norm(points - current_point, axis=1)
min_distances = np.minimum(min_distances, dist_to_current_point)
sampled_indices[i] = np.argmax(min_distances)
downsampled_points = points[sampled_indices]
return downsampled_points, sampled_indices
@staticmethod
def voxel_downsample(points, voxel_size):
voxel_grid = defaultdict(list)
for i, point in enumerate(points):
voxel_index = tuple((point // voxel_size).astype(int))
voxel_grid[voxel_index].append(i)
downsampled_points = []
downsampled_indices = []
for indices in voxel_grid.values():
selected_index = indices[0]
downsampled_points.append(points[selected_index])
downsampled_indices.append(selected_index)
return np.array(downsampled_points), downsampled_indices
@staticmethod
def sample_view_data(obj, distance_range:tuple = (0.25,0.5), voxel_size:float = 0.005, max_views: int = 1, pertube_repeat:int = 1) -> dict:
view_data = {
"look_at_points": [],
"cam_positions": [],
}
mesh = obj.data
bm = bmesh.new()
bm.from_mesh(mesh)
bm.verts.ensure_lookup_table()
bm.faces.ensure_lookup_table()
bm.normal_update()
look_at_points = []
cam_positions = []
normals = []
for v in bm.verts:
look_at_point = np.array(v.co)
view_data["look_at_points"].append(look_at_point)
normal = np.zeros(3)
for loop in v.link_loops:
normal += np.array(loop.calc_normal())
normal /= len(v.link_loops)
normal = normal / np.linalg.norm(normal)
if np.isnan(normal).any():
continue
if np.dot(normal, look_at_point) < 0:
normal = -normal
normals.append(normal)
for _ in range(pertube_repeat):
perturb_angle = np.radians(np.random.uniform(0, 30))
perturb_axis = np.random.normal(size=3)
perturb_axis /= np.linalg.norm(perturb_axis)
rotation_matrix = R.from_rotvec(perturb_angle * perturb_axis).as_matrix()
perturbed_normal = np.dot(rotation_matrix, normal)
middle_distance = (distance_range[0] + distance_range[1]) / 2
perturbed_distance = random.uniform(middle_distance-0.05, middle_distance+0.05)
cam_position = look_at_point + perturbed_distance * perturbed_normal
look_at_points.append(look_at_point)
cam_positions.append(cam_position)
bm.free()
look_at_points = np.array(look_at_points)
cam_positions = np.array(cam_positions)
voxel_downsampled_look_at_points, selected_indices = ViewSampleUtil.voxel_downsample(look_at_points, voxel_size)
voxel_downsampled_cam_positions = cam_positions[selected_indices]
voxel_downsampled_normals = np.array(normals)[selected_indices]
fps_downsampled_look_at_points, selected_indices = ViewSampleUtil.farthest_point_sampling(voxel_downsampled_look_at_points, max_views*2)
fps_downsampled_cam_positions = voxel_downsampled_cam_positions[selected_indices]
view_data["look_at_points"] = fps_downsampled_look_at_points.tolist()
view_data["cam_positions"] = fps_downsampled_cam_positions.tolist()
view_data["normals"] = voxel_downsampled_normals
view_data["voxel_down_sampled_points"] = voxel_downsampled_look_at_points
return view_data
@staticmethod
def get_world_points_and_normals(view_data: dict, obj_world_pose: np.ndarray) -> tuple:
world_points = []
world_normals = []
for voxel_down_sampled_points, normal in zip(view_data["voxel_down_sampled_points"], view_data["normals"]):
voxel_down_sampled_points_world = obj_world_pose @ np.append(voxel_down_sampled_points, 1.0)
normal_world = obj_world_pose[:3, :3] @ normal
world_points.append(voxel_down_sampled_points_world[:3])
world_normals.append(normal_world)
return np.array(world_points), np.array(world_normals)
@staticmethod
def get_cam_pose(view_data: dict, obj_world_pose: np.ndarray, max_views: int, min_cam_table_included_degree: int, random_view_ratio: float) -> np.ndarray:
cam_poses = []
min_height_z = 1000
for look_at_point, cam_position in zip(view_data["look_at_points"], view_data["cam_positions"]):
look_at_point_world = obj_world_pose @ np.append(look_at_point, 1.0)
cam_position_world = obj_world_pose @ np.append(cam_position, 1.0)
if look_at_point_world[2] < min_height_z:
min_height_z = look_at_point_world[2]
look_at_point_world = look_at_point_world[:3]
cam_position_world = cam_position_world[:3]
forward_vector = cam_position_world - look_at_point_world
forward_vector /= np.linalg.norm(forward_vector)
up_vector = np.array([0, 0, 1])
right_vector = np.cross(up_vector, forward_vector)
right_vector /= np.linalg.norm(right_vector)
corrected_up_vector = np.cross(forward_vector, right_vector)
rotation_matrix = np.array([right_vector, corrected_up_vector, forward_vector]).T
cam_pose = np.eye(4)
cam_pose[:3, :3] = rotation_matrix
cam_pose[:3, 3] = cam_position_world
cam_poses.append(cam_pose)
filtered_cam_poses = []
for cam_pose in cam_poses:
if cam_pose[2, 3] > min_height_z:
direction_vector = cam_pose[:3, 2]
horizontal_normal = np.array([0, 0, 1])
cos_angle = np.dot(direction_vector, horizontal_normal) / (np.linalg.norm(direction_vector) * np.linalg.norm(horizontal_normal))
angle = np.arccos(np.clip(cos_angle, -1.0, 1.0))
angle_degree = np.degrees(angle)
if angle_degree < 90 - min_cam_table_included_degree:
filtered_cam_poses.append(cam_pose)
if random.random() < random_view_ratio:
pertube_pose = PoseUtil.get_uniform_pose([0.1, 0.1, 0.1], [3, 3, 3], 0, 180, "cm")
filtered_cam_poses.append(pertube_pose @ cam_pose)
if len(filtered_cam_poses) > max_views:
indices = np.random.choice(len(filtered_cam_poses), max_views, replace=False)
filtered_cam_poses = [filtered_cam_poses[i] for i in indices]
return np.array(filtered_cam_poses)
@staticmethod
def sample_view_data_world_space(obj, distance_range:tuple = (0.3,0.5), voxel_size:float = 0.005, max_views: int=1, min_cam_table_included_degree:int=20, random_view_ratio:float = 0.2) -> dict:
obj_world_pose = np.asarray(obj.matrix_world)
view_data = ViewSampleUtil.sample_view_data(obj, distance_range, voxel_size, max_views)
view_data["cam_poses"] = ViewSampleUtil.get_cam_pose(view_data, obj_world_pose, max_views, min_cam_table_included_degree, random_view_ratio)
view_data["voxel_down_sampled_points"], view_data["normals"] = ViewSampleUtil.get_world_points_and_normals(view_data, obj_world_pose)
return view_data