optimize code structure
This commit is contained in:
parent
dd01b4903d
commit
1f8c017a01
@ -6,8 +6,9 @@ import bpy
|
||||
import numpy as np
|
||||
import mathutils
|
||||
import requests
|
||||
from blender.blender_util import BlenderUtils
|
||||
from blender.view_sample_util import ViewSampleUtil
|
||||
from utils.blender_util import BlenderUtils
|
||||
from utils.view_sample_util import ViewSampleUtil
|
||||
from utils.material_util import MaterialUtil
|
||||
|
||||
class DataGenerator:
|
||||
def __init__(self, config):
|
||||
@ -103,29 +104,7 @@ class DataGenerator:
|
||||
bpy.context.object.rigid_body.type = 'PASSIVE'
|
||||
bpy.ops.object.shade_auto_smooth()
|
||||
|
||||
# 创建不受光照影响的材质
|
||||
mat = bpy.data.materials.new(name="RedMaterial")
|
||||
mat.use_nodes = True
|
||||
|
||||
# 清除默认节点
|
||||
nodes = mat.node_tree.nodes
|
||||
for node in nodes:
|
||||
nodes.remove(node)
|
||||
|
||||
# 添加 Emission 节点
|
||||
emission_node = nodes.new(type='ShaderNodeEmission')
|
||||
emission_node.inputs['Color'].default_value = (1.0, 0.0, 0.0, 1.0) # 红色
|
||||
|
||||
# 添加 Material Output 节点
|
||||
output_node = nodes.new(type='ShaderNodeOutputMaterial')
|
||||
|
||||
# 连接节点
|
||||
links = mat.node_tree.links
|
||||
links.new(emission_node.outputs['Emission'], output_node.inputs['Surface'])
|
||||
|
||||
# 将材质赋给对象
|
||||
platform.data.materials.clear()
|
||||
platform.data.materials.append(mat)
|
||||
MaterialUtil.change_object_material(platform, MaterialUtil.create_mask_material(color=(1.0, 0, 0)))
|
||||
|
||||
self.display_table_config = {
|
||||
"height": height,
|
||||
@ -166,31 +145,7 @@ class DataGenerator:
|
||||
|
||||
bpy.ops.rigidbody.object_add()
|
||||
bpy.context.object.rigid_body.type = 'ACTIVE'
|
||||
|
||||
# 创建不受光照影响的材质
|
||||
mat = bpy.data.materials.new(name="GreenMaterial")
|
||||
mat.use_nodes = True
|
||||
|
||||
# 清除默认节点
|
||||
nodes = mat.node_tree.nodes
|
||||
for node in nodes:
|
||||
nodes.remove(node)
|
||||
|
||||
# 添加 Emission 节点
|
||||
emission_node = nodes.new(type='ShaderNodeEmission')
|
||||
emission_node.inputs['Color'].default_value = (0.0, 1.0, 0.0, 1.0) # 绿色
|
||||
|
||||
# 添加 Material Output 节点
|
||||
output_node = nodes.new(type='ShaderNodeOutputMaterial')
|
||||
|
||||
# 连接节点
|
||||
links = mat.node_tree.links
|
||||
links.new(emission_node.outputs['Emission'], output_node.inputs['Surface'])
|
||||
|
||||
# 将材质赋给对象
|
||||
obj.data.materials.clear()
|
||||
obj.data.materials.append(mat)
|
||||
|
||||
MaterialUtil.change_object_material(obj, MaterialUtil.create_mask_material(color=(0, 1.0, 0)))
|
||||
self.target_obj = obj
|
||||
|
||||
|
||||
@ -249,9 +204,7 @@ class DataGenerator:
|
||||
self.set_progress("render frame", len(view_data["cam_poses"]), len(view_data["cam_poses"]))
|
||||
BlenderUtils.save_scene_info(scene_dir, self.display_table_config, object_name)
|
||||
|
||||
|
||||
|
||||
self.change_target_obj_material_to_normal()
|
||||
MaterialUtil.change_object_material(self.target_obj, MaterialUtil.create_normal_material())
|
||||
for i, cam_pose in enumerate(view_data["cam_poses"]):
|
||||
BlenderUtils.set_camera_at(cam_pose)
|
||||
BlenderUtils.render_normal_and_depth(scene_dir, f"{i}", binocular_vision=self.binocular_vision, target_object = self.target_obj)
|
||||
@ -269,196 +222,6 @@ class DataGenerator:
|
||||
|
||||
return True
|
||||
|
||||
def change_target_obj_material_to_normal(self):
|
||||
|
||||
material_name = "normal"
|
||||
mat = bpy.data.materials.get(material_name) or bpy.data.materials.new(
|
||||
material_name
|
||||
)
|
||||
mat.use_nodes = True
|
||||
node_tree = mat.node_tree
|
||||
nodes = node_tree.nodes
|
||||
nodes.clear()
|
||||
|
||||
links = node_tree.links
|
||||
links.clear()
|
||||
|
||||
# Nodes:
|
||||
new_node = nodes.new(type="ShaderNodeMath")
|
||||
# new_node.active_preview = False
|
||||
new_node.color = (0.6079999804496765, 0.6079999804496765, 0.6079999804496765)
|
||||
new_node.location = (151.59744262695312, 854.5482177734375)
|
||||
new_node.name = "Math"
|
||||
new_node.operation = "MULTIPLY"
|
||||
new_node.select = False
|
||||
new_node.use_clamp = False
|
||||
new_node.width = 140.0
|
||||
new_node.inputs[0].default_value = 0.5
|
||||
new_node.inputs[1].default_value = 1.0
|
||||
new_node.inputs[2].default_value = 0.0
|
||||
new_node.outputs[0].default_value = 0.0
|
||||
|
||||
new_node = nodes.new(type="ShaderNodeLightPath")
|
||||
# new_node.active_preview = False
|
||||
new_node.color = (0.6079999804496765, 0.6079999804496765, 0.6079999804496765)
|
||||
new_node.location = (602.9912719726562, 1046.660888671875)
|
||||
new_node.name = "Light Path"
|
||||
new_node.select = False
|
||||
new_node.width = 140.0
|
||||
new_node.outputs[0].default_value = 0.0
|
||||
new_node.outputs[1].default_value = 0.0
|
||||
new_node.outputs[2].default_value = 0.0
|
||||
new_node.outputs[3].default_value = 0.0
|
||||
new_node.outputs[4].default_value = 0.0
|
||||
new_node.outputs[5].default_value = 0.0
|
||||
new_node.outputs[6].default_value = 0.0
|
||||
new_node.outputs[7].default_value = 0.0
|
||||
new_node.outputs[8].default_value = 0.0
|
||||
new_node.outputs[9].default_value = 0.0
|
||||
new_node.outputs[10].default_value = 0.0
|
||||
new_node.outputs[11].default_value = 0.0
|
||||
new_node.outputs[12].default_value = 0.0
|
||||
|
||||
new_node = nodes.new(type="ShaderNodeOutputMaterial")
|
||||
# new_node.active_preview = False
|
||||
new_node.color = (0.6079999804496765, 0.6079999804496765, 0.6079999804496765)
|
||||
new_node.is_active_output = True
|
||||
new_node.location = (1168.93017578125, 701.84033203125)
|
||||
new_node.name = "Material Output"
|
||||
new_node.select = False
|
||||
new_node.target = "ALL"
|
||||
new_node.width = 140.0
|
||||
new_node.inputs[2].default_value = [0.0, 0.0, 0.0]
|
||||
|
||||
new_node = nodes.new(type="ShaderNodeBsdfTransparent")
|
||||
# new_node.active_preview = False
|
||||
new_node.color = (0.6079999804496765, 0.6079999804496765, 0.6079999804496765)
|
||||
new_node.location = (731.72900390625, 721.4832763671875)
|
||||
new_node.name = "Transparent BSDF"
|
||||
new_node.select = False
|
||||
new_node.width = 140.0
|
||||
new_node.inputs[0].default_value = [1.0, 1.0, 1.0, 1.0]
|
||||
|
||||
new_node = nodes.new(type="ShaderNodeCombineXYZ")
|
||||
# new_node.active_preview = False
|
||||
new_node.color = (0.6079999804496765, 0.6079999804496765, 0.6079999804496765)
|
||||
new_node.location = (594.4229736328125, 602.9271240234375)
|
||||
new_node.name = "Combine XYZ"
|
||||
new_node.select = False
|
||||
new_node.width = 140.0
|
||||
new_node.inputs[0].default_value = 0.0
|
||||
new_node.inputs[1].default_value = 0.0
|
||||
new_node.inputs[2].default_value = 0.0
|
||||
new_node.outputs[0].default_value = [0.0, 0.0, 0.0]
|
||||
|
||||
new_node = nodes.new(type="ShaderNodeMixShader")
|
||||
# new_node.active_preview = False
|
||||
new_node.color = (0.6079999804496765, 0.6079999804496765, 0.6079999804496765)
|
||||
new_node.location = (992.7239990234375, 707.2142333984375)
|
||||
new_node.name = "Mix Shader"
|
||||
new_node.select = False
|
||||
new_node.width = 140.0
|
||||
new_node.inputs[0].default_value = 0.5
|
||||
|
||||
new_node = nodes.new(type="ShaderNodeEmission")
|
||||
# new_node.active_preview = False
|
||||
new_node.color = (0.6079999804496765, 0.6079999804496765, 0.6079999804496765)
|
||||
new_node.location = (774.0802612304688, 608.2547607421875)
|
||||
new_node.name = "Emission"
|
||||
new_node.select = False
|
||||
new_node.width = 140.0
|
||||
new_node.inputs[0].default_value = [1.0, 1.0, 1.0, 1.0]
|
||||
new_node.inputs[1].default_value = 1.0
|
||||
|
||||
new_node = nodes.new(type="ShaderNodeSeparateXYZ")
|
||||
# new_node.active_preview = False
|
||||
new_node.color = (0.6079999804496765, 0.6079999804496765, 0.6079999804496765)
|
||||
new_node.location = (-130.12167358398438, 558.1497802734375)
|
||||
new_node.name = "Separate XYZ"
|
||||
new_node.select = False
|
||||
new_node.width = 140.0
|
||||
new_node.inputs[0].default_value = [0.0, 0.0, 0.0]
|
||||
new_node.outputs[0].default_value = 0.0
|
||||
new_node.outputs[1].default_value = 0.0
|
||||
new_node.outputs[2].default_value = 0.0
|
||||
|
||||
new_node = nodes.new(type="ShaderNodeMath")
|
||||
# new_node.active_preview = False
|
||||
new_node.color = (0.6079999804496765, 0.6079999804496765, 0.6079999804496765)
|
||||
new_node.location = (162.43240356445312, 618.8094482421875)
|
||||
new_node.name = "Math.002"
|
||||
new_node.operation = "MULTIPLY"
|
||||
new_node.select = False
|
||||
new_node.use_clamp = False
|
||||
new_node.width = 140.0
|
||||
new_node.inputs[0].default_value = 0.5
|
||||
new_node.inputs[1].default_value = 1.0
|
||||
new_node.inputs[2].default_value = 0.0
|
||||
new_node.outputs[0].default_value = 0.0
|
||||
|
||||
new_node = nodes.new(type="ShaderNodeMath")
|
||||
# new_node.active_preview = False
|
||||
new_node.color = (0.6079999804496765, 0.6079999804496765, 0.6079999804496765)
|
||||
new_node.location = (126.8158187866211, 364.5539855957031)
|
||||
new_node.name = "Math.001"
|
||||
new_node.operation = "MULTIPLY"
|
||||
new_node.select = False
|
||||
new_node.use_clamp = False
|
||||
new_node.width = 140.0
|
||||
new_node.inputs[0].default_value = 0.5
|
||||
new_node.inputs[1].default_value = -1.0
|
||||
new_node.inputs[2].default_value = 0.0
|
||||
new_node.outputs[0].default_value = 0.0
|
||||
|
||||
new_node = nodes.new(type="ShaderNodeVectorTransform")
|
||||
# new_node.active_preview = False
|
||||
new_node.color = (0.6079999804496765, 0.6079999804496765, 0.6079999804496765)
|
||||
new_node.convert_from = "WORLD"
|
||||
new_node.convert_to = "CAMERA"
|
||||
new_node.location = (-397.0209045410156, 594.7037353515625)
|
||||
new_node.name = "Vector Transform"
|
||||
new_node.select = False
|
||||
new_node.vector_type = "VECTOR"
|
||||
new_node.width = 140.0
|
||||
new_node.inputs[0].default_value = [0.5, 0.5, 0.5]
|
||||
new_node.outputs[0].default_value = [0.0, 0.0, 0.0]
|
||||
|
||||
new_node = nodes.new(type="ShaderNodeNewGeometry")
|
||||
# new_node.active_preview = False
|
||||
new_node.color = (0.6079999804496765, 0.6079999804496765, 0.6079999804496765)
|
||||
new_node.location = (-651.8067016601562, 593.0455932617188)
|
||||
new_node.name = "Geometry"
|
||||
new_node.width = 140.0
|
||||
new_node.outputs[0].default_value = [0.0, 0.0, 0.0]
|
||||
new_node.outputs[1].default_value = [0.0, 0.0, 0.0]
|
||||
new_node.outputs[2].default_value = [0.0, 0.0, 0.0]
|
||||
new_node.outputs[3].default_value = [0.0, 0.0, 0.0]
|
||||
new_node.outputs[4].default_value = [0.0, 0.0, 0.0]
|
||||
new_node.outputs[5].default_value = [0.0, 0.0, 0.0]
|
||||
new_node.outputs[6].default_value = 0.0
|
||||
new_node.outputs[7].default_value = 0.0
|
||||
new_node.outputs[8].default_value = 0.0
|
||||
|
||||
# Links :
|
||||
|
||||
links.new(nodes["Light Path"].outputs[0], nodes["Mix Shader"].inputs[0])
|
||||
links.new(nodes["Separate XYZ"].outputs[0], nodes["Math"].inputs[0])
|
||||
links.new(nodes["Separate XYZ"].outputs[1], nodes["Math.002"].inputs[0])
|
||||
links.new(nodes["Separate XYZ"].outputs[2], nodes["Math.001"].inputs[0])
|
||||
links.new(nodes["Vector Transform"].outputs[0], nodes["Separate XYZ"].inputs[0])
|
||||
links.new(nodes["Combine XYZ"].outputs[0], nodes["Emission"].inputs[0])
|
||||
links.new(nodes["Math"].outputs[0], nodes["Combine XYZ"].inputs[0])
|
||||
links.new(nodes["Math.002"].outputs[0], nodes["Combine XYZ"].inputs[1])
|
||||
links.new(nodes["Math.001"].outputs[0], nodes["Combine XYZ"].inputs[2])
|
||||
links.new(nodes["Transparent BSDF"].outputs[0], nodes["Mix Shader"].inputs[1])
|
||||
links.new(nodes["Emission"].outputs[0], nodes["Mix Shader"].inputs[2])
|
||||
links.new(nodes["Mix Shader"].outputs[0], nodes["Material Output"].inputs[0])
|
||||
links.new(nodes["Geometry"].outputs[1], nodes["Vector Transform"].inputs[0])
|
||||
|
||||
self.target_obj.data.materials.clear()
|
||||
self.target_obj.data.materials.append(mat)
|
||||
|
||||
|
||||
|
||||
def simulate_scene(self, frame_limit=120, depth = 0, diag = 0):
|
||||
bpy.context.view_layer.update()
|
||||
|
265
data_load.py
265
data_load.py
@ -1,265 +0,0 @@
|
||||
import os
|
||||
import numpy as np
|
||||
import json
|
||||
import cv2
|
||||
import trimesh
|
||||
from pts import PtsUtil
|
||||
|
||||
class DataLoadUtil:
|
||||
|
||||
@staticmethod
|
||||
def get_path(root, scene_name, frame_idx):
|
||||
path = os.path.join(root, scene_name, f"{frame_idx}")
|
||||
return path
|
||||
|
||||
@staticmethod
|
||||
def get_label_path(root, scene_name):
|
||||
path = os.path.join(root,scene_name, f"label.json")
|
||||
return path
|
||||
|
||||
@staticmethod
|
||||
def get_sampled_model_points_path(root, scene_name):
|
||||
path = os.path.join(root,scene_name, f"sampled_model_points.txt")
|
||||
return path
|
||||
|
||||
@staticmethod
|
||||
def get_scene_seq_length(root, scene_name):
|
||||
camera_params_path = os.path.join(root, scene_name, "camera_params")
|
||||
return len(os.listdir(camera_params_path))
|
||||
|
||||
@staticmethod
|
||||
def load_downsampled_world_model_points(root, scene_name):
|
||||
model_path = DataLoadUtil.get_sampled_model_points_path(root, scene_name)
|
||||
model_points = np.loadtxt(model_path)
|
||||
return model_points
|
||||
|
||||
@staticmethod
|
||||
def save_downsampled_world_model_points(root, scene_name, model_points):
|
||||
model_path = DataLoadUtil.get_sampled_model_points_path(root, scene_name)
|
||||
np.savetxt(model_path, model_points)
|
||||
|
||||
@staticmethod
|
||||
def load_mesh_at(model_dir, object_name, world_object_pose):
|
||||
model_path = os.path.join(model_dir, object_name, "mesh.obj")
|
||||
mesh = trimesh.load(model_path)
|
||||
mesh.apply_transform(world_object_pose)
|
||||
return mesh
|
||||
|
||||
@staticmethod
|
||||
def get_bbox_diag(model_dir, object_name):
|
||||
model_path = os.path.join(model_dir, object_name, "mesh.obj")
|
||||
mesh = trimesh.load(model_path)
|
||||
bbox = mesh.bounding_box.extents
|
||||
diagonal_length = np.linalg.norm(bbox)
|
||||
return diagonal_length
|
||||
|
||||
|
||||
@staticmethod
|
||||
def save_mesh_at(model_dir, output_dir, object_name, scene_name, world_object_pose):
|
||||
mesh = DataLoadUtil.load_mesh_at(model_dir, object_name, world_object_pose)
|
||||
model_path = os.path.join(output_dir, scene_name, "world_mesh.obj")
|
||||
mesh.export(model_path)
|
||||
|
||||
@staticmethod
|
||||
def save_target_mesh_at_world_space(root, model_dir, scene_name):
|
||||
scene_info = DataLoadUtil.load_scene_info(root, scene_name)
|
||||
target_name = scene_info["target_name"]
|
||||
transformation = scene_info[target_name]
|
||||
location = transformation["location"]
|
||||
rotation_euler = transformation["rotation_euler"]
|
||||
pose_mat = trimesh.transformations.euler_matrix(*rotation_euler)
|
||||
pose_mat[:3, 3] = location
|
||||
|
||||
mesh = DataLoadUtil.load_mesh_at(model_dir, target_name, pose_mat)
|
||||
mesh_dir = os.path.join(root, scene_name, "mesh")
|
||||
if not os.path.exists(mesh_dir):
|
||||
os.makedirs(mesh_dir)
|
||||
model_path = os.path.join(mesh_dir, "world_target_mesh.obj")
|
||||
mesh.export(model_path)
|
||||
|
||||
@staticmethod
|
||||
def load_scene_info(root, scene_name):
|
||||
scene_info_path = os.path.join(root, scene_name, "scene_info.json")
|
||||
with open(scene_info_path, "r") as f:
|
||||
scene_info = json.load(f)
|
||||
return scene_info
|
||||
|
||||
@staticmethod
|
||||
def load_target_object_pose(root, scene_name):
|
||||
scene_info = DataLoadUtil.load_scene_info(root, scene_name)
|
||||
target_name = scene_info["target_name"]
|
||||
transformation = scene_info[target_name]
|
||||
location = transformation["location"]
|
||||
rotation_euler = transformation["rotation_euler"]
|
||||
pose_mat = trimesh.transformations.euler_matrix(*rotation_euler)
|
||||
pose_mat[:3, 3] = location
|
||||
return pose_mat
|
||||
|
||||
@staticmethod
|
||||
def load_depth(path, min_depth=0.01,max_depth=5.0,binocular=False):
|
||||
|
||||
def load_depth_from_real_path(real_path, min_depth, max_depth):
|
||||
depth = cv2.imread(real_path, cv2.IMREAD_UNCHANGED)
|
||||
depth = depth.astype(np.float32) / 65535.0
|
||||
min_depth = min_depth
|
||||
max_depth = max_depth
|
||||
depth_meters = min_depth + (max_depth - min_depth) * depth
|
||||
return depth_meters
|
||||
|
||||
if binocular:
|
||||
depth_path_L = os.path.join(os.path.dirname(path), "depth", os.path.basename(path) + "_L.png")
|
||||
depth_path_R = os.path.join(os.path.dirname(path), "depth", os.path.basename(path) + "_R.png")
|
||||
depth_meters_L = load_depth_from_real_path(depth_path_L, min_depth, max_depth)
|
||||
depth_meters_R = load_depth_from_real_path(depth_path_R, min_depth, max_depth)
|
||||
return depth_meters_L, depth_meters_R
|
||||
else:
|
||||
depth_path = os.path.join(os.path.dirname(path), "depth", os.path.basename(path) + ".png")
|
||||
depth_meters = load_depth_from_real_path(depth_path, min_depth, max_depth)
|
||||
return depth_meters
|
||||
|
||||
@staticmethod
|
||||
def load_seg(path, binocular=False):
|
||||
if binocular:
|
||||
def clean_mask(mask_image):
|
||||
green = [0, 255, 0, 255]
|
||||
red = [255, 0, 0, 255]
|
||||
threshold = 2
|
||||
mask_image = np.where(np.abs(mask_image - green) <= threshold, green, mask_image)
|
||||
mask_image = np.where(np.abs(mask_image - red) <= threshold, red, mask_image)
|
||||
return mask_image
|
||||
mask_path_L = os.path.join(os.path.dirname(path), "mask", os.path.basename(path) + "_L.png")
|
||||
mask_image_L = clean_mask(cv2.imread(mask_path_L, cv2.IMREAD_UNCHANGED))
|
||||
mask_path_R = os.path.join(os.path.dirname(path), "mask", os.path.basename(path) + "_R.png")
|
||||
mask_image_R = clean_mask(cv2.imread(mask_path_R, cv2.IMREAD_UNCHANGED))
|
||||
return mask_image_L, mask_image_R
|
||||
else:
|
||||
mask_path = os.path.join(os.path.dirname(path), "mask", os.path.basename(path) + ".png")
|
||||
mask_image = cv2.imread(mask_path, cv2.IMREAD_GRAYSCALE)
|
||||
return mask_image
|
||||
|
||||
@staticmethod
|
||||
def load_label(path):
|
||||
with open(path, 'r') as f:
|
||||
label_data = json.load(f)
|
||||
return label_data
|
||||
|
||||
@staticmethod
|
||||
def load_rgb(path):
|
||||
rgb_path = os.path.join(os.path.dirname(path), "rgb", os.path.basename(path) + ".png")
|
||||
rgb_image = cv2.imread(rgb_path, cv2.IMREAD_COLOR)
|
||||
return rgb_image
|
||||
|
||||
@staticmethod
|
||||
def cam_pose_transformation(cam_pose_before):
|
||||
offset = np.asarray([
|
||||
[1, 0, 0, 0],
|
||||
[0, -1, 0, 0],
|
||||
[0, 0, -1, 0],
|
||||
[0, 0, 0, 1]])
|
||||
cam_pose_after = cam_pose_before @ offset
|
||||
return cam_pose_after
|
||||
|
||||
@staticmethod
|
||||
def load_cam_info(path, binocular=False):
|
||||
camera_params_path = os.path.join(os.path.dirname(path), "camera_params", os.path.basename(path) + ".json")
|
||||
with open(camera_params_path, 'r') as f:
|
||||
label_data = json.load(f)
|
||||
cam_to_world = np.asarray(label_data["extrinsic"])
|
||||
cam_to_world = DataLoadUtil.cam_pose_transformation(cam_to_world)
|
||||
cam_intrinsic = np.asarray(label_data["intrinsic"])
|
||||
cam_info = {
|
||||
"cam_to_world": cam_to_world,
|
||||
"cam_intrinsic": cam_intrinsic,
|
||||
"far_plane": label_data["far_plane"],
|
||||
"near_plane": label_data["near_plane"]
|
||||
}
|
||||
if binocular:
|
||||
cam_to_world_R = np.asarray(label_data["extrinsic_R"])
|
||||
cam_to_world_R = DataLoadUtil.cam_pose_transformation(cam_to_world_R)
|
||||
cam_info["cam_to_world_R"] = cam_to_world_R
|
||||
return cam_info
|
||||
|
||||
@staticmethod
|
||||
def get_target_point_cloud(depth, cam_intrinsic, cam_extrinsic, mask, target_mask_label=(0,255,0,255)):
|
||||
h, w = depth.shape
|
||||
i, j = np.meshgrid(np.arange(w), np.arange(h), indexing='xy')
|
||||
|
||||
z = depth
|
||||
x = (i - cam_intrinsic[0, 2]) * z / cam_intrinsic[0, 0]
|
||||
y = (j - cam_intrinsic[1, 2]) * z / cam_intrinsic[1, 1]
|
||||
|
||||
points_camera = np.stack((x, y, z), axis=-1).reshape(-1, 3)
|
||||
mask = mask.reshape(-1,4)
|
||||
|
||||
target_mask = (mask == target_mask_label).all(axis=-1)
|
||||
|
||||
target_points_camera = points_camera[target_mask]
|
||||
target_points_camera_aug = np.concatenate([target_points_camera, np.ones((target_points_camera.shape[0], 1))], axis=-1)
|
||||
|
||||
target_points_world = np.dot(cam_extrinsic, target_points_camera_aug.T).T[:, :3]
|
||||
return {
|
||||
"points_world": target_points_world,
|
||||
"points_camera": target_points_camera
|
||||
}
|
||||
|
||||
@staticmethod
|
||||
def get_point_cloud(depth, cam_intrinsic, cam_extrinsic):
|
||||
h, w = depth.shape
|
||||
i, j = np.meshgrid(np.arange(w), np.arange(h), indexing='xy')
|
||||
|
||||
z = depth
|
||||
x = (i - cam_intrinsic[0, 2]) * z / cam_intrinsic[0, 0]
|
||||
y = (j - cam_intrinsic[1, 2]) * z / cam_intrinsic[1, 1]
|
||||
|
||||
points_camera = np.stack((x, y, z), axis=-1).reshape(-1, 3)
|
||||
points_camera_aug = np.concatenate([points_camera, np.ones((points_camera.shape[0], 1))], axis=-1)
|
||||
|
||||
points_world = np.dot(cam_extrinsic, points_camera_aug.T).T[:, :3]
|
||||
return {
|
||||
"points_world": points_world,
|
||||
"points_camera": points_camera
|
||||
}
|
||||
|
||||
@staticmethod
|
||||
def get_target_point_cloud_world_from_path(path, binocular=False, random_downsample_N=65536, voxel_size = 0.005, target_mask_label=(0,255,0,255)):
|
||||
cam_info = DataLoadUtil.load_cam_info(path, binocular=binocular)
|
||||
if binocular:
|
||||
depth_L, depth_R = DataLoadUtil.load_depth(path, cam_info['near_plane'], cam_info['far_plane'], binocular=True)
|
||||
mask_L, mask_R = DataLoadUtil.load_seg(path, binocular=True)
|
||||
point_cloud_L = DataLoadUtil.get_target_point_cloud(depth_L, cam_info['cam_intrinsic'], cam_info['cam_to_world'], mask_L, target_mask_label)['points_world']
|
||||
point_cloud_R = DataLoadUtil.get_target_point_cloud(depth_R, cam_info['cam_intrinsic'], cam_info['cam_to_world_R'], mask_R, target_mask_label)['points_world']
|
||||
point_cloud_L = PtsUtil.random_downsample_point_cloud(point_cloud_L, random_downsample_N)
|
||||
point_cloud_R = PtsUtil.random_downsample_point_cloud(point_cloud_R, random_downsample_N)
|
||||
overlap_points = DataLoadUtil.get_overlapping_points(point_cloud_L, point_cloud_R, voxel_size)
|
||||
return overlap_points
|
||||
else:
|
||||
depth = DataLoadUtil.load_depth(path, cam_info['near_plane'], cam_info['far_plane'])
|
||||
mask = DataLoadUtil.load_seg(path)
|
||||
point_cloud = DataLoadUtil.get_target_point_cloud(depth, cam_info['cam_intrinsic'], cam_info['cam_to_world'], mask)['points_world']
|
||||
return point_cloud
|
||||
|
||||
|
||||
@staticmethod
|
||||
def voxelize_points(points, voxel_size):
|
||||
|
||||
voxel_indices = np.floor(points / voxel_size).astype(np.int32)
|
||||
unique_voxels = np.unique(voxel_indices, axis=0, return_inverse=True)
|
||||
return unique_voxels
|
||||
|
||||
@staticmethod
|
||||
def get_overlapping_points(point_cloud_L, point_cloud_R, voxel_size=0.005):
|
||||
voxels_L, indices_L = DataLoadUtil.voxelize_points(point_cloud_L, voxel_size)
|
||||
voxels_R, _ = DataLoadUtil.voxelize_points(point_cloud_R, voxel_size)
|
||||
|
||||
voxel_indices_L = voxels_L.view([('', voxels_L.dtype)]*3)
|
||||
voxel_indices_R = voxels_R.view([('', voxels_R.dtype)]*3)
|
||||
overlapping_voxels = np.intersect1d(voxel_indices_L, voxel_indices_R)
|
||||
mask_L = np.isin(indices_L, np.where(np.isin(voxel_indices_L, overlapping_voxels))[0])
|
||||
overlapping_points = point_cloud_L[mask_L]
|
||||
return overlapping_points
|
||||
|
||||
@staticmethod
|
||||
def load_points_normals(root, scene_name):
|
||||
points_path = os.path.join(root, scene_name, "points_and_normals.txt")
|
||||
points_normals = np.loadtxt(points_path)
|
||||
return points_normals
|
@ -5,7 +5,7 @@ import json
|
||||
import mathutils
|
||||
import numpy as np
|
||||
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
|
||||
from blender_util import BlenderUtils
|
||||
from utils.blender_util import BlenderUtils
|
||||
|
||||
|
||||
class DataRenderer:
|
||||
|
22
pts.py
22
pts.py
@ -1,22 +0,0 @@
|
||||
import numpy as np
|
||||
import open3d as o3d
|
||||
|
||||
class PtsUtil:
|
||||
|
||||
@staticmethod
|
||||
def voxel_downsample_point_cloud(point_cloud, voxel_size=0.005):
|
||||
o3d_pc = o3d.geometry.PointCloud()
|
||||
o3d_pc.points = o3d.utility.Vector3dVector(point_cloud)
|
||||
downsampled_pc = o3d_pc.voxel_down_sample(voxel_size)
|
||||
return np.asarray(downsampled_pc.points)
|
||||
|
||||
@staticmethod
|
||||
def transform_point_cloud(points, pose_mat):
|
||||
points_h = np.concatenate([points, np.ones((points.shape[0], 1))], axis=1)
|
||||
points_h = np.dot(pose_mat, points_h.T).T
|
||||
return points_h[:, :3]
|
||||
|
||||
@staticmethod
|
||||
def random_downsample_point_cloud(point_cloud, num_points):
|
||||
idx = np.random.choice(len(point_cloud), num_points, replace=True)
|
||||
return point_cloud[idx]
|
@ -1,119 +0,0 @@
|
||||
import numpy as np
|
||||
from scipy.spatial import cKDTree
|
||||
from pts import PtsUtil
|
||||
|
||||
class ReconstructionUtil:
|
||||
|
||||
@staticmethod
|
||||
def compute_coverage_rate(target_point_cloud, combined_point_cloud, threshold=0.01):
|
||||
kdtree = cKDTree(combined_point_cloud)
|
||||
distances, _ = kdtree.query(target_point_cloud)
|
||||
covered_points = np.sum(distances < threshold)
|
||||
coverage_rate = covered_points / target_point_cloud.shape[0]
|
||||
return coverage_rate
|
||||
|
||||
@staticmethod
|
||||
def compute_overlap_rate(new_point_cloud, combined_point_cloud, threshold=0.01):
|
||||
kdtree = cKDTree(combined_point_cloud)
|
||||
distances, _ = kdtree.query(new_point_cloud)
|
||||
overlapping_points = np.sum(distances < threshold)
|
||||
overlap_rate = overlapping_points / new_point_cloud.shape[0]
|
||||
return overlap_rate
|
||||
|
||||
@staticmethod
|
||||
def combine_point_with_view_sequence(point_list, view_sequence):
|
||||
selected_views = []
|
||||
for view_index, _ in view_sequence:
|
||||
selected_views.append(point_list[view_index])
|
||||
return np.vstack(selected_views)
|
||||
|
||||
@staticmethod
|
||||
def compute_next_view_coverage_list(views, combined_point_cloud, target_point_cloud, threshold=0.01):
|
||||
best_view = None
|
||||
best_coverage_increase = -1
|
||||
current_coverage = ReconstructionUtil.compute_coverage_rate(target_point_cloud, combined_point_cloud, threshold)
|
||||
|
||||
for view_index, view in enumerate(views):
|
||||
candidate_views = combined_point_cloud + [view]
|
||||
down_sampled_combined_point_cloud = PtsUtil.voxel_downsample_point_cloud(candidate_views, threshold)
|
||||
new_coverage = ReconstructionUtil.compute_coverage_rate(target_point_cloud, down_sampled_combined_point_cloud, threshold)
|
||||
coverage_increase = new_coverage - current_coverage
|
||||
if coverage_increase > best_coverage_increase:
|
||||
best_coverage_increase = coverage_increase
|
||||
best_view = view_index
|
||||
return best_view, best_coverage_increase
|
||||
|
||||
|
||||
@staticmethod
|
||||
def compute_next_best_view_sequence_with_overlap(target_point_cloud, point_cloud_list, display_table_point_cloud_list = None,threshold=0.01, overlap_threshold=0.3, status_info=None):
|
||||
selected_views = []
|
||||
current_coverage = 0.0
|
||||
remaining_views = list(range(len(point_cloud_list)))
|
||||
view_sequence = []
|
||||
cnt_processed_view = 0
|
||||
while remaining_views:
|
||||
best_view = None
|
||||
best_coverage_increase = -1
|
||||
|
||||
for view_index in remaining_views:
|
||||
|
||||
if selected_views:
|
||||
combined_old_point_cloud = np.vstack(selected_views)
|
||||
down_sampled_old_point_cloud = PtsUtil.voxel_downsample_point_cloud(combined_old_point_cloud,threshold)
|
||||
down_sampled_new_view_point_cloud = PtsUtil.voxel_downsample_point_cloud(point_cloud_list[view_index],threshold)
|
||||
overlap_rate = ReconstructionUtil.compute_overlap_rate(down_sampled_new_view_point_cloud,down_sampled_old_point_cloud, threshold)
|
||||
if overlap_rate < overlap_threshold:
|
||||
continue
|
||||
|
||||
candidate_views = selected_views + [point_cloud_list[view_index]]
|
||||
combined_point_cloud = np.vstack(candidate_views)
|
||||
down_sampled_combined_point_cloud = PtsUtil.voxel_downsample_point_cloud(combined_point_cloud,threshold)
|
||||
new_coverage = ReconstructionUtil.compute_coverage_rate(target_point_cloud, down_sampled_combined_point_cloud, threshold)
|
||||
coverage_increase = new_coverage - current_coverage
|
||||
#print(f"view_index: {view_index}, coverage_increase: {coverage_increase}")
|
||||
if coverage_increase > best_coverage_increase:
|
||||
best_coverage_increase = coverage_increase
|
||||
best_view = view_index
|
||||
|
||||
|
||||
if best_view is not None:
|
||||
if best_coverage_increase <=1e-3:
|
||||
break
|
||||
selected_views.append(point_cloud_list[best_view])
|
||||
remaining_views.remove(best_view)
|
||||
current_coverage += best_coverage_increase
|
||||
cnt_processed_view += 1
|
||||
if status_info is not None:
|
||||
sm = status_info["status_manager"]
|
||||
app_name = status_info["app_name"]
|
||||
runner_name = status_info["runner_name"]
|
||||
sm.set_status(app_name, runner_name, "current coverage", current_coverage)
|
||||
sm.set_progress(app_name, runner_name, "processed view", cnt_processed_view, len(point_cloud_list))
|
||||
|
||||
view_sequence.append((best_view, current_coverage))
|
||||
|
||||
else:
|
||||
break
|
||||
if status_info is not None:
|
||||
sm = status_info["status_manager"]
|
||||
app_name = status_info["app_name"]
|
||||
runner_name = status_info["runner_name"]
|
||||
sm.set_progress(app_name, runner_name, "processed view", len(point_cloud_list), len(point_cloud_list))
|
||||
return view_sequence, remaining_views, down_sampled_combined_point_cloud
|
||||
|
||||
@staticmethod
|
||||
def filter_points(points, points_normals, cam_pose, voxel_size=0.005, theta=45):
|
||||
sampled_points = PtsUtil.voxel_downsample_point_cloud(points, voxel_size)
|
||||
kdtree = cKDTree(points_normals[:,:3])
|
||||
_, indices = kdtree.query(sampled_points)
|
||||
nearest_points = points_normals[indices]
|
||||
|
||||
normals = nearest_points[:, 3:]
|
||||
camera_axis = -cam_pose[:3, 2]
|
||||
normals_normalized = normals / np.linalg.norm(normals, axis=1, keepdims=True)
|
||||
cos_theta = np.dot(normals_normalized, camera_axis)
|
||||
theta_rad = np.deg2rad(theta)
|
||||
filtered_sampled_points= sampled_points[cos_theta > np.cos(theta_rad)]
|
||||
|
||||
return filtered_sampled_points[:, :3]
|
||||
|
@ -1,10 +1,10 @@
|
||||
|
||||
import os
|
||||
import sys
|
||||
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
|
||||
sys.path.append("/home/hofee/.local/lib/python3.11/site-packages")
|
||||
import yaml
|
||||
from blender.data_generator import DataGenerator
|
||||
|
||||
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
|
||||
from data_generator import DataGenerator
|
||||
|
||||
if __name__ == "__main__":
|
||||
config_path = sys.argv[sys.argv.index('--') + 1]
|
||||
|
96
utils/material_util.py
Normal file
96
utils/material_util.py
Normal file
@ -0,0 +1,96 @@
|
||||
import bpy
|
||||
|
||||
class MaterialUtil:
|
||||
|
||||
''' --------- Basic --------- '''
|
||||
@staticmethod
|
||||
def change_object_material(obj, mat):
|
||||
if obj.data.materials:
|
||||
obj.data.materials[0] = mat
|
||||
else:
|
||||
obj.data.materials.append(mat)
|
||||
|
||||
''' ------- Materials ------- '''
|
||||
@staticmethod
|
||||
def create_normal_material():
|
||||
normal_mat = bpy.data.materials.new(name="NormalMaterial")
|
||||
normal_mat.use_nodes = True
|
||||
|
||||
nodes = normal_mat.node_tree.nodes
|
||||
links = normal_mat.node_tree.links
|
||||
|
||||
nodes.clear()
|
||||
|
||||
geometry_node = nodes.new(type="ShaderNodeNewGeometry")
|
||||
vector_transform_node = nodes.new(type="ShaderNodeVectorTransform")
|
||||
separate_xyz_node = nodes.new(type="ShaderNodeSeparateXYZ")
|
||||
multiply_node_x = nodes.new(type="ShaderNodeMath")
|
||||
multiply_node_y = nodes.new(type="ShaderNodeMath")
|
||||
multiply_node_z = nodes.new(type="ShaderNodeMath")
|
||||
combine_xyz_node = nodes.new(type="ShaderNodeCombineXYZ")
|
||||
light_path_node = nodes.new(type="ShaderNodeLightPath")
|
||||
emission_node_1 = nodes.new(type="ShaderNodeEmission")
|
||||
emission_node_2 = nodes.new(type="ShaderNodeEmission")
|
||||
mix_shader_node_1 = nodes.new(type="ShaderNodeMixShader")
|
||||
mix_shader_node_2 = nodes.new(type="ShaderNodeMixShader")
|
||||
material_output_node = nodes.new(type="ShaderNodeOutputMaterial")
|
||||
|
||||
vector_transform_node.vector_type = 'VECTOR'
|
||||
vector_transform_node.convert_from = 'WORLD'
|
||||
vector_transform_node.convert_to = 'CAMERA'
|
||||
|
||||
multiply_node_x.operation = 'MULTIPLY'
|
||||
multiply_node_x.inputs[1].default_value = 1.0
|
||||
|
||||
multiply_node_y.operation = 'MULTIPLY'
|
||||
multiply_node_y.inputs[1].default_value = 1.0
|
||||
|
||||
multiply_node_z.operation = 'MULTIPLY'
|
||||
multiply_node_z.inputs[1].default_value = -1.0
|
||||
|
||||
emission_node_1.inputs['Strength'].default_value = 1.0
|
||||
emission_node_2.inputs['Strength'].default_value = 1.0
|
||||
|
||||
mix_shader_node_2.inputs['Fac'].default_value = 0.5
|
||||
|
||||
links.new(geometry_node.outputs['Normal'], vector_transform_node.inputs['Vector'])
|
||||
links.new(vector_transform_node.outputs['Vector'], separate_xyz_node.inputs['Vector'])
|
||||
links.new(separate_xyz_node.outputs['X'], multiply_node_x.inputs[0])
|
||||
links.new(separate_xyz_node.outputs['Y'], multiply_node_y.inputs[0])
|
||||
links.new(separate_xyz_node.outputs['Z'], multiply_node_z.inputs[0])
|
||||
links.new(multiply_node_x.outputs['Value'], combine_xyz_node.inputs['X'])
|
||||
links.new(multiply_node_y.outputs['Value'], combine_xyz_node.inputs['Y'])
|
||||
links.new(multiply_node_z.outputs['Value'], combine_xyz_node.inputs['Z'])
|
||||
links.new(combine_xyz_node.outputs['Vector'], emission_node_1.inputs['Color'])
|
||||
links.new(light_path_node.outputs['Is Camera Ray'], mix_shader_node_1.inputs['Fac'])
|
||||
links.new(emission_node_1.outputs['Emission'], mix_shader_node_1.inputs[2])
|
||||
links.new(mix_shader_node_1.outputs['Shader'], mix_shader_node_2.inputs[1])
|
||||
links.new(emission_node_2.outputs['Emission'], mix_shader_node_2.inputs[2])
|
||||
links.new(mix_shader_node_2.outputs['Shader'], material_output_node.inputs['Surface'])
|
||||
return normal_mat
|
||||
|
||||
@staticmethod
|
||||
def create_mask_material(color=(1.0, 1.0, 1.0)):
|
||||
mask_mat = bpy.data.materials.new(name="MaskMaterial")
|
||||
mask_mat.use_nodes = True
|
||||
|
||||
nodes = mask_mat.node_tree.nodes
|
||||
links = mask_mat.node_tree.links
|
||||
|
||||
nodes.clear()
|
||||
emission_node = nodes.new(type="ShaderNodeEmission")
|
||||
emission_node.inputs['Color'].default_value = (*color, 1.0)
|
||||
emission_node.inputs['Strength'].default_value = 1.0
|
||||
material_output_node = nodes.new(type="ShaderNodeOutputMaterial")
|
||||
links.new(emission_node.outputs['Emission'], material_output_node.inputs['Surface'])
|
||||
|
||||
return mask_mat
|
||||
|
||||
|
||||
|
||||
# -------- debug --------
|
||||
if __name__ == "__main__":
|
||||
cube = bpy.data.objects.get("Cube")
|
||||
normal_mat = MaterialUtil.create_normal_material()
|
||||
MaterialUtil.change_object_material(cube, normal_mat)
|
||||
|
@ -3,7 +3,7 @@ import numpy as np
|
||||
import bmesh
|
||||
from collections import defaultdict
|
||||
from scipy.spatial.transform import Rotation as R
|
||||
from blender.pose import PoseUtil
|
||||
from utils.pose import PoseUtil
|
||||
import random
|
||||
|
||||
class ViewSampleUtil:
|
Loading…
x
Reference in New Issue
Block a user