# Pointnet2.PyTorch * PyTorch implementation of [PointNet++](https://arxiv.org/abs/1706.02413) based on [erikwijmans/Pointnet2_PyTorch](https://github.com/erikwijmans/Pointnet2_PyTorch). * Faster than the original codes by re-implementing the CUDA operations. ## Installation ### Requirements * Linux (tested on Ubuntu 14.04/16.04) * Python 3.6+ * PyTorch 1.0 ### Install Install this library by running the following command: ```shell cd pointnet2 python setup.py install cd ../ ``` ## Examples Here I provide a simple example to use this library in the task of KITTI ourdoor foreground point cloud segmentation, and you could refer to the paper [PointRCNN](https://arxiv.org/abs/1812.04244) for the details of task description and foreground label generation. 1. Download the training data from [KITTI 3D object detection](http://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=3d) website and organize the downloaded files as follows: ``` Pointnet2.PyTorch ├── pointnet2 ├── tools │ ├──data │ │ ├── KITTI │ │ │ ├── ImageSets │ │ │ ├── object │ │ │ │ ├──training │ │ │ │ ├──calib & velodyne & label_2 & image_2 │ │ train_and_eval.py ``` 2. Run the following command to train and evaluate: ```shell cd tools python train_and_eval.py --batch_size 8 --epochs 100 --ckpt_save_interval 2 ``` ## Project using this repo: * [PointRCNN](https://github.com/sshaoshuai/PointRCNN): 3D object detector from raw point cloud. ## Acknowledgement * [charlesq34/pointnet2](https://github.com/charlesq34/pointnet2): Paper author and official code repo. * [erikwijmans/Pointnet2_PyTorch](https://github.com/erikwijmans/Pointnet2_PyTorch): Initial work of PyTorch implementation of PointNet++.