import torch import annotations.stereotype as stereotype from utils.pose_util import PoseUtil @stereotype.evaluation_method("delta_pose") def evaluate(output_list, data_list): results = {"scalars": {}} rot_angle_list = [] for output, data in zip(output_list, data_list): gt_delta_rot_6d = data['delta_rot_6d'] est_delta_rot_6d = output['estimated_delta_rot_6d'] gt_delta_rot_mat = PoseUtil.rotation_6d_to_matrix_tensor_batch(gt_delta_rot_6d) est_delta_rot_mat = PoseUtil.rotation_6d_to_matrix_tensor_batch(est_delta_rot_6d) rotation_angles = rotation_angle_distance(gt_delta_rot_mat, est_delta_rot_mat) rot_angle_list.extend(list(rotation_angles)) results["scalars"]["delta_rotation"] = float(sum(rot_angle_list) / len(rot_angle_list)) return results def rotation_angle_distance(R1, R2): R = torch.matmul(R1, R2.transpose(1, 2)) trace = torch.diagonal(R, dim1=1, dim2=2).sum(-1) angle = torch.acos(torch.clamp((trace - 1) / 2, -1.0, 1.0))/torch.pi*180 return angle